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Abstract
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V. Quantum Mechanics in Three Dimensions

A. Schrödinger Equation in Spherical Coordinates.

1. In three dimensions, we can write the Hamiltonian operator (note

that I’ll leave the “hats” off of the operators in this section, but

they are there “virtually”) as

H =
1

2
mv2 + V =

1

2m

(
p2

x + p2
y + p2

z

)
+ V , (V-1)

where

px →
h̄

i

∂

∂x
, py →

h̄

i

∂

∂y
, pz →

h̄

i

∂

∂z
, (V-2)

or

p →
h̄

i
∇ , (V-3)

for short.

2. Using this notation in the Schrödinger equation gives

ih̄
∂Ψ

∂t
= −

h̄2

2m
∇2Ψ + VΨ , (V-4)

where

∇2 ≡ ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (V-5)

is the Laplacian in Cartesian coordinates.

3. The potential energy V and the wave function Ψ are now func-

tions of r = (x, y, z) and t.

4. The probability of finding the particle in the infinitesimal volume

d3r = dx dy dz is |Ψ(r, t)|2 d3r, and the normalization condition

reads ∫
|Ψ|2 d3r = 1 , (V-6)
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with the integral taken over all space.

5. If the potential is independent of time, there will be a complete

set of stationary states,

Ψn(r, t) = ψn(r) e−iEn/h̄, (V-7)

where the spatial wave function ψn satisfies the time-independent

Schrödinger equation:

−
h̄2

2m
∇2ψn + V ψn = Enψn . (V-8)

6. The general solution to the (time-dependent ) Schrödinger equa-

tion is

Ψ(r, t) =
∑
cn ψn(r) e−iEn/h̄, (V-9)

with the constants cn determined by the initial wave function,

Ψ(r, 0), in the usual way. (If the potential admits continuum

states, then the sum in Eq. (V-9) becomes an integral.)

7. Separation of Variables.

a) Typically, the potential is a function only of the distance

from the origin. In that case it is natural to adopt spher-

ical coordinates, (r, θ, φ). In spherical coordinates, the

Laplacian takes the form

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ


 ∂2

∂φ2


 .

(V-10)

b) In spherical coordinates, then, the time-independent Schrödinger

equation reads

− h̄2

2m


 1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ


∂

2ψ

∂φ2






+V ψ = Eψ . (V-11)
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c) To solve this equation, we will assume that the solution

can be represented as the product of separable terms com-

posed of a radial part (R) and an angular part (Y ):

ψ(r, θ, φ) = R(r)Y (θ, φ) . (V-12)

d) Putting this into Eq. (V-11) we get

− h̄2

2m


Y

r2

d

dr

(
r2dR

dr

)
+

R

r2 sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

R

r2 sin2 θ


∂

2Y

∂φ2






+V RY = ERY . (V-13)

e) Dividing by RY and multiplying by −2mr2/h̄2 we get




1

R

d

dr

(
r2dR

dr

)
−

2mr2

h̄2 [V (r) − E]





+
1

Y





1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ


∂

2Y

∂φ2





 = 0 .

f) The term in the first curly (“woob-woob-woob”) bracket

depends only upon r, whereas the remainder depends only

on θ and φ; accordingly, each must be constant. We will

write this separation constant as `(`+ 1) (the reason for

choosing this form of the constant will become apparent

in §VI of the notes), as such

1

R

d

dr

(
r2dR

dr

)
− 2mr2

h̄2 [V (r)− E] = `(`+ 1) ; (V-14)

1

Y





1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ


∂

2Y

∂φ2





 = −`(`+ 1) .

(V-15)

Example V–1. Use separation of variables in Cartesian coordi-

nates to solve the infinite cubical well (or “particle in a box”):

V (x, y, z) =





0, if x, y, and z are all between 0 and a;
∞, otherwise.
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(a) Find the stationary state wave functions and the corresponding en-
ergies.

Solution (a):

In the box, we can write the TISE (Eq. V-8) as

− h̄2

2m


∂

2ψ

∂x2 +
∂2ψ

∂y2 +
∂2ψ

∂z2


 = Eψ.

The separable solution is: ψ(x, y, z) = X(x)Y (y)Z(z). Put this

in the above equation and divide by XYZ:

1

X

d2X

dx2 +
1

Y

d2Y

dy2 +
1

Z

d2Z

dz2 = −2m

h̄2 E = −(k2
x + k2

y + k2
z ),

where

E ≡
(k2

x + k2
y + k2

z )h̄
2

2m
,

and kx, ky , and kz are three constants. The three terms on the

left of this equation are functions of x, y, and z, respectively,

so each must be a constant, where k2
x, k

2
y , and k2

z are the three

separation constants.

This leads to three separate differential equations:

d2X

dx2 = −k2
xX ;

d2Y

dy2 = −k2
y Y ;

d2Y

dz2 = −k2
z Z.

The solution to these three equations are

X(x) = Ax sin kxx +Bx cos kxx;

Y (y) = Ay sin kyy +By cos kyy;

Z(z) = Az sin kzz +Bz cos kzz.

But X(0) = 0, so Bx = 0; Y (0) = 0, so By = 0; Z(0) = 0, so

Bz = 0. Likewise, X(a) = 0 ⇒ sin(kxa) = 0 ⇒ kx = nxπ/a,

(nx = 1, 2, 3, ...) (note that negative values of k are redundant
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with the positive values and nx 6= 0 since this would give us no

wave function). Likewise, ky = nyπ/a and kz = nzπ/a. So

E =
h̄2

2m

π2

a2

(
n2

x + n2
y + n2

z

)
,

and

ψ(x, y, z) = AxAyAz sin

(
nxπ

a
x

)
sin

(
nyπ

a
y

)
sin

(
nzπ

a
z

)
.

