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Chapter 1Introdu
tionIn this 
hapter, we sket
h the 
ontents of this dissertation. These 
ontents will be mostly
on
erned with the properties of Dira
 kets, Lippmann-S
hwinger kets, and Gamow ve
tors.
Jim looked at the trash, and then looked at me, and ba
k at thetrash again. He had got the dream �xed so strong in his head that he
ouldn't seem to shake it loose and get the fa
ts ba
k into pla
eagain, right away. But when he did get the things straightened around,he looked at me steady, without ever smiling, and says:\What do dey stan' for? I's gwyne to tell you. When I got all woreout wid work, en wid de 
allin' for you, en went to sleep, my heartwuz mos' broke bekase you wuz los', en I didn' k'yer no mo' whatbe
ome er me en de raf'. En when I wake up en �ne you ba
k agin,all safe en soun', de tears 
ome en I 
ould a got down on my kneesen kiss' yo' foot I's so thankful. En all you wuz thinkin 'bout wuzhow you 
ould make a foul uv ole Jim wid a lie. Dat tru
k dah istrash; en trash is what people is dat puts dirt on de head er dey fren'sen makes 'em ashamed."Then he got up slow, and walked to the wigwam, and went inthere, without saying anything but that. But that was enough. Itmade me feel so mean I 
ould kissed his foot to get him totake it ba
k.It was �fteen minutes before I 
ould work myself up to go andhumble myself to a nigger{but I done it, and I warn't ever sorry forit afterwards, neither. I didn't do him no more mean tri
ks, and Iwouldn't done that one if I'd a knowed it would make him feel thatway.Mark Twain, The adventures of Hu
kleberry Finn

1





1.1 A Brief History of the Rigged Hilbert Spa
e 3This dissertation is about the des
ription of Dira
 kets, Lippmann-S
hwinger kets andGamow ve
tors in Rigged Hilbert Spa
e language. The Dira
 kets are the state ve
torsasso
iated to any element in the spe
trum of an observable. The Lippmann-S
hwinger ketsare the eigenkets of the Hamiltonian that are relevant in s
attering theory. They 
orrespondto the monoenergeti
 \in" and \out" s
attering states. The Gamow ve
tors are the ketsthat represent the state ve
tor of a resonan
e. Our main goal is to show that the RiggedHilbert Spa
e is the most suitable formalism to des
ribe these kets. Rather than working inan abstra
t fashion, examples shall be used to illustrate this des
ription. The two exampleswe shall mainly use are the harmoni
 os
illator and the square barrier potential.In this dissertation, no experimental data is dis
ussed. We shall rather fo
us on themethods, the ideas and prin
iples in terms of whi
h su
h data 
an be interpreted and un-derstood. We shall use the S
hr�odinger equation subje
t to di�erent boundary 
onditions asa model for the des
ription of the data. Di�erent boundary 
onditions upon the S
hr�odingerequation will yield Dira
 kets, Lippmann-S
hwinger kets or Gamow ve
tors. Although su
ha model involves an idealization, this is probably the best way to understand what thesestate ve
tors are.We should note that the RHS is not an interpretation of Quantum Me
hani
s, but ratherthe most natural, 
on
ise and logi
 language to formulate su
h heuristi
 physi
al 
on
eptsas Dira
 kets, Lippmann-S
hwinger kets or Gamow ve
tors.1.1 A Brief History of the Rigged Hilbert Spa
eIn the late 1920's, Dira
 introdu
ed a new mathemati
al model of Quantum Me
hani
sbased upon a uniquely smooth and elegant abstra
t algebra of linear operators de�ned onan in�nite dimensional 
omplex ve
tor spa
e equipped with an inner produ
t norm [1℄.Dira
's abstra
t algebrai
 model of bras and kets (from the bra
ket notation for the innerprodu
t) proved to be of great heuristi
 value in the ensuing years, espe
ially in dealingwith Hamiltonians whose spe
trum is 
ontinuous. However, there were serious diÆ
ulties in�nding a version of linear algebra whi
h 
ould be employed for making the a
tual numeri
al
al
ulations.The Hilbert spa
e (HS) was the �rst mathemati
al idealization proposed for QuantumMe
hani
s [2℄. However, as von Neumann explains in the introdu
tion to his book [2℄, theHS theory and Dira
's formalism are two di�erent things. Although there were attempts torealize the Dira
 model in Hilbert spa
e, there was a number of serious problems resultingfrom the fa
t that this formalism 
annot allo
ate su
h things as bras, kets or the Dira
delta fun
tion or give a mathemati
al meaning to the Dira
 basis ve
tor expansion, whi
hare essential in any physi
al formulation of Quantum Me
hani
s that deals with 
ontinuousspe
trum. Indeed in his textual presentation [1℄ Dira
 himself states that \the bra and ketve
tors that we now use form a more general spa
e than a Hilbert spa
e" (see [1℄, page 40).In the late 1940's, L. S
hwartz gave a pre
ise meaning to the Dira
 delta fun
tion as afun
tional over a spa
e of test fun
tions [3℄. This led to the development of a new bran
hof fun
tional analysis, the theory of distributions [3℄.



4 1 Introdu
tionAbout the same time, von Neumann published the theory of dire
t integral de
omposi-tions of a Hilbert spa
e indu
ed by a self-adjoint operator [4℄ (also valid for more general
ases). This spe
tral theory was 
loser to 
lassi
al Fourier analysis, and represented animprovement over former von Neumann's spe
tral theory [2℄.I. Gelfand always thought that von Neumann's spe
tral theory was not the whole storyof the theory of linear operators de�ned on in�nite dimensional ve
tor spa
es. Prompted bythe theory of distributions, he and his s
hool introdu
ed the Rigged Hilbert Spa
e (RHS).Starting out with this RHS and von Neumann's dire
t integral de
omposition, they wereable to prove the so-
alled Nu
lear Spe
tral Theorem [5℄ (also known as the Gelfand-MaurinTheorem). This theorem provides a more thorough information on the spe
tral propertiesof an operator and treats the 
ontinuous and the dis
rete spe
trum on the same footing.One of the aspe
ts of Dira
's formalism, the 
ontinuity of the elements of the algebraof observables, was dis
ussed in the early 1960's in Refs. [6, 7℄. If two operators of thealgebra of observables satisfy the 
anoni
al (Heisenberg) 
ommutation relation, at least oneof them 
annot be 
ontinuous (i.e., bounded) with respe
t to the Hilbert spa
e topology. InRefs. [6, 7℄, it is shown that there are subdomains of the Hilbert spa
e that 
an be endowedwith topologies that make those operators 
ontinuous; the largest of these subdomains isthe S
hwartz spa
e.In the 1960's, some physi
ists [8, 9, 10℄ independently realized that the RHS provides arigorous mathemati
al rephrasing of all of the aspe
ts of Dira
's formalism. In parti
ular,the Nu
lear Spe
tral Theorem restates Dira
 basis ve
tor expansion along with the Dira
bras and kets within a mathemati
al theory. Later on, other authors 
ame to the same
on
lusion [11℄. Nowadays the RHS is textbook material [12, 13, 14, 15, 16, 17, 18℄.During the past few years, the RHS has emerged as the natural mathemati
al languagein the theory of s
attering and de
ay (
f. Refs. [19, 20, 21, 22℄ and referen
es therein). TheRHS has also proved to be very useful in other areas of theoreti
al physi
s su
h as in the
onstru
tion of generalized spe
tral de
ompositions of 
haoti
 maps [23, 24℄. In fa
t, itseems that the RHS is the best known language to deal with s
attering and de
ay in a
onsistent way. This is the very reason why we are using it here.The S
hr�odinger equation is the dynami
al equation that governs the behavior of aquantum system. Thus any attempt to show that the RHS 
ontains the mathemati
almethods needed by Quantum Me
hani
s should show that the natural framework for thesolutions of the S
hr�odinger equation is the RHS. We re
all that none of Refs. [19, 20, 21, 22℄took the S
hr�odinger equation as the dynami
al equation. The obje
tive of this dissertationis to obtain the Dira
, Lippmann-S
hwinger, and Gamow kets as solutions of the S
hr�odingerequation subje
t to di�erent boundary 
onditions, and to show that these solutions fall inthe RHS rather than just in the HS [25, 26, 27℄.In the end, the results of this dissertation will allow us to draw a very important 
on-
lusion: the RHS is the natural language to deal with s
attering and de
ay.



1.2 Harmoni
 Os
illator 51.2 Harmoni
 Os
illatorIf the spe
trum of an observable is dis
rete, the mathemati
al methods of the Hilbert spa
eare suÆ
ient for the purposes of Quantum Me
hani
s. However, if the spe
trum of anobservable has a 
ontinuous part, the mathemati
al methods of the Hilbert spa
e are notsuÆ
ient, and an extension of these methods is needed.Physi
ists use Dira
's bra-ket formalism in order to handle 
ontinuous spe
tra. Four ofthe most important features of this formalism are:1. To ea
h element � of the spe
trum of an observable A, there 
orresponds a ket j�ithat is an eigenve
tor of A with eigenvalue �,Aj�i = �j�i : (1.2.1)2. A wave fun
tion ' 
an be expanded by these eigenkets,1' = ZSpe
trum(A) d� j�ih�j'i : (1.2.2)3. The eigenkets are normalized a

ording to the following rule:h�j�0i = Æ(�� �0) ; (1.2.3)where Æ(�� �0) is the Dira
 delta fun
tion.4. All algebrai
 operations su
h as the 
ommutator of two observables A and B arealways well de�ned, [A;B℄ = AB �BA : (1.2.4)In Quantum Me
hani
s, observables are assumed to be represented by self-adjoint, linearoperators de�ned on a Hilbert spa
e H. If the operator A asso
iated to an observable isunbounded (whi
h is the most 
ommon 
ase in Quantum Me
hani
s), then A is only de�nedon a subdomain D(A) on whi
h A is self-adjoint. In this 
ase, the Hilbert spa
e methods arenot suÆ
ient to make sense of (1.2.1)-(1.2.4). The RHS formalism provides the mathemati
sthat are needed to make sense of them.On the other hand, one of the key assumptions of Quantum Me
hani
s is that thequantity (';A') (1.2.5)represents the expe
tation value of the measurement of the observable A in the state ', andthat �'A =p(';A2')� (';A')2 (1.2.6)represents the un
ertainty of the measurement of the observable A in the state ' (we assumethe wave fun
tion ' to be normalized to 1). The expe
tation value (1.2.5) 
annot be1Eq. (1.2.2) is referred to as the Dira
 basis ve
tor expansion.



6 1 Introdu
tion
omputed for every element of the Hilbert spa
eH, but only for those ' 2 H that also belongto D(A). Similarly, the un
ertainty (1.2.6) 
annot be 
omputed for every element of H, butjust for those ' 2 D(jAj) [28℄. If we take as physi
al states those normalizable fun
tions forwhi
h physi
al quantities su
h as the expe
tation value (1.2.5) and the un
ertainty (1.2.6)
an be 
omputed, then it is 
lear that not every square normalizable fun
tion (i.e., everyelement of H) 
an represent a physi
al state. As we shall see, the natural spa
e of physi
alwave fun
tions is a subspa
e � of H, be
ause all physi
al quantities 
an be 
omputed forits elements. Further, � has all the ni
eties of Dira
's formalism.For example, let us 
onsider the harmoni
 os
illator. The algebra of the harmoni
 os
il-lator 
ontains the observables position Q and momentum P . These observables are de�nedas linear operators over the Hilbert spa
e H, and they ful�ll the Heisenberg 
ommutationrelation: [P;Q℄ = PQ�QP = �i~I : (1.2.7)It is well known that Eq. (1.2.7) implies that either P or Q is an unbounded operator. Thisimplies that either P or Q 
annot be de�ned on the whole Hilbert spa
e|they are, in fa
t,de�ned on 
ertain dense subdomains D(P ) and D(Q) on whi
h P and Q are self-adjoint.Therefore, the expression PQ � QP is not de�ned on the whole Hilbert spa
e. Moreover,sin
e D(P ) and D(Q) do not remain stable under the a
tion of P and Q, the expressionPQ�QP is only de�ned on those ' 2 H su
h that ' 2 D(Q), ' 2 D(P ), P' 2 D(Q) andQ' 2 D(P ). Therefore, the Heisenberg 
ommutation relation (1.2.7) is not de�ned on thewhole of H, but only on a subspa
e of it. We re
all that Eq. (1.2.7) leads to the Heisenbergun
ertainty relation: �'P �'Q � ~2 : (1.2.8)Now, if we want the expe
tation values of H, P and Q,(';A') ; A = H;P;Q ; (1.2.9)the un
ertainties of H, P and Q, �'A ; A = H;P;Q ; (1.2.10)and the Heisenberg un
ertainty relation (1.2.8) to be well de�ned, then the square normal-izable wave fun
tion ' must be not only in H, but also in D(P ), D(Q), D(H), D(jP j),D(jQj), D(jHj).Hen
e, a subdomain � of H where all of the physi
al quantities (1.2.7)-(1.2.10) 
an be
omputed is needed. Clearly, � should be stable under the a
tion of P , Q and H. It seemsthat the best 
andidate for � is given by the interse
tion of the domains of all the powersof P , Q and H, � = 1\n=0A=P;Q;H D(An) : (1.2.11)The spa
e in Eq. (1.2.11) is the maximal invariant subspa
e of the algebra of the harmoni
os
illator. On �, all physi
al quantities su
h as expe
tation values and un
ertainties 
an be
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omputed. Algebrai
 relations su
h as the Heisenberg 
ommutation relation are well de�nedon �. In parti
ular, the Heisenberg un
ertainty prin
iple is well de�ned on �.The spe
trum of the Hamiltonian of the harmoni
 os
illator is dis
rete, and its eigen-ve
tors are square normalizable (a
tually, they are elements of �). This means that, as faras the eigenve
tors of H are 
on
erned, there is no need to go beyond the Hilbert spa
eH. However, the spe
trum of the position and momentum observables is 
ontinuous, and
oin
ides with the set of real numbers. Following the pres
ription (1.2.1), we asso
iate aneigenve
tor jpi to ea
h of the elements p of the (
ontinuous) spe
trum of P ,P jpi = pjpi ; �1 < p < +1 : (1.2.12)A

ording to (1.2.2), a wave fun
tion 
an be expanded by these eigenkets,' = Z +1�1 dp jpihpj'i : (1.2.13)Obviously, the kets jpi are not in the Hilbert spa
e|a larger linear spa
e is needed toa

ommodate them. It happens that those jpi a
quire meaning as antilinear fun
tionalsover the spa
e �. That is, jpi 2 ��, where �� represents the set of antilinear fun
tionalsover the spa
e �. Similar 
onsiderations hold for the position operator Q,Qjxi = xjxi ; jxi 2 �� ; �1 < x < +1 : (1.2.14)' = Z +1�1 dx jxihxj'i ; ' 2 � : (1.2.15)In this way, the Gelfand triplet � � H � �� (1.2.16)of the harmoni
 os
illator arises in a natural way. The Hilbert spa
e H 
omes from therequirement that the wave fun
tions must be square normalizable. The subspa
e � is theset of physi
al wave fun
tions, i.e., the wave fun
tions on whi
h any expe
tation value,any un
ertainty and any 
ommutator 
an be 
omputed. The dual spa
e �� 
ontains theeigenkets asso
iated to the 
ontinuous spe
trum of the observables of the algebra. Theseeigenkets are de�ned as fun
tionals over the spa
e �, and they 
an be used to expand any' 2 � as in Eq. (1.2.13) or Eq. (1.2.15).These ideas will be elaborated in Chapter 3, where the Rigged Hilbert Spa
e of theharmoni
 os
illator is 
onstru
ted.2 The harmoni
 os
illator will be studied from a di�erentpoint of view to that used in textbooks on Quantum Me
hani
s. The standard approa
hto the harmoni
 os
illator is to start out with the (position) S
hr�odinger realization of thealgebra of operators, i.e., one takes for granted the well-known di�erential expressions forQ, P and H. From these expressions one derives, for instan
e, the Heisenberg 
ommutation2Chapter 3 is a substantial improvement of and an extension to Ref. [29℄.
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tionrelation. One 
an also derive that the Hamiltonian has a 
ountable number of eigenval-ues whose 
orresponding eigenve
tors are given by the Hermite polynomials. The abovepres
riptions of Dira
's formalism are also assumed, although it is not mentioned that theHilbert spa
e mathemati
s 
annot in
orporate them. In this dissertation, we shall not takefor granted the position realization of the algebra of the harmoni
 os
illator, but ratherderive this realization from algebrai
 assumptions. We shall just assume some algebrai
relations to be ful�lled by the operators P , Q and H, namely the Heisenberg 
ommutationrelation [P;Q℄ = PQ�QP = �i~I ; (1.2.17)and the expression of H in terms of P and Q,H = 12�P 2 + �!22 Q2 : (1.2.18)We shall make an additional essential assumption: the existen
e of an eigenve
tor �0 of theenergy operator, H�0 = 1=2 ~! �0 : (1.2.19)From this algebrai
 starting point, we shall derive �rst that H possesses a 
ountable numberof eigenvalues ~w(n + 1=2), n = 0; 1; 2; : : :, 
orresponding to some eigenve
tors �n. Thelinear spa
e spanned by the �n will be 
alled 	. This linear spa
e will be equipped withtwo di�erent topologies: the usual Hilbert spa
e topology, whi
h generates the Hilbert spa
eH from 	, and a stronger, nu
lear topology, whi
h generates the spa
e � from 	. Thisnu
lear topology will make the elements of the algebra 
ontinuous operators. On
e � is
onstru
ted, we shall 
onstru
t �� and therewith the Rigged Hilbert Spa
e of the harmoni
os
illator: � � H � �� : (1.2.20)The eigenkets jpi and jxi will be 
ontinuous antilinear fun
tionals over �, i.e., they will beelements of ��. The eigenket equations Qjxi = xjxi, P jpi = pjpi will �nd their mathemat-i
al setting as fun
tional equations over �. The statement of the Gelfand-Maurin Theoremwill be given, whi
h will guarantee the existen
e of a 
omplete set of generalized eigenve
-tors of the position and momentum operators. It will be shown that this theorem is themathemati
al statement that justi�es the heuristi
 Dira
 basis ve
tor expansions (1.2.13)and (1.2.15). We shall derive the S
hr�odinger representation of the harmoni
 os
illator. Inthis representation, the standard expressions for P , Q and H in terms of di�erential oper-ators will be obtained. The position realization of the RHS (1.2.20) by spa
es of fun
tionsand distributions will be also obtained. The spa
e � will be realized by the S
hwartz spa
eS(R), and �� will be realized by the spa
e of tempered distributions S(R)� . Thus theposition realization of the RHS (1.2.20) will readS(R) � L2(R) � S(R)� : (1.2.21)The eigenve
tors �n of H will be realized by the Hermite polynomials.