We can normalize the three independent solutions separately

(which was done in Eq. III-32), giving Ax = Ay = Az =
√

2/a.

So the final solution is

ψ(x, y, z) =
(

2
a

)3
2 sin

(
nxπ
a
x
)
sin

(
nyπ
a
y
)
sin

(
nzπ
a
z
)
;

E = π2h̄2

2ma2

(
n2

x + n2
y + n2

z

)
;

nx, ny, nz = 1, 2, 3, ...

(b) Call the distinct energies E1, E2, E3, ..., in order of increasing en-
ergy. Find E1, E2, E3, E4, E5, and E6. Determine the degeneracy
of each of these energies (that is, the number of different states that
share the same energy). Note that degenerate bound states do not
occur in one dimension, but they are common in three dimensions.

Solution (b):

Set up the following data table:
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nx ny nz (n2
x + n2

y + n2
z)

1 1 1 3

1 1 2
1 2 1

2 1 1





6

1 2 2

2 1 2

2 2 1





9

1 1 3

1 3 1

3 1 1





11

nx ny nz (n2
x + n2

y + n2
z)

2 2 2 12

1 2 3

1 3 2
2 1 3

2 3 1

3 1 2
3 2 1





14

The number of degenerate levels is given by the number of rows

available for each energy (i.e., n2
x +n2

y + n2
z). As such, the first 6
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energy levels are

E1 = 3 π2h̄2

2ma2 ; degeneracy (d ) = 1.

E2 = 6 π2h̄2

2ma2 ; d = 3.

E3 = 9 π2h̄2

2ma2 ; d = 3.

E4 = 11 π2h̄2

2ma2 ; d = 3.

E5 = 12 π2h̄2

2ma2 ; d = 1.

E6 = 14 π2h̄2

2ma2 ; d = 6.

8. The Angular Equation.

a) Taking Eq. (V-15) and multiplying by Y sin2 θ gives

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+
∂2Y

∂φ2 = −`(`+ 1)Y sin2 θ . (V-16)

b) Once again, use separation of variables:

Y (θ, φ) = Θ(θ) Φ(φ) . (V-17)

Plugging this into Eq. (V-16) and dividing by ΘΦ gives

sin θ
∂

∂θ

[
sin θ

∂

∂θ
(ΘΦ)

]
+

∂2

∂φ2 (ΘΦ) = −`(`+ 1)ΘΦ sin2 θ

Φ sin θ
∂

∂θ

(
sin θ

∂Θ

∂θ

)
+ Θ

∂2Φ

∂φ2 = −`(`+ 1)ΘΦ sin2 θ

1

Θ
sin θ

∂

∂θ

(
sin θ

∂Θ

∂θ

)
+

1

Φ

∂2Φ

∂φ2 = −`(`+ 1) sin2 θ ,
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or
{

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ `(`+ 1) sin2 θ

}
+

1

Φ

d2Φ

dφ2 = 0 .

(V-18)

c) The first term of Eq. (V-18) is a function only of θ, and the

second is a function only of φ, so each must be constant.

Let’s choose the separation constant m2 (m will later be

called the magnetic quantum number), then

1

Θ

[
sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+ `(`+ 1) sin2 θ = m2, (V-19)

and
1

Φ

d2Φ

dφ2 = −m2. (V-20)

d) The equation for φ is easy with the solution

Φ(φ) = eimφ (V-21)

(actually, there are two solutions: eimφ and e−imφ, but we

will fold the negative exponents into the positive solution

by letting m be negative as well as positive). We also will

fold the integration constant into the solution for Θ.

e) Since Eq. (V-21) is nothing more than trigonometric func-

tions in complex space, note that

Φ(φ+ 2π) = Φ(φ) . (V-22)

In other words, exp[im(φ+2π)] = exp(imφ), or exp(2πim) =

1. From this it follows that m must be an integer:

m = 0,±1,±2, ... (V-23)

f) The equation for θ becomes

sin θ
d

dθ

(
sin θ

dΘ

dθ

)
+[`(`+ 1) sin2 θ−m2] Θ = 0 . (V-24)
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The solution to this differential equation is not trivial. It

is

Θ(θ) = APm
` (cos θ) , (V-25)

where Pm
` is the associated Legendre function, defined

by

Pm
` (x) ≡ (1 − x2)|m|/2

(
d

dx

)|m|
P`(x) , (V-26)

and P`(x) is the `-th Legendre polynomial.

g) Legendre polynomials are determined with the Rodrigues

formula:

P`(x) ≡
1

2``!

(
d

dx

)`

(x2 − 1)`. (V-27)

For example,

P0(x) = 1, P1(x) =
1

2

d

dx
(x2 − 1) = x ,

P2(x) =
1

4 · 2

(
d

dx

)2

(x2 − 1)2 =
1

2
(3x2 − 1) ,

and so on.

h) P`(x) is a polynomial (of degree `) in x, and is even or

odd according to the parity of `. However, Pm
` is not, in

general, a polynomial, since if m is odd, it carries a factor√
1 − x2:

P 0
2 (x) =

1

2
(3x2 − 1),

P 1
2 (x) = (1 − x2)1/2 d

dx

[
1

2
(3x2 − 1)

]
= 3x

√
1 − x2,

P 2
2 (x) = (1 − x2)

d

dx

[
1

2
(3x2 − 1)

]
= 3x (1 − x2) ,

etc. Since x = cos θ in the associated Legendre functions

here, Pm
` (cos θ) is always a polynomial in cos θ, multiplied
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Table V–1: Some associated Legendre functions, P m
` (cos θ).