1.3 A Rigged Hilbert Spa
e of the Square Barrier Potential 9Therefore, we shall give a proper mathemati
al framework for the operations that thephysi
s of the harmoni
 os
illator seems to need, and we will throw light onto the problemof how the S
hr�odinger realization of the algebra of operators of the harmoni
 os
illator 
anbe singled out. The important point is that this realization, whi
h is introdu
ed ad ho
 inthe literature, 
an be derived from proper algebrai
 assumptions within the RHS formalism.1.3 A Rigged Hilbert Spa
e of the Square Barrier Po-tentialThe fundamental equation of Quantum Me
hani
s is the S
hr�odinger equation. Thus, show-ing that the RHS 
ontains the mathemati
al methods needed by Quantum Me
hani
s is tan-tamount to showing that the natural framework for the solutions of the S
hr�odinger equationis the RHS. To show this, we shall use the example of the square barrier potential [25, 26℄.The time dependent S
hr�odinger equation reads asi~ ��t'(t) = H'(t) ; (1.3.1)where H denotes the Hamiltonian, and '(t) denotes the value of the wave fun
tion ' attime t. Dira
's formalism solves this equation formally as follows: for ea
h energy E in thespe
trum Sp(H) of the Hamiltonian, there exists a ket jEi that is an eigenve
tor of H,HjEi = EjEi ; E 2 Sp(H) : (1.3.2)These eigenkets form a 
omplete basis system that expands any wave fun
tion ' as' = Z dE jEihEj'i � Z dE '(E)jEi : (1.3.3)The time dependent solution of Eq. (1.3.1) is obtained by Fourier-transforming the timeindependent solution of Eq. (1.3.3),'(t) = Z dE e�iEt=~ '(E) : (1.3.4)If the spe
trum of the Hamiltonian has a 
ontinuous part, and if the energy E belongsto this 
ontinuous part of the spe
trum, then the 
orresponding eigenket jEi that solvesEq. (1.3.2) is not square integrable, i.e., jEi is not an element of the Hilbert spa
e. As inthe 
ase of the harmoni
 os
illator, the Hilbert spa
e 
annot handle these non-normalizablekets, whereas the RHS formalism 
an.The main short
oming of the RHS formalism is that it does not provide a pres
riptionto 
onstru
t the spa
es �, ��, or the eigenkets jEi. The general statement of the Nu
learSpe
tral Theorem [5℄ just assures the existen
e of the eigenkets jEi, and assumes the spa
es�, �� to be given beforehand. Therefore, a systemati
 pro
edure to 
onstru
t the RHS
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tionof S
hr�odinger Hamiltonians is needed. The fourth 
hapter of this dissertation providesthis systemati
 pro
edure [25, 26℄. In order to make things 
lear, we shall illustrate thispro
edure through the square barrier potential, although the same method 
an be appliedto a large 
lass of potentials.The pro
edure to 
onstru
t the RHS of the square barrier potential is as follows. First, wewrite down the time independent S
hr�odinger equation in the radial position representation:hrjHjEi � hhrjEi = EhrjEi ; (1.3.5)where h is the following S
hr�odinger di�erential operator:h � � ~22m d2dr2 + V (r) ; (1.3.6)and V (r) = 8<: 0 0 < r < aV0 a < r < b0 b < r <1 (1.3.7)is the square barrier potential. By applying the Sturm-Liouville theory (Weyl theory) [30℄to the time independent S
hr�odinger equation (1.3.5), we obtain a domain D(H) on whi
hthe di�erential operator h is self-adjoint. This domain indu
es the self-adjoint HamiltonianH. The next step is to 
ompute the Green fun
tions (i.e., the resolvent) of H, the spe
trumof H (whi
h in our example is [0;1)), and the unitary operator U that diagonalizes H. Theoperator U allows us to obtain the energy representation of the Hilbert spa
e and the dire
tintegral de
omposition indu
ed by the Hamiltonian. The dire
t integral de
omposition isnot enough for the purposes of Quantum Me
hani
s. The reasons why the dire
t integralde
omposition (i.e., the Hilbert spa
e methods) is not enough for the purposes of QuantumMe
hani
s are the same as in the 
ase of the harmoni
 os
illator:(i) The expe
tation values and the un
ertainties of the Hamiltonian in any physi
al wavefun
tion should be well de�ned.(ii) Algebrai
 operations should be well de�ned. Sin
e D(H) is not stable under thea
tion of H, the powers of H are not well de�ned on all of the elements of H. Hen
e, asubdomain � in
luded in D(H) that remains stable under the a
tion of H and all of itspowers is needed, Hn : � 7�! � ; n = 0; 1; 2; : : : (1.3.8)(Obviously, if Eq. (1.3.8) holds, then the expe
tation values and the un
ertainties of H inany ' of � are well de�ned.)(iii) For ea
h E 2 Sp(H), there is a Dira
 ket jEi su
h that the eigenequation (1.3.2)and the Dira
 basis ve
tor expansion (1.3.3) hold. The kets jEi are de�ned in terms of the
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e of the Square Barrier Potential 11eigenfun
tions hrjEi of (1.3.5) asjEi : � 7�! C' 7�! h'jEi := Z 10 '(r)hrjEidr : (1.3.9)After realizing that the Hilbert spa
e is not suÆ
ient to a

ount for (i)-(iii), we 
onstru
tthe RHS � � H � �� (1.3.10)of the square barrier potential. This RHS a

ounts for (i)-(iii), be
ause of the followingreasons:(1) The spa
e � is stable under the a
tion of H (this will give (1.3.8)). On the spa
e�, all algebrai
 operations involving the Hamiltonian H are well de�ned. In parti
ular, theexpe
tation values of the Hamiltonian in any element of � are well de�ned. The elementsof � are represented by well-behaved fun
tions, in 
ontrast to the elements of the Hilbertspa
e, whi
h are represented by sets of equivalent fun
tions that 
an vary arbitrarily on anyset of zero Lebesgue measure. As in the example of the harmoni
 os
illator, we 
on
lude thatnot every element of the Hilbert spa
e 
an be a physi
ally a

eptable wave fun
tion|onlythe elements of � ful�ll all the 
onditions to be a wave fun
tion.(2) The ket jEi, as de�ned by (1.3.9), is a well-de�ned antilinear fun
tional on �, i.e.,jEi 2 ��. In the energy representation, jEi a
ts as the antilinear S
hwartz delta fun
tional.Moreover, jEi is an eigenve
tor of H as in Eq. (1.3.2). To see this, we have to re
all that inRHS language, Eq. (1.3.2) means thathH'jEi = Eh'jEi ; 8' 2 � : (1.3.11)The a
tion of H 
an be extended to the kets jEi in �� as follows:h'jH�jEi = hH'jEi ; 8' 2 � : (1.3.12)Be
ause H is 
ontinuous on �, the operator H� is a uniquely de�ned extension of H. Usingthe de�nition (1.3.12), we rewrite Eq. (1.3.11) ash'jH�jEi = Eh'jEi ; 8' 2 � : (1.3.13)Omitting the arbitrary ' in this equation leads toH�jEi = EjEi ; (1.3.14)whi
h is the same as Eq. (1.3.2). (Note that in Eq. (1.3.14) we have denoted the a
tion ofthe Hamiltonian on the ket jEi by H� and not just by H. We shall use this notation inorder to stress that the Hamiltonian is a
ting on ve
tors that lie outside the Hilbert spa
e.)(3) Any element of � 
an be expanded in terms of the eigenkets jEi as in Eq. (1.3.3).From (1)-(3) it follows that, when 
ontinuous spe
trum is present, the natural frameworkfor the solutions of the S
hr�odinger equation is the Rigged Hilbert Spa
e rather than justthe Hilbert spa
e.



12 1 Introdu
tion1.4 S
attering o� the Square Barrier PotentialThe above pro
edure to 
onstru
t RHSs of S
hr�odinger Hamiltonians also shows that theRHS 
an in
orporate boundary 
onditions imposed upon the S
hr�odinger equation:S
hr�odinger equation+boundary 
onditions �! � � H � ��.The Hilbert spa
e H is needed to in
orporate the requirement that the wave fun
tions aresquare integrable. Moreover, H singles out the s
alar produ
t used to 
ompute probabilityamplitudes. The spa
e �� is needed to in
orporate the Dira
 kets asso
iated with theeigenfun
tions of the time independent S
hr�odinger equation subje
t to boundary 
onditions.The spa
e � is needed to in
orporate the wave fun
tions on whi
h the Dira
 kets a
t as
ontinuous antilinear fun
tionals and for whi
h all the algebrai
 operations and all theexpe
tation values are well de�ned.We are now going to see that the RHS formalism is also able to in
orporate the boundary
onditions of a s
attering system. In essen
e, the RHS 
an a

ommodate the Lippmann-S
hwinger equation.3 To illustrate this, we shall use the example of s
attering o� the squarebarrier potential.Loosely speaking, we send a beam of prepared initial in-states 'in towards the squarebarrier potential. After the 
ollision takes pla
e, 'in be
omes 'out. We then measure theprobability to �nd a �nal out-state  out. The amplitude of this probability is given by( out; 'out) = ( out; S'in) ; (1.4.1)where S is the S-matrix. The 
anoni
al understanding is that the initial in-state 'in andthe �nal out-state  out are asymptoti
 forms of the so-
alled in-state '+ and out-state  �in the remote past and in the distant future, respe
tively. In terms of these, the probabilityamplitude (1.4.1) reads ( �; '+) : (1.4.2)The asymptoti
 states 'in and  out are related to the \exa
t" states '+ and  � by theM�ller operators, 
+'in = '+ ; (1.4.3a)
� out =  � : (1.4.3b)It is 
ustomary to split up the (total) Hamiltonian H into the free Hamiltonian H0 and thepotential V , H = H0 + V : (1.4.4)3For a mathemati
al approa
h to the Lippmann-S
hwinger equation in terms of RHSs of Hardy fun
tionssee Ref. [31℄.



1.4 S
attering o� the Square Barrier Potential 13The potential V is interpreted as the intera
tion between the 
omponents of the initialprepared states, for instan
e, the intera
tion between the in-going beam and the target.The initial in-state 'in and the �nal out-state  out evolve under the in
uen
e of the freeHamiltonian H0, whereas the in-state '+ and the out-state  � evolve under the in
uen
eof the (total) Hamiltonian H.Therefore, the dynami
s of a s
attering system is governed by the S
hr�odinger equationsubje
t to 
ertain boundary 
onditions. These boundary 
onditions spe
ify what is \in"and what is \out." The Lippmann-S
hwinger equation for the in- and out-kets jE�i hasthose \in" and \out" boundary 
onditions built into it,4jE�i = jEi+ 1E �H0 � i�V jE�i : (1.4.5)Eq. (1.4.5) is an integral equation, and is equivalent to the S
hr�odinger equationH�jE�i = EjE�i (1.4.6)subje
t to 
ertain boundary 
onditions. The most important of these boundary 
onditionsis built into the \in�nitesimal imaginary parts" �i�, whi
h 
hara
terize what is \in" (+i�)and what is \out" (�i�). We then say that the jE�i are eigenve
tors of the Hamiltonianwhose 
orresponding eigenvalues have an \in�nitesimal imaginary part."Needless to say, the Lippmann-S
hwinger kets jE�i are, mathemati
ally speaking, de-�ned as antilinear fun
tionals. The in-ket jE+i a
ts on the in-states '+, while the out-ketjE�i a
ts on the out-states  �. Sin
e the eigenvalues of the kets jE�i have an \in�nitesimalimaginary part," the wave fun
tions h'+jE+i and h �jE�i should have meaning not onlyfor real energies, but also for energies with an \in�nitesimal imaginary part." Mathemat-i
ally this means that the wave fun
tions h'+jE+i and h �jE�i should be the boundaryvalues of analyti
 fun
tions of the (
omplex) variable E. The analyti
al properties satis�edby the in-ket jE+i (or, equivalently, by the wave fun
tion h'+jE+i) are di�erent to thosesatis�ed by the out-ket jE�i (or, equivalently, by the wave fun
tion h �jE�i). In in
orpo-rating these two di�erent types of boundary 
onditions into the RHS framework, we willend up 
onstru
ting two di�erent RHSs. One RHS 
orresponds to the in-states '+,�� � H � ��� ; (1.4.7)while the other RHS 
orresponds to the out-states  �,�+ � H � ��+ : (1.4.8)The Lippmann-S
hwinger kets belong to the dual spa
es of these RHSs,jE�i 2 ��� : (1.4.9)4In Eq. (1.4.5), the symbol jEi denotes an eigenket of the free Hamiltonian H0, not the eigenket of thetotal Hamiltonian of Eq. (1.3.9).
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tionThe wave fun
tions '+ are usually 
alled in-states, whereas the wave fun
tions  �are 
alled out-states. O

asionally, we shall 
all the  � observables (or out-observables),be
ause they are determined by the registration apparatus. In order to grasp the meaningof this terminology, let us 
onsider the matrix element ( �; '+). This s
alar produ
t is theamplitude of the probability to observe the out-state  � in the in-state '+,P'+! � = j( �; '+)j2 : (1.4.10)Sin
e  � is determined by the property that we want to measure, it stands to reason thatwe 
all it observable and denote it by a spe
i�
 symbol. In order to stress the distin
tionbetween states and observables, the probability (1.4.10) may be written asP'+! � = Tr(P �W'+) ; (1.4.11)where Tr stands for tra
e and W'+ � j'+ih'+j ; (1.4.12)P � � j �ih �j : (1.4.13)The Lippmann-S
hwinger equation will be studied in Chapter 5 within the example of thesquare barrier potential. We shall �rst write Eq. (1.4.5) in the radial position representation,hrjE�i = hrjEi+ hrj 1E �H0 � i�V jE�i : (1.4.14)Next, we shall obtain the Lippmann-S
hwinger eigenfun
tions hrjE�i. The 
ontinuation ofthese eigenfun
tions to 
omplex values of the energy, that we denote by hrj(E � i�)�i, willbe used to de�ne the a
tion of the Lippmann-S
hwinger kets:h'+jE+i := lim�!0 Z 10 dr h'+jrihrj(E + i�)+i ; '+ 2 �� ; (1.4.15a)h �jE�i := lim�!0 Z 10 dr h �jrihrj(E � i�)�i ;  � 2 �+ : (1.4.15b)This de�nition needs a 
omment. The a
tion of the Lippmann-S
hwinger kets is de�nedas the limits in Eq. (1.4.15) in order to keep tra
k of the �i� boundary 
onditions. The�i� boundary 
onditions just mean that we are approa
hing the 
ut (i.e., the spe
trum ofH) either from above (+i�) or from below (�i�). Therefore, the a
tion of the Lippmann-S
hwinger kets jE�i should be viewed as the limit of the integrals in Eq. (1.4.15) when �tends to 0.The 
onditions under whi
h the ket (1.4.15a) is well de�ned are in general di�erent tothose under whi
h (1.4.15b) is well de�ned. Sin
e these 
onditions determine the spa
e ofwave fun
tions on whi
h the kets a
t, the spa
e �� on whi
h the in-ket jE+i a
ts is di�erent