P 1
1 = sin θ

P 3
3 = 15 sin θ (1 − cos2 θ)

P 0
1 = cos θ

P 2
3 = 15 sin2 θ cos θ

P 2
2 = 3 sin2 θ

P 1
3 = 3

2
sin θ (5 cos2 θ − 1)

P 1
2 = 3 sin θ cos θ

P 0
3 = 1

2
(5 cos3 θ − 3 cos θ)

P 0
2 = 1

2
(3 cos2 θ − 1)

(if m is odd) by sin θ (since
√

1 − cos2 θ = sin θ). Some

associated Legendre functions of cos θ are listed in Table

(V-1).

i) Notice that ` must be a non-negative integer for the Ro-

drigues formula (Eq. V-27) to make any sense. Moreover,

if |m| > `, then Eq. (V-26) says Pm
` = 0. For any given `,

then, there are (2`+ 1) possible values of m:

` = 0, 1, 2, ...; m = −`,−`+ 1, ...,−1, 0, 1, ..., ` − 1, ` .

(V-28)

j) Eq. (V-24) is a second-order differential equation: It should

have two linearly independent solutions, for some values

of ` and m. Where are the other solutions? Well, they

exist as mathematical solutions to the equation, but they

are physically unacceptable because they blow up at θ = 0

and/or θ = π, and do not yield normalizable wave func-

tions.

Example V–2. Show that

Θ(θ) = A ln[tan(θ/2)]

satisfies the θ equation (Eq. V-24) for ` = m = 0. This

V–10



is the unacceptable “second solution” — what’s wrong with

it?

Solution:

dΘ

dθ
=

A

tan(θ/2)

1

2
sec2

(
θ

2

)
=
A

2

1

sin(θ/2) cos(θ/2)
=

A

sin θ
.

So,
d

dθ

(
sin θ

dΘ

dθ

)
=

d

dθ
(A) = 0 .

With ` = m = 0, Eq. (V-24) reads

d

dθ

(
sin θ

dΘ

dθ

)
= 0 .

So, A ln[tan(θ/2)] does satisfy Eq. (V-24). Note, however,

that if θ = 0, then tan(θ/2) = 0 and

Θ(0) = A ln(0) = A(−∞) =⇒ Blows up at θ = 0 .

Also,

Θ(π) = A ln[tan(π/2)] = A ln(∞) = A(∞)

=⇒ Blows up at θ = π .

k) The volume element in spherical coordinates is

d3r = r2 sin θ dr dθ dφ , (V-29)

so the normalizable condition of Equation (V-6) becomes
∫
|ψ|2 r2 sin θ dr dθ dφ =

∫
|R|2 r2 dr

∫
|Y |2 sin θ dθ dφ = 1 .

l) It is convenient to normalize R and Y individually:

∫ ∞

0
|R|2 r2 dr = 1 and

∫ 2π

0

∫ π

0
|Y |2 sin θ dθ dφ = 1 .

(V-30)
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m) The normalized angular wave functions are called spher-

ical harmonics:

Y m
` (θ, φ) = ε

√√√√√
(2`+ 1)

4π

(`− |m|)!
(`+ |m|)!

eimφ Pm
` (cos θ) ,

(V-31)

where ε = (−1)m for m > 0 and ε = 1 for m ≤ 0. Note

from this equation that

Y −m
` = (−1)m Y m

` . (V-32)

Spherical harmonics are orthogonal such that
∫ 2π

0

∫ π

0
[Y m

` (θ, φ)]∗
[
Y m′

`′ (θ, φ)
]

sin θ dθ dφ = δ``′δmm′ .

(V-33)

Example V–3. Use Equations (V-26), (V-27), and (V-31) to

construct Y 0
0 and Y 1

2 . Check that they are normalized and orthogo-

nal.

Solution:

From Eq. (V-31),

Y 0
0 =

√√√√ 1

4π

0!

0!
P 0

0 (cos θ) =
1√
4π

P 0
0 (cos θ),

where ε = 1. From Eqs. (V-26) and (V-27),

P 0
0 (cos θ) = P0(cos θ) =

1

0!
= 1,

so

Y 0
0 =

1√
4π

.

From Eq. (V-31),

Y 1
2 = −

√√√√ 5

4π

1

3 · 2
eiφ P 1

2 (cos θ) = −
√√√√ 5

24π
eiφ P 1

2 (cos θ),
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where ε = (−1)1 = −1. From Eq. (V-26),

P 1
2 (x) =

√
1 − x2 d

dx
P2(x).

Then using Eq. (V-27)

P2(x) =
1

4 · 2

(
d

dx

)2

(x2 − 1)2 =
1

8

d

dx
[2(x2 − 1) 2x]

=
1

8

d

dx
[4x3 − 4x] =

1

2

d

dx
[x3 − x] =

1

2
(3x2 − 1);

so

P 1
2 (x) =

√
1 − x2 d

dx

[
3

2
x2 −

1

2

]
=

√
1 − x2 3x.

Substituting cos θ for x gives

P 1
2 (cos θ) =

√
1 − cos2 θ 3 cos θ = 3 cos θ sin θ,

and

Y 1
2 = −

√√√√15

8π
eiφ cos θ sin θ .