1.5 The Gamow Ve
tors of the Square Barrier Potential Resonan
es 15from the spa
e �+ on whi
h the out-ket jE�i a
ts. Although the pre
ise form of the spa
es�� will not be given, we shall provide a list of ne
essary 
onditions that must be satis�edby the elements of ��. For the sake of de�niteness, we shall assume sometimes that thosespa
es are, in the energy representation, subspa
es of spa
es of Hardy 
lass (see also [31℄).On
e the Lippmann-S
hwinger kets are 
onstru
ted, the 
omplex basis ve
tor expansionsof the states '+ and of the observables  � follow:'+ = Z 10 dE jE+ih+Ej'+i ; (1.4.16a) � = Z 10 dE jE�ih�Ej �i : (1.4.16b)We will also 
onstru
t the M�ller operators and the S-matrix, and express the matrix element(1.4.2) in terms of the in- and out-Lippmann-S
hwinger kets,( �; '+) = Z 10 dE h �jE�iS(E)h+Ej'+i : (1.4.17)This expression will be used later to derive the 
omplex basis ve
tor expansion generatedby the Gamow ve
tors.We remark that the RHS (1.3.10) was 
alled a RHS of the square barrier potential andnot the RHS of the square barrier potential, be
ause di�erent boundary 
onditions uponthe S
hr�odinger equation yield di�erent RHSs for the same potential. The spa
e � ofEq. (1.3.10) is neither �+ nor ��, be
ause � in
orporates neither the \in" nor the \out"boundary 
onditions of the s
attering o� the square barrier potential [32℄.1.5 The Gamow Ve
tors of the Square Barrier Poten-tial Resonan
esThe Gamow ve
tors are the state ve
tors of resonan
es. They are de�ned as eigenve
torsof the Hamiltonian with a 
omplex eigenvalue. The des
ription of the Gamow ve
tors, im-possible in the Hilbert spa
e, 
an be a

omplished within the RHS formulation of QuantumMe
hani
s.Experimentally, resonan
es often appear as peaks in the 
ross se
tion whose shape resem-ble the well-known Breit-Wigner distribution. The Breit-Wigner distribution has two 
har-a
teristi
 parameters: the energy ER at whi
h the distribution rea
hes its maximum, andits width �R at half-maximum. The inverse of �R is the lifetime of the de
aying state [33℄.The peak of the 
ross se
tion with Breit-Wigner shape is related to a �rst-order pole of theS-matrix in the energy representation S(E) at the 
omplex number zR = ER � i�R=2. Thetheoreti
al expression of the 
ross se
tion in terms of S(E) �ts the shape of the experimental
ross se
tion in the neighborhood of ER. This is why the �rst-order pole of the S-matrix isoften taken as the theoreti
al de�nition of a resonan
e.
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tionAlthough a resonan
e has a �nite lifetime, it is otherwise assigned all the propertiesthat are also attributed to stable parti
les, like angular momentum, 
harge, spin, parity andother parti
le labels. For example, 
onsider [34℄ the bombardment of stable Pb206 nu
lei bya beam of � parti
les whose energy is peaked around 5.4 MeV. The 
ross se
tion for �+Pb206s
attering has an in
redibly sharp resonan
e whose width is of the order of 10�18 eV. Fortimes (after the �+Pb206 s
attering has taken pla
e) mu
h less than 138 days, there willbe nu
lei in the target that have all the 
hemi
al and physi
al properties asso
iated withthe atomi
 numbers Z = 84, A = 210, and we 
all these nu
lei Po210. The probabilityto �nd Po210 is not stationary, however, but de
reases exponentially with a 
hara
teristi
de
ay time of 138 days. For times short 
ompared to 138 days, Po210 is to all intends anatomi
 nu
leus. In fa
t, we in
lude it (and the rest of unstable nu
lei) in the periodi
 tableof elements along with the stable nu
lei.In parti
le physi
s the situation is the same (
f. for instan
e [35℄). Unstable parti
les arelisted along with the stable ones in the Parti
le Data Table [36℄ and attributed values for themass, the spin and the width (or lifetime). Thus, stable parti
les di�er from the unstableones by the value of their width, whi
h is zero in the 
ase of stable parti
les and di�erent fromzero in the 
ase of unstable ones. Hen
e, phenomenologi
ally, unstable parti
les are not lessfundamental than the stable ones, whi
h are, a

ording to 
urrent experimental eviden
e,only the proton, the ele
tron, the photon, the neutrinos and possibly the graviton.Theoreti
ally, stable and unstable parti
les are usually treated on a di�erent footing.The reason is that an unstable parti
le, unlike a stable one, 
annot be des
ribed within theHilbert spa
e formalism. However, there are some theoreti
al models that treat stable andunstable parti
les on the same footing. For instan
e, in the eightfold way of Gell-Mann andNe'eman [37℄ many multiplets 
ontain both stable and unstable parti
les|no fundamentaldistin
tion between stable and unstable parti
les is made.Be
ause resonan
es are parti
les with a �nite lifetime|not just peaks in the 
rossse
tion|a state ve
tor des
ription for resonan
es is needed. The Gamow ve
tors are thenatural state ve
tors of resonan
es [27℄. The des
ription of resonan
es by Gamow ve
torsallows us to interpret them as autonomous experimentally de
aying physi
al systems.The energy eigenfun
tion with 
omplex eigenvalue was originally introdu
ed by Gamowin his paper on �-de
ay of atomi
 nu
lei [38℄, and used thereafter by a number of authors(see for example, Refs. [39, 40, 41, 42, 43℄ and referen
es therein). The real part of the
omplex eigenvalue is asso
iated with the energy of the resonan
e, and the imaginary part isasso
iated with the inverse of the lifetime. The Gamow eigenfun
tions have an exponentiallyde
aying time evolution, in a

ordan
e with the exponential law observed in � de
ay ofradioa
tive nu
lei [44, 45, 46, 47℄. The Gamow eigenfun
tions are obtained as solutions ofthe S
hr�odinger equation subje
t to the purely outgoing boundary 
ondition. This 
onditionwas introdu
ed by Siegert [48℄.Gamow's treatment is merely heuristi
 though, and it 
annot be made rigorous in theHilbert spa
e theory, be
ause self-adjoint operators on a Hilbert spa
e 
an only have realeigenvalues. Re
all however that Dira
's bra-ket formulation of Quantum Me
hani
s wasalso heuristi
 and without mathemati
al justi�
ation until the RHS formulation of Quantum



1.5 The Gamow Ve
tors of the Square Barrier Potential Resonan
es 17Me
hani
s was suggested [8, 9, 10℄. During the past few years, it has be
ome 
lear thatthe RHS mathemati
s also asserts the legitima
y of Gamow's proposition (
f. Refs. [19, 20,21, 22℄ and referen
es therein). In RHS language, the Gamow ve
tors are eigenve
tors ofthe dual extension of the self-adjoint Hamiltonian. This extension 
an surely have 
omplexeigenvalues.5A 
omplementary approa
h to resonan
es started with Breit and Wigner, who des
ribeda resonan
e by means of the Breit-Wigner distribution [50℄. (Curiously enough, this distri-bution had been independently introdu
ed �ve years earlier by Fo
k [51℄.) Now, if a ve
toris to obey the exponential de
ay law and also to 
orrespond to the Breit-Wigner distribu-tion, then this distribution must be nonzero over the full energy real line (see Ref. [52℄ andreferen
es therein). Be
ause the spe
trum of the Hamiltonian is bounded from below, say[0;1), the Breit-Wigner distribution then has to be de�ned also at energies that do notbelong to the physi
al spe
trum [52℄. This seems to imply that the exponential de
ay lawis in
ompatible with the Breit-Wigner distribution, be
ause the Breit-Wigner distributionleads to the exponential law only when is de�ned over the full energy real line (�1;1)rather than just over the physi
al spe
trum [0;1). However, it has been shown that eventhough the spe
trum of the Hamiltonian is [0;1), the Breit-Wigner distribution 
an bede�ned on the full energy real line by means of RHSs of Hardy fun
tions [20℄, and hen
e theBreit-Wigner distribution yields the exponential law. The essential ingredient to do so is theso-
alled van Winter's theorem [53℄. This theorem allows us to pie
e together the physi
alspe
trum, whi
h 
oin
ides with [0;1), and the support of the Breit-Wigner distribution,whi
h 
oin
ides with (�1;1).Thus, there are two ways of des
ribing a resonan
e: the Gamow ve
tors, whi
h areeigensolutions of the S
hr�odinger equation subje
t to a purely outgoing boundary 
ondition,and the Breit-Wigner distribution, whi
h arises from the resonan
e pole of the S-matrix. Itis the major goal of this dissertation to show that the energy representation of the Gamowve
tors is given by the Breit-Wigner distribution. The square barrier potential will be usedto illustrate this point.The Gamow ve
tors of the square barrier potential will be 
onstru
ted in Chapter 6.The Gamow eigenkets will be de�ned as the solutions of a homogeneous integral equationof the Lippmann-S
hwinger type. If we denote the Gamow ket asso
iated to the 
omplexenergy zR = ER � i�R=2 by jz�Ri, then jz�Ri satis�es the following integral equation:jz�Ri = 1zR �H0 + i0V jz�Ri : (1.5.1)This equation was introdu
ed (in a di�erent language) by A. Mondrag�on6 et al. in Ref. [40℄.It is well known that the poles of a s
attering system 
ome in pairs, i.e., if zR = ER� i�R=25Eigenve
tors of the dual extension of self-adjoint operators with 
omplex eigenvalues in the RHS weresystemati
ally studied for the �rst time in the redu
tion of SO(2,1) with respe
t to its non
ompa
t sub-group [49℄.6I am indebted to Prof. Alfonso Mondrag�on for his 
areful and patient explanations on Eq. (1.5.1).



18 1 Introdu
tionis a pole of the S-matrix, then z�R = ER+ i�R=2 is also a pole of the S-matrix. The Gamowve
tor asso
iated to the pole z�R is denoted by jz�+R i, and satis�es the following integralequation: jz�+R i = 1z�R �H0 � i0V jz�+R i : (1.5.2)In Chapter 6, we will solve the integral equations (1.5.1) and (1.5.2) in the radial positionrepresentation. In this representation, these integral equations are equivalent to the timeindependent S
hr�odinger equation subje
t to a purely outgoing boundary 
ondition. Theresonan
e spe
trum is then singled out by this purely outgoing boundary 
ondition. Aswe shall see, this is the same resonan
e spe
trum as that de�ned by the poles of the S-matrix [27℄. The Gamow kets will be shown to be generalized eigenve
tors of the Hamiltonianwith 
omplex eigenvalues: H�jz�Ri = zRjz�Ri ; jz�Ri 2 ��+ ; (1.5.3a)H�jz�+R i = z�Rjz�+R i ; jz�+R i 2 ��� : (1.5.3b)Next, we shall 
ompute the energy representation of these Gamow ve
tors. We shall 
onsidertwo energy representations. One energy representation will be asso
iated to the physi
alspe
trum, whi
h is [0;1) in our example. The other energy representation will be asso
iatedto the support of the Breit-Wigner distribution, whi
h is (�1;1). We will show that the[0;1)-energy representation of the Gamow ve
tors is the 
omplex delta fun
tion, and thatits (�1;1)-energy representation is given by the Breit-Wigner distribution.On
e the Gamow kets are 
onstru
ted, we shall see that their time evolution is governedby a semigroup [20℄. More pre
isely, we shall see that the time evolution of jz�Ri 
an bede�ned only for positive values of time, whereas the time evolution of jz�R+i 
an be de�nedonly for negative values of time:e�iH�t=~jz�Ri = e�izRt=~jz�Ri = e�iERt=~e��Rt=(2~)jz�Ri ; for t > 0 only ; (1.5.4a)e�iH�t=~jz�R+i = e�iz�Rt=~jz�R+i = e�iERt=~e�Rt=(2~)jz�R+i ; for t < 0 only : (1.5.4b)Therefore, the Gamow ve
tors that we shall 
onstru
t have all the properties that aredemanded from a resonan
e state:1. They are eigenve
tors of the (dual extension of the self-adjoint) Hamiltonian with
omplex eigenvalues. These eigenvalues are also poles of the S-matrix.2. They 
orrespond to the Breit-Wigner amplitude in the (�1;+1)-energy representa-tion.3. Their time evolution is governed by a semigroup, and obeys the exponential de
aylaw.The Gamow ve
tors will be used also as basis ve
tors. The expansion generated bythe Gamow ve
tors will be 
alled the 
omplex basis ve
tor expansion. We shall see that



1.6 Time Reversal 19the Gamow ve
tors do not form a 
omplete basis system. An additional set of Dira
 kets
orresponding to the energies that lie in the negative real axis of the se
ond sheet of theRiemann surfa
e will be added to 
omplete them. As we shall see, the expansion of anin-state '+ 2 �� reads'+ = Z �10 jE�iS(E)h+Ej'+idE � 2�i 1Xn=0 rnjz�n ih+znj'+i ; (1.5.5)where zn = En� i�n=2 represents the n-th resonan
e energy of the square barrier potential,and rn represents the residue of the S-matrix S(E) at zn. In Eq. (1.5.5), the in�nite sum
ontains the resonan
es 
ontribution, whereas the integral is asso
iated to the ba
kground.As we said above, the Gamow ve
tors have a semigroup time evolution. This semigrouptime evolution expresses the time asymmetry built into a de
aying pro
ess. Some authorssu
h as Fonda et al. [52℄, Cohen-Tannoudji et al. [54℄, or Goldberger and Watson [55℄ have
alled this time asymmetry the irreversibility of a de
aying pro
ess. In re
ent years, manyauthors using various languages have 
laimed that time asymmetry is a feature of the timeevolution of any 
losed quantum systems (not just of a resonan
e pro
ess). For instan
e,Gell-Mann and Hartle have introdu
ed the time asymmetry of 
losed quantum systems interms of de
oheren
e histories [56℄. Haag uses the 
on
ept of event [57℄. Bohm, Antoniou,and Kielanowski use the preparation-registration arrow of time [58℄. Although we shall notdis
uss time asymmetry in this dissertation, we would like to mention that, for this author,the time asymmetry of a 
losed quantum system is built into the propagators (for more onthis see Ref. [32℄, where the arrow of time of Quantum Ele
trodynami
s is dis
ussed).1.6 Time ReversalWe shall also study how the time asymmetry of the resonan
es behaves under the a
tion ofthe time reversal operator [59℄. In order to do it, we shall apply the time reversal operatorto the Gamow ve
tors. Essentially, we will show in Chapter 7 that the so-
alled \growing"Gamow ve
tor is really the time reversed of the so-
alled \de
aying" Gamow ve
tor [60℄.We shall also study more exoti
 possibilities, whi
h are based on the work by Wigner.When 
onstru
ting proje
tive representations of the Poin
ar�e group extended by time re-versal and parity, Wigner [61, 62℄ found that there are four possibilities. Three of these possi-bilities imply a doubling of the spa
e supporting the representation. Later on, J. F. Cari~nenaand M. Santander7 studied the proje
tive representations of the Galilei group extended bytime inversion and parity [63℄. They also found four possibilities for the 
ase with mass.As in the relativisti
 
ase, the standard 
ase does not yield a doubling of the spa
e thatsupports the representation, whereas the other three possibilities do yield a doubling.Based on the work by Wigner [61, 62℄, Bohm has tried to �nd a meaning to the doublingof spa
es [64℄. In Chapter 7, we shall 
onstru
t this doubling expli
itly for one of thenon-standard time reversal operators in the nonrelativisti
 domain.7I thank Professor M. Santander for making me aware of his paper with Professor J. F. Cari~nena andfor his explanations on it.



20 1 Introdu
tion1.7 SynopsisThe organization of this dissertation is as follows:In Chapter 2, we review the mathemati
al methods of the Rigged Hilbert Spa
e. Thealgebrai
 stru
tures (linear spa
es), the topologi
al stru
tures (topologi
al spa
es), and their
ombinations (linear topologi
al spa
es) are introdu
ed in a pedestrian way. The 
ountablyHilbert spa
es, whi
h are the 
lass of linear topologi
al spa
es almost ex
lusively used inQuantum Me
hani
s, are studied in more detail. At the end of Chapter 2, the Hilbert spa
emathemati
al methods used in this dissertation are presented.In Chapter 3, we 
onstru
t the RHS of the harmoni
 os
illator.8 This system is stud-ied from a di�erent point of view to that used in Quantum Me
hani
s textbooks. Insteadof assuming that the position and momentum operators are given by the multipli
ationand derivative operators, we shall make three simple algebrai
 assumptions: the Heisen-berg 
ommutation relation, the expression of the Hamiltonian in terms of the positionand momentum operators, and the existen
e of an eigenve
tor of the Hamiltonian. Fromthese algebrai
 assumptions, we shall 
onstru
t the RHS of the harmoni
 os
illator and theS
hr�odinger representation of the algebra of the harmoni
 os
illator.In Chapter 4, we 
onstru
t a RHS of the square barrier Hamiltonian by means of theSturm-Liouville theory. This theory provides the dire
t integral de
omposition of the Hilbertspa
e. From this dire
t integral de
omposition, we shall 
onstru
t the RHS.In Chapter 5, we turn to the des
ription of the Lippmann-S
hwinger equation within theRHS formalism. First, the Lippmann-S
hwinger eigenfun
tions will be 
omputed. We shallde�ne the Lippmann-S
hwinger eigenkets in terms of the Lippmann-S
hwinger eigenfun
-tions and see that they are de�ned on di�erent spa
es of wave fun
tions. The Lippmann-S
hwinger kets will be used as basis ve
tors to expand the wave fun
tions. As well, theM�ller operators and the S-matrix are expli
itly 
onstru
ted.In Chapter 6, we 
onstru
t the Gamow ve
tors of the square barrier resonan
es. First,we 
ompute the resonan
e energies as poles of the S-matrix. The integral equation ofA. Mondrag�on et al. for the Gamow ve
tors will be translated into the RHS language. TheGamow eigenfun
tions in the position representation are obtained as the solutions of thetime independent S
hr�odinger equation subje
t to the purely outgoing boundary 
ondition.These eigensolutions will be asso
iated to 
ertain eigenfun
tionals (Gamow kets). The[0;1)-energy representation of the Gamow eigenfun
tion will be related to the 
omplexdelta fun
tion, and the (�1;1)-energy representation of the Gamow eigenfun
tion willbe related to the Breit-Wigner amplitude. The semigroup time evolution of the Gamowve
tors will also be 
omputed. The Gamow ve
tors will be used as basis ve
tors. Weshall see that the Gamow ve
tors do not form a 
omplete basis|an additional set of ketsneeds to be added in order to obtain a 
omplete basis. The time asymmetry of the purelyoutgoing boundary 
ondition will be dis
losed. To �nish the 
hapter, we shall elaborate onthe exponential de
ay law of the Gamow ve
tors.In Chapter 7, we study the behavior of resonan
es under the time reversal operation. We8This 
hapter is a substantial improvement of and an extension to Ref. [29℄.
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h yieldsa doubling of the RHS.





Chapter 2Mathemati
al Framework ofQuantum Me
hani
sIn this 
hapter, we review the mathemati
al methods of the Rigged Hilbert Spa
e. Thealgebrai
 stru
tures (linear spa
es), the topologi
al stru
tures (topologi
al spa
es), and their
ombinations (linear topologi
al spa
es) are introdu
ed in a pedestrian way. The 
ountablyHilbert spa
es, whi
h are the 
lass of linear topologi
al spa
es almost ex
lusively used inQuantum Me
hani
s, are studied in more detail. At the end of this 
hapter, the Hilbertspa
e mathemati
al methods used in this dissertation are presented.
They rushed down the street together, digging every-thing in the early way they had, whi
h later be
ame so mu
hsadder and per
eptive and blank. But then they dan
ed downthe streets like dingledodies, and I shambled after as I've beendoing all my life after people who interest me, be
ause theonly people for me are the mad ones, the ones who are mad tolive, mad to talk, mad to be saved, desirous of everything atthe same time, the ones who never yawn or say a 
ommonpla
ething, but burn, burn, burn like fabulous yellow roman 
an-dles exploding like spiders a
ross the stars and in the middleyou see the blue 
enterlight pop and everybody goes\Awww!".Ja
k Keroua
, On the road

23





2.1 Linear Spa
es 252.1 Linear Spa
es2.1.1 Introdu
tionThere are some major prin
iples in Quantum Me
hani
s that seem to 
ome from experi-mental data. Among them, there are the linear superposition prin
iple and the probabilisti
nature of Quantum Me
hani
s. These two prin
iples suggest that the mathemati
al ideal-ization of Quantum Me
hani
s should in
lude a linear spa
e 	 with a s
alar produ
t ( � ; � )de�ned on it. Then (	; ( � ; � )) will be our primary mathemati
al obje
t.2.1.2 Linear Spa
es and S
alar Produ
tA linear spa
e � is a set of elements ';  ; �; : : : whi
h is assigned an algebrai
 stru
ture thatis a generalization of 
ertain aspe
ts of the three-dimensional real spa
e R3 . The elements,also 
alled ve
tors, are de�ned to obey rules whi
h are well-known properties of ve
tors inR3 . The ve
tor spa
es whi
h we use are in general not three-dimensional, but 
an have anydimension N , often in�nite, and are de�ned, in general, over the 
omplex numbers C ratherthan over the real numbers R. There are two algebrai
 operations, the addition of ve
torsand the multipli
ation of a ve
tor by a s
alar. The rules for these operations that de�ne theve
tor spa
e are similar to those in R3 .De�nition A linear spa
e (also 
alled ve
tor spa
e) � over the 
omplex numbers C is aset of elements ',  , �; : : : for whi
h the sum ' +  of any two elements ';  and themultipli
ation by a 
omplex number � 2 C , � , are de�ned and are elements of �, andhave the following properties(VS1) '+  =  + ' ; 8';  2 � ; (2.1.1)(VS2) (�+  ) + ' = �+ ( + ') ; 8�;  ; ' 2 � ; (2.1.2)(VS3) There exists a 0 2 � su
h that 0 + ' = ' ; 8' 2 � ; (2.1.3)(VS4) 8' 2 � there exists  2 � su
h that '+  = 0 (we write  � �') ; (2.1.4)(VS5) (��)' = �(�') ; 8�; � 2 C ; 8' 2 � ; (2.1.5)(VS6) (�+ �)' = �'+ �' ; 8�; � 2 C ; 8' 2 � ; (2.1.6)(VS7) �('+  ) = �'+ � ; 8� 2 C ; 8';  2 � ; (2.1.7)(VS8) 1' = ' ; 8' 2 � : (2.1.8)From these, it follows that the zero element is unique and that, for ea
h ' in �, theelement �' is unique; moreover, 0' = 0 and (�1)' = �' for all ' in � and �0 = 0 for all� in C . A linear spa
e over the �eld of real numbers 
an be des
ribed in exa
tly the sameway with the word \real" substituted for the word \
omplex." The spa
es that we shall usein Quantum Me
hani
s will have additional properties besides (2.1.1)-(2.1.8).A subset S in a linear spa
e � is 
alled a subspa
e of � if S is a linear spa
e underthe same de�nitions of the operations of addition and multipli
ation by a number inheritedfrom �, i.e., if it follows from ';  2 S and � 2 C that �' 2 S and '+  2 S.



26 2 Mathemati
al Framework of Quantum Me
hani
sAn expression of the form �1'1 + �2'2 + � � �+ �n'n, where the �'s are in C and the ''sin �, is 
alled a linear 
ombination of the ve
tors '1; '2; : : : ; 'n. The ve
tors '1; '2; : : : ; 'nare said to be linearly dependent if there exist numbers �1; �2; : : : ; �n, not all zero, for whi
h�1'1 +�2'2 + � � �+�n'n = 0. If the equation �1'1 + �2'2 + � � �+ �n'n = 0 holds only for�1 = �2 = � � � = �n = 0, then the ve
tors '1; '2; : : : ; 'n are 
alled linearly independent. Aspa
e � is said to be �nite dimensional or, more pre
isely, n-dimensional if there are n andnot more than n linearly independent ve
tors in �. If the number of linearly independentve
tors in � is arbitrarily large, then � is said to be in�nite-dimensional. Every system ofn linearly independent ve
tors in an n-dimensional spa
e � is 
alled a basis for �.If '1; '2; : : : ; 'n is a basis for an n-dimensional spa
e � and ' is an arbitrary ve
tor in�, then '; '1; '2; : : : ; 'n are linearly dependent, so that�'+ �1'1 + �2'2 + � � �+ �n'n = 0 ; (2.1.9)for some �; �1; �2; : : : ; �n not all zero. Then � 6= 0, for otherwise we should have�1'1 + �2'2 + � � �+ �n'n = 0 ; (2.1.10)where �1; �2; : : : ; �n are not all zero, whi
h 
ontradi
ts the supposition that the ve
tors'1; : : : ; 'n are linearly independent. But, if � 6= 0, it follows from (2.1.9) that' = �1'1 + �2'2 + � � �+ �n'n ; (2.1.11)where �i = ��i=�. This representation of the element ' is unique. Thus, every ve
tor ' in ann-dimensional spa
e � 
an be uniquely represented in the form (2.1.11), where '1; : : : ; 'n isa basis for�. The numbers �1; : : : ; �n are 
alled the 
oordinates of the ve
tor ' relative to thebasis '1; : : : ; 'n. Noti
e that when the ve
tors are added, their 
orresponding 
oordinatesrelative to a �xed basis are added and, when a ve
tor is multiplied by any number, all the
oordinates are multiplied by that number.Clearly the ve
tors ~a;~b; : : : in the three-dimensional spa
e R3 ful�ll the relations (2.1.1)-(2.1.8). The set of 
omplex in�nitely di�erentiable 
ontinuous fun
tions whi
h vanish rapidlyat in�nity (
alled the S
hwartz spa
e) also ful�lls these relations. One often says that theabstra
t ve
tor spa
e stru
ture de�ned by the above rules is realized by other mathemati
alobje
ts, if these obje
ts appear to us more \real" than the \abstra
t" ve
tors. Thus ifone feels more familiar with fun
tions one may prefer the \realization" of � by a spa
e offun
tions over the spa
e � itself.In physi
s, the abstra
t mathemati
al obje
ts are realized by obje
ts with a physi
alinterpretation. Thus, a physi
ist's realization of a linear spa
e is not by other more familiaror more interesting mathemati
al obje
ts, but by physi
al obje
ts. In parti
ular, in quantumphysi
s, the elements of the spa
e � will be the mathemati
al images of pure physi
al stateswhi
h will be 
alled state ve
tors. Thus, a ve
tor stru
ture is \realized" by a 
on
rete spa
ewhose elements are interpreted as the physi
al states of a quantum system.For the purposes of Quantum Me
hani
s, a linear spa
e is a set with very little math-emati
al stru
ture. We will equip it with another stru
ture by de�ning a s
alar produ
t.This notion is again a generalization of the dot produ
t in R3 .



2.1 Linear Spa
es 27De�nition A linear spa
e is 
alled a s
alar produ
t spa
e (or Eu
lidean spa
e or pre-Hilbertspa
e) if for ea
h pair of ve
tors ';  2 � we 
an de�ne a 
omplex number (';  ) satisfyingthe following properties:(SP1) (';  ) = ( ; ') 8' ;  2 � (the overline denotes 
omplex 
onjugation) ; (2.1.12)(SP2) ('; � 1 + � 2) = �(';  1) + �(';  2) ; 8';  1;  2 2 � ; 8�; � 2 C ; (2.1.13)(SP3) ('; ') � 0 ; and ('; ') = 0 i� ' = 0 : (2.1.14)This fun
tion is 
alled a s
alar produ
t and (';  ) is 
alled the s
alar produ
t of theelements ' and  .The usual s
alar produ
t in R3 ; (~a;~b) = ~a�~b 
learly ful�lls the 
onditions (2.1.12)-(2.1.14)with all numbers being real instead of 
omplex.As in R3 , one 
alls two ve
tors ' and  orthogonal if(';  ) = 0 : (2.1.15)With the s
alar produ
t de�ned by (2.1.12)-(2.1.14) one de�nes the norm k'k of a ve
tor' by k'k = +p('; ') : (2.1.16)The norm of a ve
tor is an extension of the notion of length of a ve
tor in R3 . For anyve
tor  di�erent from the zero ve
tor one 
an always de�ne a ve
tor  ̂ =  =k k, whi
hhas the property k ̂k = 1 and whi
h is 
alled a normalized ve
tor.Sometimes one needs in a ve
tor spa
e a more general notion than the s
alar produ
t,the bilinear Hermitian form.De�nition A 
omplex-valued fun
tion h(';  ) of two ve
tor arguments is a Hermitian formif it satis�es h(';  ) = h( ; ') ; (2.1.17)h('; � ) = �h(';  ) ; (2.1.18)h('1 + '2;  ) = h('1;  ) + h('2;  ) : (2.1.19)If in addition h satis�es h('; ') � 0 (2.1.20)for every ve
tor ', then h is said to be a positive Hermitian form. A positive Hermitian formis 
alled positive de�nite if from h('; ') = 0 it follows that ' = 0. Thus a Hermitian formful�lls (2.1.12) and (2.1.13), but not the 
ondition (2.1.14) for a s
alar produ
t. However, apositive de�nite Hermitian form is a s
alar produ
t.Positive Hermitian forms, whi
h are not ne
essarily s
alar produ
ts, satisfy the Cau
hy-S
hwartz-Bunyakovski inequality:jh(';  )j2 � h('; ')h( ;  ) : (2.1.21)
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al Framework of Quantum Me
hani
sIf h is positive de�nite, equality holds i� ' = � for some � 2 C .Sometimes we have di�erent realizations of the same algebrai
 stru
ture. In these 
ases,the spa
es are, from an algebrai
 point of view, the same.De�nition An isomorphism between two algebrai
 stru
tures A and B is a one-to-one
orresponden
e between the sets A and B (i.e., to every a 2 A there 
orresponds exa
tlyone b 2 B and vi
e versa: a$ b), whi
h preserves the algebrai
 operations.For example, two linear s
alar produ
t spa
es � and 	 are isomorphi
 if there exists amapping f : �! 	 whi
h is one-to-one and onto and that ful�llsf(�'+ � ) = �f(') + �f( ) ; 8� ; � 2 C ; 8' ;  2 � ; (2.1.22)(';  )� = (f('); f( ))	 ; 8 ; ' ;  2 � ; (2.1.23)i.e., f preserves the sum, the multipli
ation and the s
alar produ
t. Isomorphi
 s
alarprodu
t spa
es (and in parti
ular Hilbert spa
es) are also 
alled isometri
. It often happensthat two s
alar produ
t spa
es are isomorphi
 as ve
tor spa
es, i.e., there is a one-to-one
orresponden
e whi
h ful�lls (2.1.22), but are not isomorphi
 as s
alar produ
t spa
es, i.e.,the 
orresponden
e does not ful�ll (2.1.23).2.1.3 Linear OperatorsVe
tors in R3 
an be transformed into ea
h other. One example is the rotation R of a ve
tor~a into a ve
tor ~b = R~a. In analogy to this, one de�nes transformations or linear operatorson a ve
tor spa
e �. A fun
tion A; A : �! �, that maps ea
h ve
tor ' in a ve
tor spa
e� into a ve
tor  2 �, A' =  , is 
alled a linear operator if for all ';  2 � and � 2 C itful�lls the 
onditions A(' +  ) = A' + A ; (2.1.24)A(�') = �A' : (2.1.25)An operator is 
alled antilinear if it ful�llsA(�') = �A' (2.1.26)instead of (2.1.25), where � is the 
omplex 
onjugate of �.For two operators de�ned on the whole spa
e �, the operations of addition A + B,multipli
ation by a 
omplex number �A, and multipli
ationAB, are de�ned in the followingway: (A+B)' := A'+B' ; (�A)' := �(A') ; (AB)' := A(B') ; (2.1.27)for all ' 2 �. It is easily veri�ed that A + B, �A and AB are linear operators de�ned onthe whole spa
e � if A and B are linear operators de�ned on the whole spa
e �. In �nite
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es 29dimensional spa
es with a topology (linear topologi
al spa
es de�ned in Se
tion 2.3) there isa large 
lass of operators that 
an be de�ned on the whole spa
e, the 
ontinuous operators.In general this is not the 
ase and the de�nition of A+B and AB is more 
ompli
ated andinvolves questions on the domains and on the ranges of the operators.For every linear operator A de�ned on the whole spa
e �, one 
an de�ne an operatorAy on the elements  in � for whi
h(Ay ; ') := ( ;A') ; 8' 2 � : (2.1.28)The operator Ay is 
alled the adjoint operator of A. An operator for whi
h Ay = A is 
alledself-adjoint or Hermitian.1In the general 
ase, an operator A need not to be de�ned on the whole spa
e � but onlyon 
ertain subset D(A) of �.De�nition Let �;	 be two linear spa
es and let D(A) be a subspa
e of �. A mappingA : D(A) � �! 	 is 
alled a linear operator ifA(�'+ � ) = �A'+ �A ; 8�; � 2 C and 8';  2 D(A) ; (2.1.29)and is 
alled an antilinear operator ifA(�'+ � ) = �A'+ �A ; 8�; � 2 C and 8';  2 D(A) : (2.1.30)D(A) is the domain of A and R(A) = fA' j ' 2 D(A)g � 	 is the range of A.Let Ai : � � D(Ai) ! 	 (i = 1; 2) be two linear operators with domains D(Ai). ThenA1 + A2 is a linear operator with domain D(A1) \ D(A2) de�ned as(A1 + A2)(') := A1'+ A2' (2.1.31)for every ' in D(A1) \ D(A2). In the same way, �Ai is the operator de�ned on D(Ai) as(�Ai)(') := �Ai' (2.1.32)for ea
h ' 2 D(Ai). The produ
t of A1 and A2 is de�ned as(A1A2)(') = A1(A2') (2.1.33)for the ve
tors ' in � su
h that ' is in D(A2) and A2' is in D(A1). With these operationsof addition and multipli
ation by s
alars, the set of all linear operators mapping � into 	form a ve
tor spa
e.1We will usually use the term Hermitian if we do not want to distinguish between the mathemati
allypre
isely de�ned notions self-adjoint, essentially self-adjoint, and symmetri
. We will present all these
on
epts in Se
tion 2.5 along with the pre
ise de�nition of the adjoint operator.
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al Framework of Quantum Me
hani
sOf spe
ial interest are the zero operator, denoted 0, and the unit operator or identityoperator, denoted I, whi
h are de�ned by0' = 0 ; I' = ' ; (2.1.34)for every ' 2 �. Note that 0 on the left side of the �rst equation is the zero operator, while0 on the right is the zero ve
tor in (2.1.3).The de�nition of linear operators was inspired by the properties of transformations onthe three-dimensional spa
e. Linear operators on a ve
tor spa
e � may be thought ofas analogous to transformations on the three-dimensional Eu
lidean spa
e, but they 
analso have other physi
al interpretations. In parti
ular, in quantum physi
s they representphysi
al observables.Very important notion for quantum physi
s is that of an eigenvalue and an eigenve
torof an operator in a ve
tor spa
e.De�nition A nonzero ve
tor  2 � is 
alled an �eigenve
tor of the linear operator A ifA = � with � 2 C : (2.1.35)� is 
alled the eigenvalue of A 
orresponding to the eigenve
tor  .For a given operator A, there may be many (perhaps in�nitely many) di�erent eigen-ve
tors with di�erent eigenvalues. There may also be n (�nite or in�nite) many di�erenteigenve
tors with the same eigenvalue �. In this 
ase, � is 
alled n-fold degenerate. In a�nite dimensional spa
e every linear operator (matri
es) has at least one eigenve
tor. Inan in�nite dimensional spa
e this is in general not ful�lled. For instan
e, the operatordi�erentiation �i ddx de�ned on the Hilbert spa
e L2(R) has no eigenve
tor belonging toL2(R).If A is a Hermitian operator de�ned on a s
alar produ
t spa
e, then eigenve
tors andeigenvalues have the following properties:1. All eigenvalues are real.2. If '1 and '2 are eigenve
tors of A with eigenvalues �1 and �2, respe
tively, and if�1 6= �2, then '1 and '2 are orthogonal to ea
h other, i.e., ('1; '2) = 0.In quantum physi
s, an operator represents an observable of a physi
al system. Its eigen-values then represent the numbers whi
h are obtained in a measurement of this observable.In the �nite dimensional 
ase (and in some spe
ial in�nite dimensional 
ases), the eigen-ve
tors of a Hermitian operator 
an be used to expand any state (wave fun
tion) in terms ofthem. In the in�nite dimensional 
ase, this expansion will need the 
on
ept of a generalizedeigenve
tor and a generalized eigenvalue (see Se
tion 3.5).De�nition An operator B is 
alled the inverse of an operator A if BA = AB = I. Theoperator B is denoted by A�1.
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es 31A linear operator U is 
alled a unitary operator if U yU = UU y = I.Be
ause of the de�nition of the inverse operator, one 
an de�ne a unitary operator alsoby the 
ondition U y = U�1. It is worthwhile noting that not every operator has an inverse.Another important notion is that of the 
ommutator of two operators.De�nition Let A and B be two operators de�ned on �. The 
ommutator of A and B isde�ned by [A;B℄ � AB � BA or [A;B℄' = AB'� AB' ; 8' 2 � : (2.1.36)A and B are said to 
ommute if[A;B℄ � AB � BA = 0 or AB'� AB' = 0 ; 8' 2 � : (2.1.37)The 
olle
tion of linear operators de�ned on the whole linear spa
e forms a new algebrai
stru
ture, where the algebrai
 operations of sum of two operators, produ
t of a number withan operator and produ
t of two operators are de�ned by (2.1.27). This algebrai
 stru
ture is
alled an asso
iative algebra. An asso
iative algebra 
an also be de�ned abstra
tly withoutany referen
e to linear operators by the following de�nition:De�nition A set A is an (asso
iative) algebra with unit element i�(A1) A is a ve
tor spa
e.(A2) For every pair A;B 2 A, a produ
t AB 2 A is de�ned su
h that(AB)C = A(BC) ; (2.1.38)A(B + C) = AB + AC ; (2.1.39)(A+B)C = AC +BC ; (2.1.40)(�A)B = A(�B) = �AB : (2.1.41)(A3) There exists an element I 2 A su
h thatIA = AI = A ; 8A 2 A : (2.1.42)A subset A1 of an algebra A is 
alled a subalgebra of A if A1 is an algebra with the samede�nitions of the operations of addition, multipli
ation by a number, and multipli
ation asinherited from A. That is, if from A;B 2 A1 and � 2 C , it follows that A + B 2 A1,�A 2 A1, and AB 2 A1.(A4) An algebra A is 
alled a �-algebra if we have on the algebra a y-operation (involu-tion), A! Ay, that has the following de�ning properties:(�A+ �B)y = �Ay + �By ; (2.1.43)
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al Framework of Quantum Me
hani
s(AB)y = ByAy ; (2.1.44)(Ay)y = A ; (2.1.45)Iy = I ; (2.1.46)where A;B 2 A and �; � 2 C .From the de�nition (2.1.27) of the sum and the produ
t of two operators and the produ
tof an operator with a number, and from the de�nition (2.1.28) of the adjoint operator, one
an see that the set of linear operators ful�lls all the axioms (A1)-(A4) of a �-algebra.Thus the set of linear operators de�ned on the whole ve
tor spa
e � forms a �-algebra.A subalgebra of this algebra is 
alled an operator �-algebra. It 
an be shown that in a
ertain sense every �-algebra 
an be realized as an operator �-algebra in a s
alar-produ
tspa
e (generalization of the Gelfand-Naimark-Segal re
onstru
tion theorem). In QuantumMe
hani
s, physi
al systems are assumed to be des
ribed by operator algebras.A set X1; X2; : : : ; Xn of elements of A is 
alled a set of generators, and A is said to begenerated by the Xi (i = 1; 2; : : : ; n) i� ea
h element of A 
an be written asA = 
I + nXi=1 
iXi + nXi;j=1 
ijXiXj + : : : ; (2.1.47)where 
; 
i; 
ij; : : : 2 C .De�ning algebrai
 relations are relations among the generatorsP (Xi) = 0 ; (2.1.48)where P (Xi) is a polynomial with 
omplex 
oeÆ
ients of the n variables Xi. An elementB 2 A, B = bI +X biXi +X bijXiXj + : : : ; (2.1.49)where b; bi; : : : 2 C , is equal to the element A in (2.1.47) i� (2.1.49) 
an be brought intothe form (2.1.47) with the same 
oeÆ
ients 
; 
i; 
ij; : : : by the use of the de�ning relations(2.1.48).2.1.4 Antilinear Fun
tionalsIn the previous se
tion, we have introdu
ed the 
on
ept of an eigenve
tor of an operator ina ve
tor spa
e. In Quantum Me
hani
s, some of the eigenve
tors that we need are antilinearmappings from a spa
e of states into the 
omplex numbers. In this se
tion, we de�ne themand explain some of their basi
 properties.De�nition Let � be a 
omplex linear spa
e. A fun
tional (or a fun
tion) on � is a mappingF from the spa
e � into the 
omplex numbers C ; F : �! C . (If � is a real spa
e then themapping is into the real numbers R.)
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es 33If F satis�esF (�'+ � ) = �F (') + �F ( ) ; 8';  2 � ; 8�; � 2 C ; (2.1.50)then F is 
alled an antilinear fun
tional. If F satis�esF (�'+ � ) = �F (') + �F ( ) ; 8';  2 � ; 8�; � 2 C ; (2.1.51)then F is 
alled a linear fun
tional. (If � is a real spa
e there is no distin
tion betweenlinear and antilinear fun
tionals.) A linear or antilinear fun
tional is thus a spe
ial 
ase ofa linear or antilinear operator between two linear spa
es (see (2.1.29) and (2.1.30)) if thespa
e 	 is the spa
e of 
omplex numbers C .A fun
tional is also the analog of a 
omplex-valued fun
tion F (x) of a real variable xvarying on R, F : R ! C , only now the variable is not a real number x 2 R but a ve
tor' 2 �. We will 
onsider here antilinear fun
tionals rather than linear fun
tionals (in themathemati
al literature one usually 
onsiders linear fun
tionals).An example of an antilinear fun
tional on a s
alar produ
t spa
e is given byF : � ! C' ! F (') = (';  ) ; (2.1.52)where  is a �xed element in � and (';  ) is the s
alar produ
t of  with ', where ' variesover �. Be
ause of this example and be
ause in the general 
ase we want to 
onsider afun
tional to be a generalization of the s
alar produ
t, one uses for the antilinear fun
tionalF (') the Dira
's bra-ket symbol (see referen
e [1℄)F (') � h'jF i : (2.1.53)We shall use the two notations 
on
urrently. Dira
 kets will be given a mathemati
almeaning as antilinear fun
tionals (whi
h in addition are 
ontinuous, notion that will bede�ned in Se
tion 2.2).Any two antilinear fun
tionals F1 and F2 on a linear spa
e�may be added and multipliedby numbers a