Normalization:
∫ ∫

|Y 0
0 |2 sin θ dθ dφ =

1

4π

[∫ π

0
sin θ dθ

] [∫ 2π

0
dφ

]
=

1

4π
(2)(2π) = 1.

√

∫ ∫
|Y 1

2 |2 sin θ dθ dφ =
15

8π

∫ π

0
sin2 θ cos2 θ sin θ dθ

∫ 2π

0
dφ

=
15

4

∫ π

0
cos2 θ (1 − cos2 θ) sin θ dθ

=
15

4


−cos3 θ

3
+

cos5 θ

5



∣∣∣∣∣∣

π

0

=
15

4

[
2

3
−

2

5

]
=

5

2
−

3

2
= 1.

√

Orthogonality:

∫ ∫
(Y 0

0 )∗ (Y 1
2 ) sin θ dθ dφ =

1√
4π

√√√√15

8π

[∫ π

0
sin2 θ cos θ dθ

] [∫ 2π

0
eiφ dφ

]
.
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But
∫ π

0
sin2 θ cos θ dθ =


sin3 θ

3



∣∣∣∣∣∣

π

0
= 0

and

∫ 2π

0
eiφ dφ =

eiφ

i

∣∣∣∣∣∣

2π

0
= (−i cosφ+ sinφ) |2π

0 = (−i + i) = 0.

So, ∫ ∫
(Y 0

0 )∗ (Y 1
2 ) sin θ dθ dφ = 0.

√

9. The Radial Equation.

a) Note that the angular part of the wave function, Y (θ, φ)

is the same for all spherically symmetric potentials, and is

independent of this potential =⇒ V only affects the radial

part of the wave function, R(r), which is determined by

the differential equation given in Eq. (V-14):

d

dr

(
r2dR

dr

)
− 2mr2

h̄2 [V (r) − E]R = `(`+ 1)R. (V-34)

b) This equation simplifies if we change variables: Let

u(r) ≡ r R(r), (V-35)

then using the quotient rule for derivatives we get

R =
u

r
dR

dr
=

r(du/dr) − u

r2

r2
(
dR

dr

)
= r(du/dr) − u

d

dr

[
r2
(
dR

dr

)]
=

d

dr

(
r
du

dr

)
−
du

du

=
du

dr
+ r

d2u

dr2 −
du

dr
= r

d2u

dr2 .
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c) Hence making the various substitutions for R in Eq. (V-

34) we get

r
d2u

dr2 −
2mr2

h̄2 [V − E]
u

r
= `(`+ 1)

u

r

− h̄2

2mr
· rd

2u

dr2 +
h̄2

2mr
· 2mur

h̄2 [V − E] = − h̄2

2mr
· `(`+ 1)

u

r
,

or simplifying gives

−
h̄2

2m

d2u

dr2 +


V +

h̄2

2m

`(`+ 1)

r2


 u = Eu . (V-36)

d) This is called the radial equation (note that m in this

equation represents mass, and not the magnetic quantum

number, as was the case in the angular equation).

i) It is identical in form to the one-dimensional Schrödinger

equation (Eq. III-8), except that the effective po-

tential,

Veff = V +
h̄2

2m

`(`+ 1)

r2 , (V-37)

contains an extra piece, the so-called centrifugal

term, (h̄2/2m)[`(`+ 1)/r2].

ii) This centrifugal term tends to throw the parti-

cle outward (away from the origin), just like the

centrifugal (pseudo-) force in classical mechanics.

e) Meanwhile, the normalization condition becomes
∫ ∞

0
|u|2 dr = 1 . (V-38)

10. We cannot proceed any further without providing a specific po-

tential. As an example, let’s consider the infinite spherical

well:

V (r) =





0, if r < a;

∞ if r > a .
(V-39)
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a) Outside the well the wave function is zero; inside the well

the radial equation says

d2u

dr2 =


`(`+ 1)

r2 − k2

 u , (V-40)

where

k ≡
√

2mE

h̄
. (V-41)

b) For the boundary condition u(a) = 0 for ` = 0, we get

d2u

dr2 = −k2u =⇒ u(r) = A sin(kr) +B cos(kr) .

i) However, the actual radial wave function is R(r) =

u(r)/r, and [cos(kr)/r] blows up as r → 0. So in

order for the wave function to be normalizable, we

must chose B = 0.

ii) This boundary condition then requires sin(ka) =

0 or ka = nπ, for some integer n. From this, anal-

ogously to the 1-D infinite square well, the allowed

energies that satisfy the boundary condition are

En` = En0 =
n2π2h̄2

2ma2 , (n = 1, 2, 3, ...) . (V-42)

c) Normalizing u(r) yields A =
√

2/a. Using the solution to

the angular part (see Example V-3), Y 0
0 (θ, φ) = 1/

√
4π,

of the wave equation gives the complete wave equation:

ψn00 =
1√
2πa

sin(nπr/a)

r
. (V-43)

i) Notice that the wave function of stationary states

are labeled by three quantum numbers, n, `, and

m: ψn`m(r, θ, φ).
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ii) The energy, however, depends only upon n and

`: En` =⇒ the m quantum states are said to be

degenerate with each other since they give the same

energy.

d) The general solution to Equation (V-40) for an arbitrary

integer ` is

u(r) = Arj`(kr) +Brn`(kr) , (V-44)

where j`(x) is the spherical Bessel function of order `,

and n`(x) is the spherical Neumann function of order

`.

i) Bessel functions are defined as

j`(x) ≡ (−x)`
(

1

x

d

dx

)` sinx

x
. (V-45)