ording to(�F1 + �F2)(') = �F1(') + �F2(') ; �; � 2 C ; (2.1.54)or, using the notation (2.1.53),h'j�F1 + �F2i = �h'jF1i+ �h'jF2i : (2.1.55)The fun
tional �F1+�F2 de�ned by (2.1.54) is again an antilinear fun
tional over �. Thus,the set of antilinear fun
tionals on a ve
tor spa
e � is a linear spa
e itself. This spa
eis 
alled the 
onjugate spa
e or dual spa
e (more pre
isely, the algebrai
 dual or algebrai

onjugate spa
e) of the spa
e � and is denoted by ��alg.
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al Framework of Quantum Me
hani
s2.2 Topologi
al Spa
es2.2.1 Introdu
tionWhen we de�ned the ve
tor spa
e we took a set � of elements (whi
h we 
alled ';  ; : : :)and endowed this set with an algebrai
 stru
ture by de�ning two operations, addition of twoelements and multipli
ation of ' 2 � by an � 2 C . We demanded that these operationsful�lled 
ertain rules (see Se
tion 2.1.2). The resulting stru
tured set was 
alled a linearspa
e. (We thereafter de�ned another algebrai
 operation on �, the s
alar produ
t|seeSe
tion 2.1.2|and 
alled � a s
alar produ
t spa
e). Now we take a set, whi
h we 
all again� (but whi
h is not yet a ve
tor spa
e), and endow it with another stru
ture, a topologi
alstru
ture. The resulting stru
tured set will be 
alled a topologi
al spa
e.The topology on a spa
e provides us with a way of phrasing su
h 
on
epts of nearness,
ontinuity, 
onvergen
e, 
ompletion, et
 that we are familiar with for the spa
e of realnumbers. We shall start with the 
on
ept of \open set," whi
h is a generalization of thenotion of open set in R. However, there are several equivalent ways of de�ning a topology(via open sets, or 
losed sets, or neighborhoods,...) and for more restri
ted 
ases one 
ande�ne the topology in more spe
i�
 ways, e.g. by 
onvergen
e of sequen
es. We want to startin the most general setting and then to spe
ialize the 
on
epts without mu
h dis
ussions inorder to arrive rapidly at the parti
ular spa
es that we need in Quantum Me
hani
s.2.2.2 Open Sets and NeighborhoodsDe�nition Let � be a set and let P(�) = fS j S � �g be the 
olle
tion of all subsets of�. A subset �� of P(�) is 
alled a topology of � if the following 
onditions are ful�lled:(O1) ; 2 �� and � 2 �� (; is the empty set) : (2.2.1)(O2) The union of arbitrarily many elements of �� is an element of �� : (2.2.2)(O3) The interse
tion of a �nite number of elements of �� is in �� : (2.2.3)The pair (�; ��) is 
alled a topologi
al spa
e and the elements of �� are 
alled open sets.With the given de�nition of topology we 
an de�ne the 
onvergen
e of sequen
es ofelements (points) '1; '2; : : : ; 'n; : : : � f'ng1n=0 of the set �, whi
h is a generalization of thenotion of 
onvergen
e for real numbers.De�nition A sequen
e of points '1; '2; : : : ; 'n; : : : 2 � is said to 
onverge to ' 2 � if forevery open set O with ' 2 O there exists a positive integer N = N(O) su
h that 'n 2 Ofor all n > N(O).This de�nition means that beginning from a large enough N the elements of the sequen
eare as 
lose to ' as we desire.
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al Spa
es 35Example Let � be the set of real numbers R. The meaning of the 
onvergen
e of thesequen
e fyng, written as limn!1 yn = x (or yn ! x), is the following: the open sets O
ontaining x in the previous de�nition are given byU�(x) � fy 2 R j jx� yj < � ; � > 0g : (2.2.4)Then, a

ording to the de�nition of 
onvergen
e, for every U�(x) there exists an N� su
h thatfor all n > N�, yn 2 U�(x), i.e., jx�ynj < �. This is the well-known de�nition of 
onvergen
eof a sequen
e of real numbers. The open sets U�(x) in (2.2.4) are 
alled neighborhoods of x.The generalization of the 
on
ept of a neighborhood to a topologi
al spa
e is the following:De�nition If � is a topologi
al spa
e and ' 2 �, a neighborhood (hereafter abbreviatednhood) of ' is a set U whi
h 
ontains an open set O 
ontaining ' (that is, ' 2 O � U).The 
olle
tion U' of all nhoods of ' is the nhood system at '. Nhoods need not be openbut we shall only use systems of open nhoods, i.e., U 2 U' whi
h also are in ��.One 
an easily see that a sequen
e f'ng1n=0 
onverges to an element ' i� ea
h nhoodof ' 
ontains every point of the sequen
e whose index is larger than some positive integerdepending on the given nhood. Thus, it is a generalization of the notion of 
onvergen
e forreal numbers.De�nition A subset S � � is said to be a topologi
al subspa
e of � if S is given thetopology �S = fS \ O j O 2 ��g : (2.2.5)To des
ribe a given topology, we do not need to know the whole 
olle
tion of open sets:it is enough to know a proper sub
olle
tion.De�nition A base B of a topology �� on � is a sub
olle
tion of �� su
h that every openset O is a union of some open sets in B, i.e., ea
h O 2 �� 
an be given asO =[� B�; B� 2 B: (2.2.6)Thus, given a base B we generate all the open sets (and therefore we des
ribe thetopology 
ompletely) taking all possible unions of sets in B. In mu
h the same way that abase des
ribes the whole 
olle
tion of open sets, a nhood system 
an be 
ompletely des
ribedby a nhood base.De�nition A nhood base (or a system of basi
 nhoods) at ' in the topologi
al spa
e � is asub
olle
tion B' taken from the nhood system U', having the property that ea
h U 2 U'
ontains some V 2 B'. On
e a nhood base at ' has been 
hosen (there are many to 
hoosefrom, all produ
ing the same nhood system at ') its elements are 
alled basi
 nhoods.
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al Framework of Quantum Me
hani
sObviously, the nhood system at ' is itself a nhood base at '. In the topologi
al spa
eof the real numbers R, the open set (2.2.4) is a nhood of x and fU�(x); � > 0g is a systemof basi
 nhoods at x. But alsoBx = fU1=m(x) j m = 1; 2; : : :g (2.2.7)is a system of basi
 nhoods at the point x 2 R whi
h 
onsists of a 
ountable number ofnhoods. For the real numbers we know that a sequen
e fyng is already 
onvergent to apoint x, yn ! x, i� for every m 2 N , jx� ynj < 1m for all positive integers n greater than a
ertain natural number N = N(m) depending on m. Thus, the 
ountable system of nhoods(2.2.7) de�nes already the 
onvergen
e in R and de�nes the topology 
ompletely.In general, a topologi
al spa
e does not need to have a 
ountable system of (basi
)nhoods at ea
h of its points. But there are many spa
es whi
h have this property.De�nition A spa
e � is said to satisfy the �rst axiom of 
ountability if it has a 
ountablesystem of basi
 nhoods at ea
h of its points. We also 
alled these spa
es �rst 
ountable.Most of the spa
es in whi
h we are interested satisfy the �rst axiom of 
ountability.The most important feature of this kind of topologies is that we 
an des
ribe them 
om-pletely using 
onvergen
e on sequen
es (that is, spe
ifying whi
h sequen
es 
onverge towhi
h points).Using the above de�nitions one 
an prove that in a topologi
al spa
e � a system ofnhoods U' at a point ' has the properties:(N1) If U 2 U' ; then ' 2 U ; (2.2.8)(N2) If U; V 2 U' ; then U \ V 2 U' ; (2.2.9)(N3) If U 2 U' ; then there is a V 2 U' su
h that U 2 U for ea
h  2 V ; (2.2.10)(N4) If U 2 U' ; and U � V then V 2 U' ; (2.2.11)and furthermore;(N5) O � � is open i� O 
ontains a nhood of ea
h of its points : (2.2.12)Conversely, if in a set � a 
olle
tion U' of subsets of � is assigned to ea
h ' 2 � so asto satisfy (2.2.8)-(2.2.11) and if we de�ne \open" using (2.2.12), the result is a topology on� (i.e., a 
olle
tion of subsets of � satisfying (2.2.1)-(2.2.3)) in whi
h U' is a nhood systemat ', for ea
h ' 2 �. Therefore, whenever nhoods have been assigned to ea
h point in a set,satisfying the properties (2.2.8)-(2.2.11), the topology is 
ompletely spe
i�ed. This meansthat we 
an equivalently des
ribe a topology (that is, to des
ribe the 
on
epts of nearness,
ontinuity, 
onvergen
e,...) using as starting point the open sets or the nhood systems atea
h point. Obviously, one 
an also des
ribe the topology 
ompletely assigning a system ofbasi
 nhoods to ea
h point.A given set � 
an be equipped with various topologies. Di�erent topologies on thesame set lead to di�erent meanings of nearness, 
ontinuity, 
onvergen
e,... If � is equippedwith two di�erent topologies, say with �1 and �2, and if �1 � �2, then �1 is 
alled 
oarser
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al Spa
es 37than �2 and the 
onvergen
e with respe
t to �1 weaker than the 
onvergen
e with respe
tto �2. Correspondingly, �2 is 
alled �ner than �1 and the 
onvergen
e with respe
t to �2 is
alled stronger than with respe
t to �1. Sin
e every U 2 �1 is also in �2, it follows from thede�nition of 
onvergen
e that every strongly 
onvergent sequen
e is also weakly 
onvergent.One 
an arrive at the same topology in a spa
e (i.e., the same system of open sets)starting from two di�erent systems of nhoods. For example, in de�ning the natural topologyon the real line we 
an, on the one hand, take as nhoods the open intervals (2.2.4) withreal �'s and, on the other hand, take the nhoods (2.2.7) with rational �'s. As mentionedabove, both systems of nhoods des
ribe the same topology. In general, we will 
all twodi�erent systems of nhoods equivalent, if they lead to the same topology. The followingsimple 
ondition is both ne
essary and suÆ
ient for the equivalen
e of two given nhoodsystems fUg and fV g: every nhood U 
ontains a nhood V , and every nhood V 
ontains anhood U .A topology 
an also be des
ribed in terms of 
losed sets. To introdu
e this notion, we�rst need the following de�nition:De�nition Let (�; ��) be a topologi
al spa
e and let S � �. ' 2 � is 
alled an adheren
epoint of S if for every U 2 U', then U \ S 6= ;.In parti
ular, every point of the set S is an adheren
e point. There are two possibilitiesfor the adheren
e points of a set S:1. There exists a nhood of ' (the adheren
e point) whi
h 
ontains only a �nite numberof points of S. We are not interested in this 
ase.2. Every nhood of the adheren
e point ' 
ontains an in�nite number of distin
t pointsof S. Then ' is 
alled a limit point of S.A limit point ' of S may or may not belong to S. A set S is said to be 
losed if it 
ontainsall of its adheren
e points. If a set S is not 
losed one obtains the 
losure S of S by adjoiningto S those of its adheren
e points whi
h do not already belong to it. Thus the 
losure S ofS is the 
olle
tion of all adheren
e points of S. The 
losure of any set S is 
losed, and S is
losed i� S = S. The 
on
epts of open and 
losed set are dual to ea
h other. In fa
t, a setM � � is 
losed (i.e., M =M) i� its 
omplement ��M is open.De�nition A set D in a topologi
al spa
e � is 
alled dense in � if D = �. A topologi
alspa
e � is separable i� � has a 
ountable dense subset.The real line is separable, sin
e the rational numbers are dense in R, and most of thespa
es used in Quantum Me
hani
s are separable.2.2.3 Separation AxiomsThe above de�nition of a topology is still too general. The topologies that are of importan
ein physi
s satisfy more requirements. These topologies all ful�ll strong 
onditions for the
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al Framework of Quantum Me
hani
smeaning of separation of two points ' and  in �. These 
onditions will allow us to\distinguish" between two di�erent points of the spa
e using only the topology.De�nition A topologi
al spa
e � is a T0-spa
e (or, the topology on � is T0) if whenever' and  are distin
t points in �, there is an open set 
ontaining one and not the other.A topologi
al spa
e � is a T1-spa
e if whenever ' and  are distin
t points in �, thereis a nhood of ea
h not 
ontaining the other.� is said to be a T2-spa
e (also 
alled Hausdor�) if whenever ' and  are distin
t pointsof �, there are disjoint open sets U and V in � with ' 2 U and  2 V .Every T2-spa
e is T1, and every T1-spa
e is T0. In a T1-spa
e, every �nite set is 
losed.In a T2-spa
e, every 
onvergent sequen
e has exa
tly one (unique) limit point. For thisreason, the minimum that we will require of our topologies is that they be Hausdor� spa
es.But often we will make even stronger separation demands on our spa
es.De�nition A topologi
al spa
e � is said to be regular if whenever S is 
losed and ' is notin S, then there are disjoint open sets U and V with ' 2 U and S � V .We de�ne a T3-spa
e to be a regular T1-spa
e.A topologi
al spa
e � is normal if whenever S and P are disjoint 
losed sets in � , thereare disjoint open sets U and V with S � U and P � V .A normal T1-spa
e will be 
alled T4.Roughly speaking, in T3- and T4-spa
es we 
an \distinguish" (or \separate") pointsfrom sets and sets from sets, respe
tively. Every T4-spa
e is T3, and every T3-spa
e is T2.Most spa
es we shall 
onsider will be T4. The 
lass of T4-spa
es in
lude all metrizableand therefore all lo
ally 
onvex spa
es whose topology is given by a 
ountable numberof seminorms. These in
lude 
ountable normed spa
es, 
ountable Hilbert spa
es, and, inparti
ular, normed and s
alar produ
t spa
es. The de�nition of these kinds of spa
es will begiven is Se
tion 2.4.1. All the spa
es that we shall use in Quantum Me
hani
s for the spa
e� of a rigged Hilbert spa
e � � H � �� will be 
ountable Hilbert spa
es and therefore T4.2.2.4 Continuity and Homeomorphi
 Spa
esAn important notion that depends upon the topology is the notion of a 
ontinuous mapping.Intuitively, a map f is 
ontinuous at a given point ' if the images of the points 
lose to' are 
lose to f('). Thus the 
on
ept of 
ontinuity is derived from that of nearness, andtherefore is given by the topology.De�nition Let (�; ��) and (	; �	) be two topologi
al spa
es and f : � ! 	. Then f is
ontinuous at ' 2 � i� for ea
h nhood V of f(') in �	, there is a nhood U of ' in �� su
hthat f(U) � V . We say f is 
ontinuous on � i� f is 
ontinuous at ea
h ' 2 �.One 
an use the open sets to des
ribe 
ontinuous maps on the whole spa
e. A map
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al Spa
es 39f : �! 	 is 
ontinuous on � i� the inverse image of every open set of 	 is an open set of�, i.e., O 2 �	 ) f�1(O) 2 ��.In the 
ase of spa
es that satisfy the �rst axiom of 
ountability, we 
an use the sequen
es(that determine 
ompletely the topology) to des
ribe the 
ontinuity of a fun
tion at a givenpoint. A map f : � ! 	, where � and 	 satisfy the �rst axiom of 
ountability, is
ontinuous at a point ' i� whenever 'n ! ' with respe
t to ��, then f('n)! f(') withrespe
t to �	.A map is 
alled a topologi
al map (or homeomorphism) if it is one-to-one, onto and
ontinuous and f�1 is also 
ontinuous. In this 
ase, we say that � and	 are homeomorphi
.Homeomorphi
 spa
es are, from a topologi
al point of view, the same. That is, there is notopologi
al property that allows us to distinguish them. Moreover, a topologi
al property isanything that is 
onserved under homeomorphisms.In order to 
onvey the meaning of the 
ombination of an algebrai
 stru
ture with a topo-logi
al stru
ture, as is needed for the de�nition of a linear topologi
al spa
e in Se
tion 2.3,we have to de�ne the dire
t produ
t of two topologi
al spa
es.De�nition Let (�1; �1) and (�2; �2) be topologi
al spa
es. Then the topology on the dire
tprodu
t spa
e �1 ��2 is generated by the baseB = fO1 � O2 j O1 2 �1; O2 2 �2g ; (2.2.13)i.e., the (topologi
al) produ
t spa
e is (�1 � �2; �), where � is the 
olle
tion of arbitraryunions of the sets that belong to B in (2.2.13).2.3 Linear Topologi
al Spa
es2.3.1 Introdu
tionA linear topologi
al spa
e (also 
alled a topologi
al ve
tor spa
e) is a 
ombination of a linearstru
ture (see Se
tion 2.1.2) and a topologi
al stru
ture (see Se
tion 2.2), both introdu
edon one and the same set �. However, these stru
tures are not independent of ea
h other.The linear operations, whi
h are mappings on �, are required to be 
ontinuous in orderthat these two stru
tures mat
h ea
h other. The general pro
edure to 
onstru
t topologi
alalgebrai
 stru
tures (topologi
al algebras, topologi
al groups, topologi
al ve
tor spa
es) is:1. One endows a given set � with an algebrai
 stru
ture.2. One endows the same set � with a topologi
al stru
ture.3. One demands that the algebrai
 operations on � be 
ontinuous mappings.The reason why one 
onstru
ts these mathemati
al stru
tures is that there exist realiza-tions of su
h stru
tures (with some additional properties) that are very useful in mathemati
sand in physi
s. For instan
e, linear topologi
al spa
es are realized in mathemati
s by 
lasses
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hani
sof fun
tions (e.g., the S
hwartz spa
e). In physi
s, these abstra
t mathemati
al entities areused to des
ribe some stru
tures in nature. For example, topologi
al groups (in parti
ularparameter or Lie groups) are the mathemati
al image of symmetry transformations of theregistration apparatuses (dete
tor) relative to the preparation apparatuses (a

elerator).Linear topologi
al spa
es and their algebras of linear operators provide the mathemati
alframework to des
ribe the states and the observables of quantum physi
s, respe
tively.For the 
ombination of a topologi
al stru
ture with the algebrai
 stru
ture, the followingde�nition is an example of the general pro
edure des
ribed above.De�nition A set � is 
alled a linear topologi
al spa
e (l.t.s.) or a topologi
al ve
tor spa
e(t.v.s.) if (LT1) � is a linear spa
e : (2.3.1)(LT2) � is a topologi
al spa
e : (2.3.2)(LT3) The algebrai
 operations are 
ontinuous : (2.3.3)Assumption (2.3.3) means that the mapping: C �� ! �(�; ') ! �' (2.3.4)and the mapping : ��� ! �(';  ) ! '+  (2.3.5)are 
ontinuous. The 
ontinuity of these operations gives a pre
ise meaning to intuitivenotions su
h as an \in�nite linear 
ombination" of ve
tors or the limit of an in�nite sequen
eof ve
tors. A l.t.s. is often denoted by (�; ��;+; �) in order to spe
ify the linear and thetopologi
al stru
tures. We shall just denote a l.t.s. by � if no 
onfusion is possible.From the 
ontinuity of the algebrai
 operations it follows that if U(0) is a nhood of thezero element, then V = ' + U(0) (i.e., the set obtained by adding ' to all the elements ofU(0), also 
alled the translate of U(0) by ') is a nhood of '. In other words, the nhoodsystem at ' is just the family of translates by ' of members of the nhood system at 0.Therefore, the topology of a l.t.s. 
an be 
ompletely spe
i�ed by the system of nhoods atthe zero element.If U0 is a base of nhoods at the zero element in the l.t.s. �, then � is T2 if and onlyif TU2U0 U = f0g, i.e., i� the interse
tion of the nhoods of zero is pre
isely zero. We shallalways assume that the topology of a l.t.s. is T2. Moreover, we shall 
onsider mostly T4spa
es. In parti
ular, for all the spa
es � in the Rigged Hilbert Spa
e � � H � �� weshall 
hoose ex
lusively T4 spa
es.The simplest example of a l.t.s. is the real line R when endowed with the usual additionand multipli
ation (whi
h provide the linear algebrai
 stru
ture) and with the topology of
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al Spa
es 41the absolute value de�ned in Se
tion 2.2.2. In a similar manner, the 
omplex numbers C
an be also 
onsidered as a l.t.s.A useful 
on
ept in R is that of a bounded set. A set S � R is bounded if there exists anM > 0 su
h that jxj < M for all x 2 S. The generalization of this notion to an arbitraryl.t.s. is:De�nition A subset B of a l.t.s. � is said to be bounded if for every nhood of zero U(0)there exists a � > 0 su
h that B � �U(0). �U(0) = f�' j ' 2 U(0)g, the set obtained bymultiplying ea
h element of U(0) by �, is 
alled a multiple of U(0).Roughly speaking, a set is bounded if every nhood of zero has a multiple that swallowsit up. By using the nhoods of R in Se
tion 2.2.2, one 
an show that this de�nition agreeswith the above de�nition of boundedness of S � R.It is easy to see that if �1 and �2 are two topologies on a l.t.s. � and if �1 � �2, thenevery set B whi
h is bounded with respe
t to the �ner topology �2 is also bounded withrespe
t to the 
oarser topology �1.2.3.2 Cau
hy Sequen
esIn the topologi
al ve
tor spa
e of real numbers R, a sequen
e fyng1n=0 is 
alled Cau
hy iffor every � > 0 there is a positive integer N = N(�) (depending only on �) su
h that forall n;m � N we have jyn � ymj < �. This means that a sequen
e is Cau
hy if beginningfrom a large enough N the elements of the sequen
e are more and more 
lose to ea
hother. We 
an reformulate this de�nition in terms of nhoods of the zero element in R: asystem of nhoods at x = 0 is the 
olle
tion (see Se
tion 2.2.2) U0 = fU�(0) j � > 0g whereU�(0) = fy 2 R j jyj < �g. Then a sequen
e fyng1n=0 of real numbers is Cau
hy i� forevery nhood U�(0) of 0, there is a positive integer N(U�) su
h that yn � ym 2 U�(0) for alln;m > N . We shall generalize this 
on
ept to an arbitrary l.t.s.De�nition A sequen
e f'ng1n=0 of elements in a l.t.s. � is 
alled Cau
hy if for every nhoodU of the zero element there exists a natural number N = N(U), depending only on U , su
hthat 'n � 'm 2 U for all n;m > N .Every 
onvergent sequen
e is Cau
hy, but the 
onverse is not always true, i.e., a Cau
hysequen
e need not 
onverge to a point in the spa
e. In the l.t.s. of the real numbers R, asequen
e is Cau
hy i� it is 
onvergent to some (unique) real number. In the l.t.s. of rationalnumbers Q this is not the 
ase, sin
e there are Cau
hy sequen
es of rational numbers whi
hdo not 
onverge to any rational number (for example, any sequen
e of rational numbers
onverging to �).De�nition A l.t.s. � is 
alled 
omplete (more pre
isely, sequentially 
omplete) if everyCau
hy sequen
e has a limit in �.
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al Framework of Quantum Me
hani
sThis de�nition means that in a sequentially 
omplete spa
e we always get to a point inthe spa
e whenever we follow a sequen
e of elements that be
ome more and more 
lose toea
h other. When the same set is endowed with two di�erent topologies we usually say thatthe spa
e is � -
omplete, if we want to emphasize whi
h topology we are 
onsidering.In general, we seek spa
es that are 
omplete. This is why if a l.t.s. is not 
ompletewe 
omplete it by adjoining all the limit elements of Cau
hy sequen
es to it. Then, thein
omplete spa
e 
an be viewed as a dense subspa
e of its 
ompletion.De�nition A 
omplete l.t.s. �
 is said to be the 
ompletion of an in
omplete l.t.s. � if thereis a map i : �! �
 whi
h is one-to-one, linear and 
ontinuous with 
ontinuous inverse i�1su
h that i(�) is dense in �
.Note that the fun
tion i (usually 
alled an embedding) is not onto (if so, � would alreadybe a 
omplete spa
e). The 
ompletion of a spa
e � is unique up to a linear homeomorphismwhi
h leaves � pointwise �xed. As an example, R is a 
ompletion of Q .Completeness is a very important requirement in mathemati
s. Without it one 
an-not prove existen
e theorems nor de�ne derivatives or integrals. In physi
s, 
ompleteness
annot be established dire
tly from physi
al observation be
ause 
ompleteness involves anin�nite number of entities (Cau
hy sequen
es) and all physi
al observations involve only a�nite number of states. Thus, it 
annot be \dedu
ed" dire
tly from experiments and onlythe overall su

ess of a mathemati
al theory 
an show whi
h 
ompletion|more pre
isely,
ompletion with respe
t to whi
h topology|is preferable for quantum physi
s.We have given above only the de�nition of sequential 
ompleteness, whi
h is suÆ
ientwhen the topology is fully des
ribed in terms of the 
onvergen
e of sequen
es (that is, whenthe topology satis�es the �rst axiom of 
ountability). If the spa
e is not �rst 
ountable,its 
ompletion 
annot be de�ned in terms of Cau
hy sequen
es. It has to be de�ned interms of nets, whi
h we do not want to introdu
e here. With this more general de�nition of
ompletion, every l.t.s. 
an be 
ompleted in the sense of the above de�nition, the 
ompletionis unique (up to a linear homeomorphism) and the spa
e 
an be 
onsidered as a densesubspa
e of its 
ompletion. The spa
e � of the Rigged Hilbert Spa
e � � H � �� willalways be 
hosen to satisfy the �rst axiom of 
ountability. Therefore, it 
an be 
ompletedusing Cau
hy sequen
es. The spa
e �� will in general not be �rst 
ountable, and its
ompletion must be 
onstru
ted using the general de�nition.Sin
e any metrizable spa
e (a 
lass that in
ludes s
alar produ
t spa
es, normed spa
esand 
ountably normed spa
es) is �rst 
ountable (see Se
tion 2.3.3), we 
an 
omplete it byusing Cau
hy sequen
es. Vaguely speaking, the 
ompletion is a