For example,

j0(x) =
sin x

x
;

j1(x) = (−x) 1

x

d

dx

(
sinx

x

)
=

sin x

x2 − cos x

x
.

ii) Meanwhile, Neumann functions are defined as

n`(x) ≡ −(−x)`
(

1

x

d

dx

)` cos x

x
. (V-46)

For example,

n0(x) = −cos x

x
;

n1(x) = −(−x)
1

x

d

dx

(
cos x

x

)
= −

cos x

x2 −
sin x

x
.

iii) Note that the notation
(

1
x

d
dx

)`
has the following

meaning: if we set ` = 3, then
(

1

x

d

dx

)3

=

{
1

x

d

dx

[
1

x

d

dx

(
1

x

d

dx

)]}
.
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iv) For small x, note that sin x ≈ x−x3/3!+x5/5!−
· · · and cos x ≈ 1 − x2/2 + x4/4! − · · ·, as such:

j` ≈
x`

(2`+ 1)!!
, n` ≈ −

(2` − 1)!!

x`+1 , for x � 1 ,

(V-47)

where the double “exclamation points” mean (2`+

1)!! = 1·3·5·7·...·(2`+1) [e.g., for ` = 0, (2`+1)!! =

1!! = 1; ` = 1, (2` + 1)!! = 3!! = 1 · 3 = 3; and

` = 2, (2` + 1)!! = 5!! = 1 · 3 · 5 = 15, and note

for the n` equation that (−1)!! = (−1)! ≡ 1 and

0!! = 0! ≡ 1]. So,

j0(x) ≈ 1; n0(x) ≈
1

x
; j1(x) ≈

x

3
; n1(x) ≈ − 1

x2 .

v) As can be seen from these trends at small x, the

Bessel functions remain finite at the origin, but the

Neumann functions blow up there. As such, B` = 0,

so

R(r) = Aj`(kr) . (V-48)

e) Now using the boundary condition, R(a) = 0, we must

solve the equation

j`(ka) = 0 , (V-49)

that is, (ka) is a zero of the `th-order spherical Bessel

function. Since spherical Bessel functions are oscillatory

(see Figure V-1 and Table V-2), each one has an infinite

number of zeros.

f) The boundary condition requires that

k =
1

a
βn` , (V-50)

where βn` is the nth zero of the `th spherical Bessel func-

tion.

V–18



Table V–2: The first four spherical Bessel functions.

j0 =
sinx

x

j1 =
sinx

x2
− cosx

x

j2 =
(

3

x3
− 1

x

)
sin x− 3

x2
cos x

j3 =
(

15

x4
− 6

x2

)
sinx −

(
15

x3
− 1

x

)
cos x

Table V–3: The first four spherical Neumann functions.

n0 = −cosx

x

n1 = −cosx

x2
− sinx

x

n2 = −
(

3

x3
− 1

x

)
cos x − 3

x2
sinx

n3 = −
(

15

x4
− 6

x2

)
cosx −

(
15

x3
− 1

x

)
sinx
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Figure V–1: Graphs of the first four spherical Bessel functions.

g) The wave functions that result from the 3-D Schrödinger

equation are

ψn`m(r, θ, φ) = An` j`(βn`r/a)Y
m
` (θ, φ) , (V-51)

with the constant An` to be determined by normalization.

h) The allowed energies of these wave functions are

En` =
h̄2

2ma2 β
2
n` . (V-52)

Each energy level is (2` + 1)-fold degenerate, since there

are (2` + 1) different values of m for each value of ` (see

Eq. V-28).
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B. The Hydrogen Atom.

1. The Potential Function.

a) The hydrogen atom consists of a relatively massive, essen-

tially motionless, proton (placed at the origin) of charge

+e, together with a relatively small mass electron of charge

−e that circles around it, held in orbit by the mutual at-

traction of opposite charges.

b) From Coulomb’s law, the potential energy (in SI units) is

V (r) = −
e2

4πε◦

1

r
. (V-53)

c) We can use this potential then in our radial equation (Eq.

V-36), giving

− h̄2

2m

d2u

dr2 +


− e2

4πε◦

1

r
+
h̄2

2m

`(`+ 1)

r2


 u = Eu . (V-54)

d) We will solve this equation using the analytical solution

technique used for the harmonic oscillator. Note that the

Coulomb potential admits both continuum states (with

E > 0), describing electron-proton scattering and pho-

toionization, and discrete bound states (with E < 0), rep-

resenting the hydrogen atom.

2. The Radial Wave Function.

a) We will now determine the bound states for hydrogen. To

do this, we will simplify the notation by letting

κ ≡
√
−2mE

h̄
(V-55)

(note that κ is real since E < 0 for bound states) and

dividing Eq. (V-54) by E which gives

1

κ2

d2u

dr2 =


1 −

me2

2πε◦h̄
2κ

1

(κr)
+
`(`+ 1)

(κr)2


 u . (V-56)
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b) Then let

ρ ≡ κr and ρ◦ ≡
me2

2πε◦h̄
2κ

, (V-57)

so that
d2u

dρ2 =


1 −

ρ◦
ρ

+
`(`+ 1)

ρ2


 u . (V-58)

c) Next we examine the asymptotic form of the solutions.

As ρ → ∞, the constant term in the brackets dominates,

so (approximately)
d2u

dρ2 = u .

d) The general solution to this equation is

u(ρ) = Ae−ρ +Beρ ,

but eρ blows up as ρ→ ∞, so B = 0. As such

u(ρ) ∼ Ae−ρ for large ρ . (V-59)

e) In the other extreme, as ρ → 0, the centrifugal term dom-

inates (when ` > 0, though the result will still apply even

when ` = 0), so (approximately) then

d2u

dρ2 =
`(`+ 1)

ρ2 u .

f) The general solution to this equation is

u(ρ) = Cρ`+1 +Dρ−` ,

but ρ−` blows up as ρ → 0, so D = 0. Thus

u(ρ) ∼ Cρ`+1 for small ρ . (V-60)

g) The next step is to peel off the asymptotic behavior, by

introducing the new function v(ρ):

u(ρ) = ρ`+1 e−ρ v(ρ) , (V-61)
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in the hope that v(ρ) will turn out to be simpler than

u(ρ).

h) Starting out, we get

du

dρ
= ρ` e−ρ

[
(`+ 1 − ρ)v + ρ

dv

dρ

]

and

d2u

dρ2 = ρ` e−ρ






−2` − 2 + ρ+

`(`+ 1)

ρ


 v +

2(`+ 1 − ρ)
dv

dρ
+ ρ

d2v

dρ2



 .

i) In terms of v(ρ), the radial equation (Eq. V-58) becomes

ρ
d2v

dρ2 + 2(`+ 1 − ρ)
dv

dρ
+ [ρ◦ − 2(`+ 1)]v = 0 . (V-62)

j) Finally, assume the solution to v(ρ) can be expressed as

a power series in ρ:

v(ρ) =
∞∑

j=0
aj ρ

j . (V-63)

Differentiating gives

dv

dρ
=

∞∑

j=0
j aj ρ

j−1 =
∞∑

j=0
(j + 1) aj+1 ρ

j .

In the second sum, we replaced j with j + 1. Note that

these two sums are still equivalent, even though they both

start from j = 0, since the j = −1 term equals zero in the

second sum. Differentiating again gives

d2v

dρ2 =
∞∑

j=0
j(j + 1) aj+1 ρ

j−1 .

k) Inserting these into Equation (V-62) gives

∞∑

j=0
j(j + 1) aj+1 ρ

j + 2(`+ 1)
∞∑

j=0
(j + 1) aj+1 ρ

j
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−2
∞∑

j=0
j aj ρ

j + [ρ◦ − 2(`+ 1)]
∞∑

j=0
aj ρ

j = 0 .

l) Equating the coefficients of like powers gives

j(j+1) aj+1+2(`+1)(j+1) aj+1−2jaj+[ρ◦−2(`+1)] aj = 0 ,

or

aj+1 =


 2(j + `+ 1) − ρ◦
(j + 1)(j + 2`+ 2)


 aj . (V-64)

To determine each coefficient, start with a0 = A and de-

termine A through normalization.

i) You might wonder why we didn’t just start by us-

ing the series solution for u(ρ) in the first place.

This is done primarily because a three-term recur-

sion relation (aj+2, aj+1, and aj) would result if the

asymptotic e−ρ term was not included in the solu-

tion. Such a recursion relation is much more dif-

ficult to handle than the one derived in Equation

(V-64).

ii) For large j (this corresponds to large ρ), the re-

cursion relation becomes

aj+1
∼=

2j

j(j + 1)
aj =

2

j + 1
aj ,

so

aj
∼=

2j

j!
A .

iii) Suppose for a moment that this were the exact

result, then

v(ρ) = A
∞∑

j=0

2j

j!
ρj = Ae2ρ ,

and hence

u(ρ) = Aρ`+1 eρ ,
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which blows up at large ρ!

iv) This is precisely the asymptotic behavior we didn’t

want at large ρ, since the wave functions would no

longer be normalizable. There’s only one way out

of this dilemma: The series must terminate. There

must be some maximum integer, jmax, such that

ajmax+1 = 0 (V-65)

beyond which all coefficients vanish automatically.

v) With this definition, Equation (V-64) becomes

2(jmax + `+ 1) − ρ◦ = 0 .

vi) Defining

n ≡ jmax + `+ 1 (V-66)

(the so-called principal quantum number), we

have

ρ◦ = 2n . (V-67)

m) The energy E is determined from ρ◦ from Eqs. (V-55) and

(V-56), so

E = −h̄
2κ2

2m
= − me4

8π2ε2◦h̄
2ρ2

◦
. (V-68)

and the allowed energies are

En = −


m

2h̄2


 e2

4πε◦




2



1

n2 =
E1

n2 , n = 1, 2, 3, ...

(V-69)

i) This is the famous Bohr formula — by any mea-

sure the most important result in all of quantum
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mechanics. This equation (written in SI units) is

equivalent to Equation (I-67), which is the Bohr

formula given in the cgs unit system.

ii) Bohr obtained this result in 1913 by a serendip-

itous mixture of inapplicable classical physics and

premature quantum theory (the Schrödinger equa-

tion did not come until 1924).

n) Combining Eqs. (V-57) and (V-67), we find that

κ =


 me2

4πε◦h̄
2


 1

n
=

1

an
, (V-70)

where

a ≡
4πε◦h̄

2

me2 = 5.29 × 10−11 m = 0.529 Å (V-71)

is the so-called Bohr radius — the orbital radius of the

ground state electron in hydrogen.

o) It follows from Eq. (V-57) that

ρ =
r

an
. (V-72)

p) From Eq. (V-12), the wave functions that describe the

hydrogen atom are labeled by 3 quantum numbers (n, `,

and m corresponding to the “principal,” “orbital angular

momentum,” and “magnetic” (also called “azimuthal”)

quantum numbers, respectively):