omplished in the follow-ing way: two Cau
hy sequen
es ('1; '2; '3; : : :) and ( 1;  2;  3; : : :) in � are 
onsideredequivalent if beginning from a large enough term their elements are more and more 
loseto ea
h other. More pre
isely, ('1; '2; '3; : : :) � ( 1;  2;  3; : : :) i� for every U 2 U0 thereis a positive integer N(U) su
h that 'n �  m 2 U for all n;m > N . We denote by[('1; '2; : : : ; 'n; : : :)℄ the set of sequen
es whi
h are equivalent to ('1; '2; : : : ; 'n; : : :). On
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al Spa
es 43this spa
e of equivalen
e sequen
es, one de�nes an algebrai
 addition[('1; '2; : : : ; 'n; : : :)℄+ [( 1;  2; : : : ;  n; : : :)℄ := [('1+ 1; '2+ 2; : : : ; 'n+ n; : : :)℄ (2.3.6)and a multipli
ation by s
alars�[('1; '2; : : : ; 'n; : : :)℄ := [�('1; '2; : : : ; 'n; : : :)℄ : (2.3.7)We de�ne the metri
 on this spa
e asd
([f'ng1n=0℄; [f ng1n=0℄) := limn!1d('n;  n) ; (2.3.8)where d is the metri
 on the in
omplete spa
e and d
 will be the metri
 on the 
ompletespa
e. Finally, we de�ne the map i : �! �
 as i(') = [('; '; : : : ; '; : : :)℄, i.e., the elements' of the in
omplete l.t.s. � are represented in �
 by the in�nite rows ('; '; '; : : :). Inthe end, i is a 1:1, linear, 
ontinuous mapping and i(�) is dense in �
. Moreover, we 
anextend other algebrai
 operations on � to �
 in the same way we extended the sum andthe produ
ts by s
alars. For example, we 
an extend a s
alar produ
t on � to �
 via thede�nition ([f'ng1n=0℄; [f ng1n=0℄)
 := limn!1('n;  n) (2.3.9)where ( � ; � )
 is the s
alar produ
t on �
 and ( � ; � ) is the s
alar produ
t on �.2.3.3 Normed, S
alar Produ
t and Metri
 Spa
esIn a linear spa
e �, we 
an introdu
e algebrai
 operations that have in prin
iple nothingto do with a topology, but that 
an be used to de�ne one. For instan
e, in Se
tion 2.1.2we introdu
ed a s
alar produ
t on a ve
tor spa
e. The resulting stru
ture, 
alled s
alarprodu
t spa
e, has signi�
an
e even without any topologi
al 
onsiderations. However, thiss
alar produ
t 
an be used to de�ne several topologies on the s
alar produ
t spa
e (a Hilbertspa
e topology, a nu
lear topology,...). Another example of an algebrai
 operation that 
angive rise to a topology is the norm.De�nition Let � be a linear spa
e. A norm k � k on � is a fun
tion whi
h asso
iates toea
h ' 2 � a �nite real number k'k ful�lling(N1) k'+  k � k'k+ k k ; 8';  2 � : (2.3.10)(N2) k�'k = j�j k'k ; 8' 2 �; 8� 2 C : (2.3.11)(N3) k'k � 0 ; and k'k = 0 only if ' = 0 : (2.3.12)A linear spa
e � equipped with a norm k � k is usually denoted by (�; k � k), and it is
alled a normed spa
e. From (2.3.10) and (2.3.11), it follows that k0k = 0.
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al Framework of Quantum Me
hani
sWith the use of the norm we 
an spe
ify a system of nhoods at 0 to de�ne a topology,
alled the norm topology. We de�ne the nhoods of the zero element byU�(0) = f' j k'k < �g ; � > 0 : (2.3.13)Then the nhoods of any  are de�ned byU�( ) =  + U�(0) = f' j k'�  k < �g : (2.3.14)The system of nhoods at zero U0 = fU�(0) j � > 0g (2.3.15)provides a topology for the normed spa
e (�; k � k). Equipped with this topology, (�; k � k)is a l.t.s. In pla
e of (2.3.15), one 
an 
hoose a 
ountable system of nhoods at zeroW0 = fU1=m(0) j m = 1; 2; :::g : (2.3.16)One 
an show that the systems of nhoods (2.3.15) and (2.3.16) are equivalent, i.e., theyyield the same topology. In parti
ular, this means that every normed spa
e satis�es the �rstaxiom of 
ountability.In the l.t.s. (�; k � k) , we 
an give a meaning to the topologi
al notions we have dis
ussedabove (
onvergen
e of sequen
es, 
ompleteness,...). For example, a

ording to the generalde�nition given in Se
tion 2.3.2, a sequen
e f'ng1n=0 is Cau
hy if for every U�(0) in (2.3.13)there exists an N = N(U�) su
h that for all n;m > N , 'n � 'm 2 U�(0). This meansthat for every � > 0 there exists a natural number N = N(�) su
h that for all n;m > N ,k'n � 'mk < �. This is the de�nition of Cau
hy sequen
es that one usually �nds in tra
tson normed spa
es. As in the general 
ase, a normed spa
e � is 
alled 
omplete if everyCau
hy sequen
e 
onverges to an element in �. If a normed spa
e (�; k � k) is not 
ompletethen it 
an be 
ompleted. A 
omplete normed spa
e is 
alled a Bana
h spa
e.Now, given a s
alar produ
t ( � ; � ) on a linear spa
e � we 
an de�ne the norm providedby the s
alar produ
t as k'k := +p('; ') ; 8' 2 � : (2.3.17)It is easy to see that (2.3.17) is a well de�ned norm that satis�es the requirements (2.3.10)-(2.3.12) if the s
alar produ
t satis�es (2.1.12)-(2.1.14). Therefore, we 
an make a s
alarprodu
t spa
e � a l.t.s. by using the system of nhoods at zero (2.3.15) or (2.3.16) with k � kde�ned by (2.3.17). Although a s
alar produ
t always des
ribes a norm (through (2.3.17)),the 
onverse is not always true. Therefore a s
alar produ
t spa
e is always a normed spa
ebut the 
onverse does not ne
essarily hold.De�nition A s
alar produ
t spa
e is 
alled a Hilbert spa
e if it is 
omplete with respe
t tothe topology generated by the norm given by the s
alar produ
t as in (2.3.17). We shallusually denote a Hilbert spa
e by H.Thus a Hilbert spa
e is the 
ompletion of the s
alar produ
t spa
e of Se
tion 2.1.2 withrespe
t to the topology given by the system of nhoods (2.3.15) or (2.3.16) . Sin
e the Hilbert
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es 45spa
e has been so important in mathemati
s and physi
s, a s
alar produ
t spa
e (in whi
hone does not introdu
e any topology) is often 
alled a pre-Hilbert spa
e. Every pre-Hilbertspa
e be
omes a Hilbert spa
e when we 
omplete it with respe
t to the topology given by(2.3.15) with (2.3.17). It is worthwhile noting that the Hilbert spa
e topology is not theonly topology for whi
h one 
an 
omplete a s
alar produ
t spa
e �. In Se
tion 2.4 we willdis
uss other di�erent topologies that 
an be introdu
ed on �.De�nition A real-valued fun
tion d, de�ned for ea
h pair of elements ',  of a set �, is
alled a metri
 if it satis�es(M1) d('+  ) � d('; �) + d(�;  ) ; 8'; �;  2 � : (2.3.18)(M2) d(';  ) = d( ; ') ; 8';  2 � : (2.3.19)(M3) d(';  ) � 0 ; d('; ') = 0 ; and d(';  ) > 0 if ' 6=  : (2.3.20)A set � provided with a metri
 is 
alled a metri
 spa
e and d(';  ) is 
alled the distan
ebetween ' and  .Let V ('; �) be the set of all elements  2 � su
h that d(';  ) < �. Then, the 
olle
tionU' = fV ('; �) j � > 0g (2.3.21)is a system of basi
 nhoods at ' that generate a topology on �. Endowed with this topology,a metri
 spa
e is a l.t.s. A topologi
al spa
e is 
alled metrizable if its topology 
an be de�nedby a metri
 d. Every metrizable spa
e is �rst 
ountable, sin
e the system of nhoodsfV ('; 1=n) j n = 1; 2; : : :g (2.3.22)is equivalent to (2.3.21). A metrizable spa
e is also T4.The real numbers and the 
omplex numbers are both metrizable spa
es, the metri
 beinggiven by d(x; y) := jx� yj ; x; y 2 R (2 C ) : (2.3.23)If we are given a norm k � k de�ned on a linear spa
e, we 
an de�ne a metri
 asso
iated toit by d(';  ) = k'�  k. Therefore, normed and s
alar produ
t spa
es are metrizable, andtheir topology as metrizable spa
es 
oin
ides with the topology de�ned by the norm or bythe s
alar produ
t.2.3.4 Continuous Linear Operators and Continuous AntilinearFun
tionalsLinear operators and antilinear fun
tionals were de�ned in Se
tions 2.1.3 and 2.1.4. Inquantum physi
s, the operators (representing quantum me
hani
al observables and quantumme
hani
al states) are linear and the fun
tionals (representing kets or generalized states)are antilinear. Therefore, we shall use here linear operators and antilinear fun
tionals;
orresponding mathemati
al statements hold for antilinear operators and linear fun
tionals.



46 2 Mathemati
al Framework of Quantum Me
hani
sDe�nition Let � and 	 be two l.t.s. A map A : D(A) � �! 	 is 
alled a 
ontinuouslinear mapping or just a 
ontinuous operator i�1. A is linear (
f. Se
tion 2.1.3),2. A is 
ontinuous (
f. Se
tion 2.2.4).The notion of 
ontinuity of an operator on a l.t.s. 
an be lo
alized at zero, in the sameway that the topology 
an be lo
alized at zero. More pre
isely, a linear mapping A from al.t.s. � into another l.t.s. 	 is 
ontinuous on the whole spa
e � i� it is 
ontinuous at thezero element. Therefore, a linear mapping A : �! 	 is 
ontinuous i� for every nhood U of0 2 	 there exists a nhood V of 0 2 � su
h that A(V ) � U . When the l.t.s. � and 	 are�rst 
ountable (that is, the topology 
an be des
ribed in terms of 
onvergen
e of sequen
es),then the sequential 
riterion for 
ontinuity (see Se
tion 2.2.4) 
an also be lo
alized at zero:an operator A : �! 	 is 
ontinuous i� whenever 'n ! 0 in �, then A('n)! 0 in 	.The notion of boundedness is related to the 
ontinuity of an operator:De�nition A linear operator A : � ! 	 is 
alled bounded i� it transforms every ��-bounded set B � � into a �	-bounded set A(B) � 	 (
f. Se
tion 2.3.1 for the de�nition ofa bounded set).One 
an show that every 
ontinuous operator de�ned on a l.t.s. is bounded. Moreover,if the l.t.s. � and 	 satisfy the �rst axiom of 
ountability, an operator A : � ! 	 is
ontinuous if and only if it is bounded. Therefore, in all normed, 
ountably normed andmetrizable spa
es (whi
h are �rst 
ountable) one 
an use the words 
ontinuous operator andbounded operators inter
hangeably.Continuous operators as 
ompared to non-
ontinuous operators have ni
er propertiesand are easier to handle be
ause they 
an always be de�ned on the whole spa
e �. Even ifinitially they are only de�ned on a dense subspa
e D(A), their de�nition 
an be extendedto the whole spa
e in a 
ontinuous manner. As an example of this extension, 
onsider two�rst 
ountable l.t.s. � and 	 su
h that 	 is 
omplete. Let A : D(A) � �! 	 be a denselyde�ned 
ontinuous operator. Then A 
an be uniquely extended to the whole spa
e � in a
ontinuous way as follows: if ' 2 � but ' is not in D(A) we 
an always �nd a sequen
ef'ng in D(A) su
h that 'n ! ' with respe
t to ��. Sin
e f'ng is ��-Cau
hy, fA'ng is�	-Cau
hy, and fA'ng has a well de�ned limit  in 	. We 
an de�ne the a
tion of A on' to be this limit  A' := limn!1A'n ; 8' 2 � : (2.3.24)The operator de�ned in (2.3.24) is well de�ned on the whole spa
e �, extends the a
tion of Aon D(A) and is 
ontinuous. For the spa
es � of the RHS � � H � �� and for the operatorsde�ned on them this extension will always be possible. In fa
t, we shall always assume thatevery 
ontinuous linear (as well as antilinear) operator has already been extended to thewhole spa
e �.
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al Spa
es 47If A : �! 	 is a 
ontinuous linear operator then (�A), � 2 C , is also a 
ontinuous linearoperator. If A;B are 
ontinuous linear operators then A+B and A �B are also 
ontinuouslinear operators. Thus if the generatorsXi of an algebraA are given by 
ontinuous operatorsthen the whole algebra is an algebra of 
ontinuous operators and every A 2 A given by(2.1.47) with a �nite numbers of terms are de�ned on the whole spa
e �. (The question ofthe 
onvergen
e of in�nite sums of the form (2.1.47) 
an only be addressed after a topologyhas been introdu
ed on A). If one wants to do 
al
ulations it is of great importan
e tohave an algebra of 
ontinuous operators whi
h are de�ned on the whole spa
e, be
ause thenone does not have to worry about domain questions, i.e., one does not have to answer thequestion whether B' is in the domainD(A) of an operator A to 
al
ulate AB'. Also one willnot have to deal with the absurd situation that the expe
tation value (';A'), representingaverage value of a quantum me
hani
al observable A measured in quantum me
hani
al state', is \in�nite" when ' is not in D(A). It would, therefore, be desirable that all quantumme
hani
al observables were given by 
ontinuous operators on a suitable l.t.s. This meansthat the mathemati
al image of all quantum me
hani
al observables should be a set (perhapsan algebra) of 
ontinuous operators on some l.t.s. Only ve
tors ' of su
h l.t.s. 
an representphysi
al states. The non-
ontinuous operators should be forbidden be
ause they may leadto nonphysi
al in�nite predi
tions.Mu
h of the trouble of the Hilbert Spa
e formalism 
omes from domain questions. Al-ready the simplest operators of Quantum Me
hani
s, the operators momentum P and po-sition Q, whi
h ful�ll the algebrai
 relation PQ � QP = �i1 (Heisenberg 
ommutationrelation), 
annot be represented by 
ontinuous operators in the Hilbert spa
e H. Thus theHilbert spa
e 
ontains some \non-physi
al states" in whi
h these operators are not de�ned.This is one of the reasons why we have to introdu
e a 
ountably norm topology �� in ad-dition to the algebrai
 stru
ture of a s
alar produ
t spa
e. The 
ompletion with respe
tto this topology generates a spa
e �. This spa
e, whi
h is as subspa
e of H, allows for arepresentation by ��-
ontinuous operators that satisfy the Heisenberg 
ommutation relationor similar algebrai
 relations (e.g., the 
ommutation relations of non-
ompa
t groups of im-portan
e in physi
s). Our task is thus to �nd a topology �� su
h that the phenomenologi
al
ommutation relations of Quantum Me
hani
s are represented by 
ontinuous operators onsome spa
e �. For the Heisenberg 
ommutation relations and many other algebrai
 re-lations (in
luding the 
ommutation relations of all Lie groups) a 
ountably Hilbert spa
e(
f. Se
tion 2.4) will do the job.The 
on
ept and properties of a 
ontinuous antilinear fun
tional F : � ! C followsfrom the 
ase of a 
ontinuous linear mapping just 
hanging linearity for antilinearity and
onsidering the spa
e C as a l.t.s.De�nition A map F : �! C is 
alled a 
ontinuous antilinear fun
tional if1. F is antilinear (
f. Se
tion 2.1.3),2. F is 
ontinuous (
f. Se
tion 2.2.4).
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hani
sDira
 kets, Lippmann-S
hwinger kets and Gamow ve
tors will be represented by 
ontin-uous antilinear fun
tionals.The 
olle
tion �� of 
ontinuous antilinear fun
tionals on a l.t.s. �, i.e., the set�� = fF : �! C j F is antilinear and ���
ontinuousg ; (2.3.25)is 
alled the 
onjugate of �, the topologi
al dual of �, or the adjoint of �. The 
onjugatespa
e depends, as all topologi
al notions do, on the parti
ular topology that has been
hosen. The 
onjugate spa
e is a linear spa
e under the usual sum of two fun
tionalsand multipli
ation of a fun
tional by a 
omplex number. Sin
e the elements of �� mustbe 
ontinuous, the topologi
al dual is always a subspa
e of the algebrai
 dual de�ned inSe
tion 2.1.4. A topology 
an also be assigned to �� to make it a l.t.s.Example If (�; k � k) is a Bana
h spa
e, an antilinear fun
tional F on � is 
ontinuous i�the quantity kFk�� := sup'2�; '6=0 jF (')jk'k (2.3.26)is a �nite real number. kFk�� is 
alled the norm of the antilinear fun
tional F . One 
anprove that (2.3.26) is indeed a well de�ned norm that satis�es (2.3.10)-(2.3.12). Moreover,the adjoint spa
e �� of a Bana
h spa
e � is a Bana
h spa
e itself when we de�ne the normof a fun
tional by (2.3.26). An antilinear fun
tional F over a Bana
h spa
e is bounded i�there exists a positive 
onstant K su
h thatjF (')j � Kk'k ; 8' 2 � : (2.3.27)Sin
e a Bana
h spa
e is �rst 
ountable, F is 
ontinuous i� F is bounded. In fa
t, kFk�� in(2.3.26) is the minimum of the real numbers K that satisfy (2.3.27).The adjoint H� of a Hilbert spa
e H, that in parti
ular is a Bana
h spa
e, 
an be
onstru
ted in a similar fashion and 
an be endowed with the norm topology generated by(2.3.26). On
e this is done, the following important theorem holds:Theorem (Riesz-Fre
het) For every �H-
ontinuous antilinear fun
tional F on a Hilbertspa
e H there exists a unique ve
tor fF 2 H su
h thatF (g) = (g; fF ) ; 8 g 2 H ; (2.3.28)and su
h that kfFkH = kFkH�.The Riesz-Fre
het theorem provides a one-to-one 
ontinuous linear mapping of H� ontoH, : H� ! HF ! fF ; (2.3.29)
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es 49that preserves the norms of the spa
es. Therefore, a Hilbert spa
e and its adjoint areisometri
 spa
es (
f. Se
tion 2.1.2). This is usually abbreviated asH ' H� : (2.3.30)In general, two l.t.s. � and 	 are 
alled isomorphi
 if there exists a one-to-one mappingh of � onto 	 whi
h is linear and 
ontinuous and su
h that its inverse is 
ontinuous. Themapping h is 
alled an isomorphism.2 Thus an isomorphism is a mapping that preservesthe linear topologi
al stru
ture of the spa
es. Two isomorphi
 spa
es are, from a lineartopologi
al point of view, the same, and are usually identi�ed,� ' 	 : (2.3.31)When � and 	 are normed spa
es, a linear mapping h of � onto 	 is an isomorphism i�there are positive 
onstants K1 and K2 withK1k'k � kh(')k � K2k'k : (2.3.32)Two isomorphi
 metri
 spa
es are usually 
alled isometri
.A 
ontinuous linear operator A de�ned on the whole of a l.t.s. �,A : �! � ; (2.3.33)
an be extended into �� byh'jA�F i := hA'jF i ; ' 2 � ; F 2 �� : (2.3.34)The dual extension A� de�ned by (2.3.34) is a well de�ned linear operator on ��A� : �� ! �� : (2.3.35)2.4 Countably Hilbert Spa
es2.4.1 Introdu
tionIn Se
tion 2.3 we studied how to 
ombine a linear and a topologi
al stru
ture. The resultingl.t.s. stru
ture is still too general for the purposes of Quantum Me
hani
s. We now distin-guish a 
lass of l.t.s. that is of servi
e in Quantum Me
hani
s: 
ountably Hilbert spa
es. A
ountably Hilbert spa
e is a linear spa
e on whi
h a 
ountable number of s
alar produ
ts isde�ned, i.e., for every ';  2 � there exist(';  )1; (';  )2; : : : ; (';  )p; : : : ; (2.4.1)2Sin
e algebrai
 isomorphisms were also designated as isomorphisms in Se
tion 2.1.2, the terms topologi
alisomorphism and topologi
ally isomorphi
 may be used to avoid misunderstanding.
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al Framework of Quantum Me
hani
swhi
h ful�ll the de�ning 
onditions (2.1.12)-(2.1.14) of the s
alar produ
t. From these s
alarprodu
ts one 
an de�ne the normsk'kp :=q('; ')p ; p = 1; 2; : : : (2.4.2)One 
an also de�ne a 
ountably set of arbitrary norms k'kp not ne
essarily given by s
alarprodu
ts. In this 
ase, the spa
e is 
alled 
ountably normed. The s
alar produ
ts (norms)in a 
ountably Hilbert (normed) spa
e must be related to ea
h other. This relation makesthese norms mat
h ea
h other in the sense given by the following de�nitions:De�nition Let k � k1 and k � k2 be two norms de�ned on the same linear spa
e �. Thesetwo norms are 
alled 
omparable if for every ' 2 � there exists a 
onstant C > 0 su
h thatk'k1 � Ck'k2 ; 8' 2 � : (2.4.3)The norm k � k1 is 
alled weaker than the norm k � k2 and k � k2 is 
alled stronger thank � k1. Two norms are equivalent if there exist two 
onstants C and D su
h thatk'k1 � Ck'k2 ; k'k2 � Dk'k1 ; (2.4.4)for every ' 2 �.Every sequen
e that is Cau
hy with respe
t to the stronger norm is also Cau
hy withrespe
t to the weaker norm. If two norms are equivalent, a sequen
e is Cau
hy with respe
tto one of the norms i� it is Cau
hy with respe
t to the other norm.De�nition Two norms are 
alled 
ompatible i� every sequen
e f'ng1n=1 � � whi
h isCau
hy with respe
t to both norms and whi
h 
onverges to 0 with respe
t to one of them,also 
onverges to 0 with respe
t to the other norm.Let k � k1 and k � k2 be two 
omparable and 
ompatible norms on a linear spa
e � su
hthat k � k1 is weaker than k � k2. We 
an 
omplete � with respe
t to the norm k � k1 toobtain a 
omplete normed spa
e �1. Similarly, we 
an 
omplete � with respe
t to the normk � k2 to obtain �2. We then have �1 � �2 � � : (2.4.5)If k � k1 and k � k2 are equivalent, then both 
ompletions yield the same spa
e,�1 = �2 � � : (2.4.6)De�nition A spa
e � is a 
ountably Hilbert spa
e (or a 
ountably s
alar produ
t spa
e) ifan in
reasing denumerable number of s
alar produ
ts('; ')1 � ('; ')2 � � � � � ('; ')p � � � � (2.4.7)