ψn`m(r, θ, φ) = Rn`(r)Y
m
` (θ, φ) , (V-73)

where (referring back to Eqs. V-36 and V-61):

Rn`(r) =
1

r
ρ`+1 e−ρ v(ρ). (V-74)
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q) To determine v(ρ), we use Eq. (V-67) in Eq. (V-64), which

gives

aj+1 =
2(j + `+ 1 − n)

(j + 1)(j + 2` + 2)
aj . (V-75)

r) The ground state is defined to be the state that has the

lowest energy. This occurs when n = 1, so

E1 = −


m

2h̄2


 e2

4πε◦




2

 = −13.6 eV. (V-76)

This means that one would ionize the atom from the

ground state if a photon energy of at least 13.6 eV is

imparted on the atom.

i) From Eq. (V-66), the n = 1 state forces both jmax

and ` to 0 (as such, m = 0).

ii) The wave function for the ground state then be-

comes

ψ100(r, θ, φ) = R10(r)Y
0
0 (θ, φ) . (V-77)

iii) The recursion formula of Eq. (V-75) truncates

after the first term (j = 0 yields a1 = 0), so v(ρ) is

a constant (a0) and

R10(r) =
a0

a
e−r/a . (V-78)

iv) Normalizing this equation gives

∫ ∞

0
|R10|2r2 dr =

|a0|2

a2

∫ ∞

0
e−2r/a r2 dr = |a0|2

a

4
= 1 ,

so a0 = 2/
√
a.

v) Meanwhile, Y 0
0 = 1/

√
4π, which gives the final
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ground state wave function of

ψ100(r, θ, φ) =
1√
πa3

e−r/a . (V-79)

s) If n = 2, the energy is

E2 =
−13.6 eV

4
= −3.4 eV; (V-80)

this is the first excited state — or rather, states, since we

can have either ` = 0 (in which case m = 0) or ` = 1 (with

m = −1, 0, or +1), so there are actually four different

states that share this energy.

i) If ` = 0, the recursion relation gives

a1 = −a0 (using j = 0), and a2 = 0 (using j = 1) ,

so v(ρ) = a0(1 − ρ), and hence

R20(r) =
a0

2a

(
1 −

r

2a

)
e−r/2a . (V-81)

ii) If ` = 1, the recursion formula terminates the

series after a single term, so v(ρ) is a constant, and

we find

R21(r) =
a0

4a2 r e
−r/2a . (V-82)

t) For arbitrary n, the possible values of ` (consistent with

Eq. V-66) are

` = 0, 1, 2, ..., n − 1 . (V-83)

u) For each `, there are (2`+ 1) possible values of m, so the

total degeneracy of the energy level En is

d(n) =
n−1∑

`=0
(2`+ 1) = n2 . (V-84)
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Table V–4: The first few Laguerre polynomials, Lq(x).

L0 = 1

L1 = −x + 1

L2 = x2 − 4x + 2

L3 = −x3 + 9x2 − 18x + 6

L4 = x4 − 16x3 + 72x2 − 96x + 24

L5 = −x5 + 25x4 − 200x3 + 600x2 − 600x + 120

L6 = x6 − 36x5 + 450x4 − 2400x3 + 5400x2 − 4320x + 720

Table V–5: Some associated Laguerre polynomials, L
p
q−p(x).

L0
0 = 1 L2

0 = 2

L0
1 = −x + 1 L2

1 = −6x + 18

L0
2 = x2 − 4x + 2 L2

2 = 12x2 − 96x + 144

L1
0 = 1 L3

0 = 6

L1
1 = −2x + 4 L3

1 = −24x + 96

L1
2 = 3x2 − 18x + 18 L3

2 = 60x2 − 600x + 1200

v) The polynomial v(ρ) (defined by Equations V-63 and V-

75) is a function well known to applied mathematicians;

apart from normalization, it can be written as

v(ρ) = L2`+1
n−`−1(2ρ) , (V-85)

where

Lp
q−p ≡ (−1)p

(
d

dx

)p

Lq(x) (V-86)

is an associated Laquerre polynomial (see Table V-5),

and

Lq(x) ≡ ex
(
d

dx

)q

(e−xxq) (V-87)

is the q-th Laquerre polynomial (see Table V-4).
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Figure V–2: Graphs of the first few hydrogen radial wave functions, Rn`(r) (note that
the Bohr radius ‘a’ in the calculation of Rn`(r) set to unity in this plot).

w) With these associated Laguerre polynomials, we can now

easily determine the radial wave equation (see Table V-6

and Figure V-2).

x) From these polynomial functions, we can now write the fi-

nal, “complete,” normalized wave functions for hydrogen:

ψn`m =

√√√√√
(

2

na

)3 (n− `− 1)!

2n[(n+ `)!]3
e−r/na

(
2r

na

)`

L2`+1
n−`−1

(
2r

na

)
Y m

` (θ, φ) .

(V-88)

y) Even though this equation is complicated, keep in mind

that hydrogen is the only atom for which an analytic solu-

tion exists for its wave function. All other atoms require

perturbation theory to describe their states.
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Table V–6: The first few radial wave functions for hydrogen, Rnl(r).

R10 = 2a−3/2 exp(−r/a)

R20 =
1√
2

a−3/2
(
1 − 1

2

r

a

)
exp(−r/2a)

R21 =
1√
24

a−3/2 r

a
exp(−r/2a)

R30 =
2√
27

a−3/2

[
1 − 2

3

r

a
+

2

27

(
r

a

)2
]

exp(−r/3a)

R31 =
8

27
√

6
a−3/2

(
1 − 1

6

r

a

) (
r

a

)
exp(−r/3a)

R32 =
4

81
√

30
a−3/2

(
r

a

)2

exp(−r/3a)

z) Of course, these wave functions for hydrogen are orthog-

onal:
∫
ψ∗

n`mψn′`′m′ r2 sin θ dr dθ dφ = δnn′δ``′δmm′ . (V-89)

3. With these complete wave functions for hydrogen and their asso-

ciative eigenvalues, we can derive all of the equations that were

presented in §I of the notes concerning the spectrum of hydrogen

(see Eqs. I-14 through I-17 and Eqs. I-67 and I-68).

Example V–4. What is the probability that an electron in the ground

state of hydrogen will be found inside the nucleus ?

(a) First calculate the exact answer, assuming that the wave function (Eq.
V-79) is correct all the way down to r = 0. Let b be the radius of the
nucleus.

Solution (a):

P =
∫
|Ψ|2 d3r =

∫ 2π

0

∫ π

−π

∫ b

0
|Ψ|2 r2 sin θ dr dθ dφ
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=
∫ 2π

0
dφ

∫ π

−π
sin θ dθ

∫ b

0

∣∣∣∣∣
1√
πa3

e−r/a

∣∣∣∣∣

2
r2 dr

= (2π)(2)

(
1

πa3

∫ b

0
e−2r/a r2 dr

)
=

4π

πa3

∫ b

0
e−2r/a r2 dr

=
4

a3


−a

2
r2e−2r/a +

a3

4
e−2r/a

(
−2r

a
− 1

)

∣∣∣∣∣∣

b

0

= −

1 +

2r

a
+

2r2

a2


 e−2r/a

∣∣∣∣∣∣

b

0
,

or

P = 1 −

1 +

2b

a
+

2b2

a2


 e−2b/a .

(b) Expand the result as a power series in the small number ε ≡ 2b/a,
and show that the lowest order term is the cubic: P ≈ (4/3)(b/a)3.
This should be a suitable approximation, provided that b is much less
than a (which it is).

Solution (b):

P = 1 −
(
1 + ε+

1

2
ε2
)
e−ε

≈ 1 −
(
1 + ε+

1

2
ε2
) 
1 − ε+

ε2

2
−
ε3

3!




≈ 1 − 1 + ε− ε2

2
+
ε3

6
− ε+ ε2 − ε3

2
− ε2

2
+
ε3

2

≈ ε3
(
1

6
− 1

2
+

1

2

)
=

1

6
ε3 =

1

6

(
2b

a

)3

,

or

P ≈
4

3

(
b

a

)3

.
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(c) Alternatively, we might assume that ψ(r) is essentially constant over
the (tiny) volume of the nucleus, so that P ≈ (4/3)πb3|ψ(0)|2. Check
that you get the same answer this way.

Solution (c):

The ground state wave function is given by Eq. (V-79):

|ψ(0)|2 =

[
1√
πa3

e0
]2

=
1

πa3 ,

thus

P ≈
(
4

3

)
πb3|ψ(0)|2 =

(
4

3

)
πb3

1

πa3 =
4

3

(
b

a

)3

.
√

(d) Use b ≈ 10−15 m and a ≈ 0.5× 10−10 m to get a numerical estimate
for P . Roughly speaking, this represents the “fraction of its time that
the electron spends inside the nucleus.

Solution (d):

P =
4

3


 10−15 m

0.5 × 10−15 m




3

=
4

3
(2 × 10−5)3

=
4

3
· 8 × 10−15 =

32

3
× 10−15,

or

P = 1.07 × 10−14.

Example V–5. Use the energy eigenvalue equation (i.e., the Bohr formula

given by Eq. V-69) to deduce the empirically derived Rydberg formula (i.e.,

Eq. I-17) for the hydrogen atom.

Solution:

En = −


m

2h̄2


 e2

4πε◦




2



1

n2 .
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Energy is related to a photon’s wavelength by E = hc/λ. Setting the

photon’s energy equal to the energy difference between two bound states:

hc

λji
= Ej − Ei

= −


m

2h̄2


 e2

4πε◦




2


(

1

j2 − 1

i2

)

=



m

2h̄2


 e2

4πε◦




2


(

1

i2
− 1

j2

)
,

where j is the principle quantum number of the upper state in the tran-

sition and i is the lower state principle quantum number. Solving this for

the wavenumber (νji = 1/λji) we get

νji =
1

λji
=

me4

8ε2◦h
3c

(
1

i2
− 1

j2

)
.

To be more precise here, m represents the reduced mass between the

electron and proton and not the electron mass alone, so

m =
meMA

me +MA
=

memp

me +mp
=

1.52367 × 10−57 kg2

1.67352 × 10−27 kg

= 9.10460 × 10−31 kg ≈ me.

Also, the other constants in this Rydberg formula are ε◦ = 8.85419 ×
10−12 C2 s2/kg m3 [farad/meter] and e = 1.60219 × 10−19 C. Using the

values for these physics constants, we can define and evaluate the Rydberg

constant for hydrogen R to be

R =
me4

8ε2◦h
3c

= 1.096776 × 107 m−1 = 109, 677.6 cm−1,

and the Rydberg equation becomes

1

λji
= R

(
1

i2
−

1

j2

)
.

Hence proving the empirically derived Eq. (I-17) from quantum mechanics

for hydrogen where Z = 1.
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