2.4 Countably Hilbert Spa
es 51are de�ned on � su
h that the normsk'kp :=q('; ')p ; p = 0; 1; 2; : : : (2.4.8)are 
omparable and 
ompatible. The nhoods of zero that generate the topology are givenby Up;�(0) = f' j k'kp < �g ; � > 0; p = 1; 2; : : : (2.4.9)The topology generated by (2.4.9) make � a linear topologi
al spa
e, i.e., the algebrai
operations are 
ontinuous.Instead of (2.4.9), one 
an also 
hoose the 
ountable number of nhoodsUp;m(0) = f' j k'kp < 1mg ; p;m = 1; 2; : : : (2.4.10)It is not hard to see that the systems of nhoods (2.4.9) and (2.4.10) are equivalent. Therefore,in a 
ountably s
alar produ
t spa
e the �rst axiom of 
ountability holds, and its topology ��is 
ompletely spe
i�ed by the de�nition of 
onvergen
e of sequen
es. As it is easily seen, asequen
e f'ng1n=1 of elements in a 
ountably Hilbert spa
e � 
onverges to zero with respe
tto this topology i� it 
onverges to zero with respe
t to every norm k � kp, p = 0; 1; 2; : : : Insymbols, 'n ����!n!1 0 i� k'nkp �C��!n!1 0 ; for every p = 1; 2; 3; : : : (2.4.11)and 'n ����!n!1 ' i� k'n � 'kp �C��!n!1 0 ; for every p = 1; 2; 3; : : : (2.4.12)Sin
e a 
ountably Hilbert spa
e is �rst 
ountable, the 
ontinuity of the linear 
ombina-tions �'+ � 
an be equivalently stated in terms of sequen
es as:1. if 'n ����!n!1 ' then also �'n ����!n!1 �' for every � 2 C ;2. if �n �C��!n!1 � then also �n' ����!n!1 �' for every ' 2 � ;3. if 'n ����!n!1 ' and  n ����!n!1  then 'n +  n ����!n!1 '+  :If a given system of 
ountable s
alar produ
ts ( � ; � )p does not ful�ll the inequalities(2.4.7), it 
an be repla
ed by a new equivalent system of s
alar produ
ts that has thisproperty. We just need to de�ne a new in
reasing sequen
e of s
alar produ
ts as('; ')0p := pXi=1 ('; ')i ; p = 1; 2; 3; : : : (2.4.13)The systems of s
alar produ
ts ( � ; � )0p and ( � ; � )p yield the same topology. Therefore, the
ondition (2.4.7) does not restri
t the 
lass of spa
es 
onsidered.When the sequen
e of norms in (2.4.8) 
annot be de�ned in terms of s
alar produ
ts, we
all the spa
e 
ountably normed. A 
ountably Hilbert spa
e is always 
ountably normed,
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al Framework of Quantum Me
hani
sbut not vi
e versa. At �rst glan
e, it may appear that the 
lass of 
ountably Hilbert spa
es
onstitutes a narrow 
lass of 
ountably normed spa
es, be
ause the norms k'kp =p('; ')pare only spe
ial 
ases of general 
ountable 
olle
tions of norms. However, due to the fa
t thatwe are 
onsidering denumerable 
olle
tions of norms, the di�eren
e is mu
h less pronoun
edthan for the 
ase of one norm (Bana
h spa
e) and one s
alar produ
t (Hilbert spa
e). Undervery mild assumptions any initial system of norms k'k0p on a given 
ountably normed spa
e
an be repla
ed by another system of norms k'kp = p('; ')p de�ned by some s
alarprodu
ts without altering the topology on the spa
e. We will always 
onsider that this isthe 
ase.Example An important example of 
ountably Hilbert spa
e is the S
hwartz spa
e|also
alled the spa
e of test fun
tions. We 
onsider the set S(R) of fun
tions '(�) : R ! C whi
hare in�nitely di�erentiable and the derivatives �k'(x)=�xk of whi
h tend to 0 as x ! 1faster than any power of 1=jxj, for k = 0; 1; 2; : : : The norms that de�ne the topology arek'kp = supk;q�p ����xk �q'(x)�xq ���� ; p = 0; 1; 2; : : : (2.4.14)As mentioned before, we usually 
an �nd a sequen
e of s
alar produ
ts that generate thesame topology as the sequen
e of norms do. In the 
ase of S(R), these s
alar produ
ts arede�ned by(';  )p = Z 1�1(1 + x2)2p X0�q�p �q'(x)�xq �q (x)�xq dx ; p = 1; 2; : : : : (2.4.15)The norms (2.4.14) and the s
alar produ
ts (2.4.15) lead to equivalent topologies on S(R).Therefore, S(R) is a 
ountably Hilbert spa
e.Example The linear spa
e K(a) of all in�nitely di�erentiable fun
tions '(x) that vanishwhenever jxj > a 
an be made a 
ountably normed spa
e by de�ning the normsk'kp := supk=0;1;:::;p ����dk'(x)dxk ���� ; p = 0; 1; 2; : : : (2.4.16)A 
ountably Hilbert spa
e is always metrizable, i.e., we 
an de�ne a metri
 on it thatyields the original topology. In terms of the norms (2.4.8), this metri
 is given byd(';  ) = 1Xn=1 12n k'�  kn1 + k'�  kn : (2.4.17)The fun
tion de�ned in (2.4.17) meets the 
onditions (2.3.18)-(2.3.20) for a metri
. Thusone 
an apply all the results for the well studied metri
 spa
es to the 
ountably Hilbertspa
es.
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es 53A 
ountably Hilbert (normed) spa
e is 
alled Fre
het or an F-spa
e if it is 
omplete withrespe
t to the topology generated by the sequen
e of s
alar produ
ts (norms). To �nd ane
essary and suÆ
ient 
ondition for a 
ountably Hilbert spa
e � to be 
omplete, we denoteby �n the 
ompletion of � relative to the norm k'kn = p('; ')n. Then �n is a Hilbertspa
e. Sin
e k'k1 � k'k2 � � � � � k'kn � � � � ; (2.4.18)we have (
f. Eq. (2.4.5)) �1 � �2 � : : : � �n � : : :� : (2.4.19)One 
an prove that � is 
omplete with respe
t to the topology given by the nhoods (2.4.9)i� � = 1\n=1�n : (2.4.20)We shall always assume that our 
ountably Hilbert spa
e is Fre
het, i.e., it ful�lls (2.4.20).In Se
tion 2.2.2 we saw that di�erent systems of nhoods in a topologi
al spa
e 
an leadto equivalent topologies. The question arises whether the topology in a 
ountably normedspa
e is really not equivalent to the topology given by one single norm. On the one hand,every normed spa
e (�; k � k) is a 
ountably normed spa
e: one has just to 
hoose a 
ountablesystem of norms k � kp, p = 1; 2; : : :, su
h that k � kp is equivalent to k � k for every p. Onthe other hand, given a 
ountably normed spa
e �, whose topology is given by the in�nitesequen
e of norms k � k1 � k � k2 � � � � � k � kp � � � � ; (2.4.21)its topology is equivalent to the topology given by a single norm k � k i� there is only a �nitenumber of non-equivalent norms in the sequen
e (2.4.21). Therefore, the essential di�eren
ebetween a normed spa
e and a 
ountably normed spa
e is that in the latter the topology isgiven by an in�nite number of non-equivalent norms.2.4.2 Dual Spa
e of a Countably Hilbert Spa
eThe dual spa
e �� (
f. Se
tion 2.3.4) of a 
ountably Hilbert spa
e � is the 
olle
tion ofantilinear fun
tionals on � that are 
ontinuous with respe
t to the topology generated bythe norms (2.4.8). If we denote the adjoint of the Hilbert spa
es �n in (2.4.19) by ��n , thenthese spa
es form an in
reasing 
hain��1 � ��2 � : : : � ��n � : : : � �� ; (2.4.22)as opposed to the de
reasing 
hain (2.4.19). Sin
e a 
ountably Hilbert spa
e is �rst 
ount-able, a linear fun
tional F on � is 
ontinuous i� it is bounded (see Se
tion 2.3.4). One 
analso see that F is bounded i� there exist a positive 
onstant K and a norm k � kq in thesequen
e (2.4.8) su
h that F (') � Kk'kq (2.4.23)
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sholds for every ' 2 �. This means that an antilinear fun
tional is 
ontinuous (bounded)with respe
t to the sequen
e of norms (2.4.8) i� it is 
ontinuous (bounded) with respe
t toone norm in this sequen
e. Therefore, the dual spa
e of a 
ountably Hilbert spa
e 
an bewritten as (
ompare to Eq. (2.4.20)) �� = 1[n=1��n : (2.4.24)One 
an introdu
e a topology in the linear spa
e �� in various ways. For instan
e, one
an take as the nhoods of zero in �� the setsUW ('1; '2; : : : ; 'n; �) = fF 2 �� j jF ('k)j � � ; 1 � k � ng : (2.4.25)Here '1; '2; : : : ; 'n are elements of �, and � is an arbitrary positive number. The topologygenerated by these nhoods is 
alled the weak topology on the spa
e �� and is denoted by�W . Along with the weak topology one 
an 
onstru
t the strong topology, whose nhoods ofzero are de�ned by US(B; �) = �F 2 �� j sup'2B jF (')j < �� ; (2.4.26)where B is any bounded set in � (
f. Se
tion 2.3.1), and � > 0. We denote the strongtopology by �S. As the names indi
ate, the strong topology is a
tually stronger than theweak topology, i.e., �W � �S.We 
onsider, �nally, the adjoint spa
e ��� of ��. In this spa
e also, one 
an de�nedi�erent topologies. We shall only 
onsider a topology built from the strongly bounded setsin �� (that is, bounded with respe
t to �S). With ea
h �S-bounded set B and ea
h number� > 0 we asso
iate the setU(B; �) = �e' 2 ��� j supF2B je'(F )j < �� : (2.4.27)We take the 
olle
tion of all sets U(B; �) for a system of nhoods at zero in ���. With thistopology the se
ond adjoint ��� is isomorphi
 to the original 
ountably normed spa
e �,i.e., � ' ���. A l.t.s. � for whi
h � ' ��� is 
alled re
exive. Thus any 
ountably Hilbertspa
e is re
exive. In parti
ular, every Hilbert spa
e is also re
exive (
f. Eq. (2.3.30)).2.4.3 Countably Hilbert Spa
es in Quantum Me
hani
sThe primary stru
ture that physi
ists work with is a linear spa
e 	 with a (primary) s
alarprodu
t (';  ) de�ned on it and an algebra of linear operators A. The (primary) s
alarprodu
t 
onstitutes one of the most fundamental entities: j(';  )j2 represents the probabilityto �nd the property  in the state ', whi
h are the quantities that are to be 
ompared withthe experimental data. The linear operators A 2 A represent the observables measuredin the quantum system upon 
onsideration. This algebrai
 stru
ture has, in prin
iple, notopology atta
hed to it. But in Quantum Me
hani
s we need a topologi
al stru
ture so
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es 55that the elements of the algebra of observables are 
ontinuous operators and all algebrai
operations are allowed. This is the reason why we need a sequen
e of s
alar produ
ts.Therefore, we 
onsider the 
ase of a linear spa
e 	 in whi
h, in addition to a sequen
eof s
alar produ
ts (2.4.7), there is also another s
alar produ
t( � ; � ) : 	� 	 7�! C � ' 7�! ( ; ') (2.4.28)de�ned on it. In prin
iple the s
alar produ
t (2.4.28) is unrelated to the other s
alarprodu
ts (2.4.7) that generate a 
ountably Hilbert spa
e topology ��. To make the s
alarprodu
t (2.4.28) and the sequen
e (2.4.7) mat
h ea
h other, we assume that (2.4.28) is a��-
ontinuous mapping. Thus, in addition to (2.1.12)-(2.1.14), we demand that'n ����!n!1 ' implies ('n;  ) �C��!n!1 (';  ) ; 8 2 	 : (2.4.29)We are now going to show that whenever a primary s
alar produ
t (2.4.28) is 
ontinuouswith respe
t to the topology generated by a denumerable sequen
e of s
alar produ
ts, we
an in
lude this s
alar produ
t as the �rst element of that sequen
e without altering thetopology:From (2.4.29) we 
an see that the linear fun
tionalF : 	 7�! C' 7�! F (') = ( ;') (2.4.30)and the antilinear fun
tionalF : 	 7�! C' 7�! F (') = ('; ) (2.4.31)are ��-
ontinuous. Sin
e any 
ontinuous fun
tional on a 
ountably Hilbert spa
e isbounded, there is a norm k � kq and a 
onstant C > 0 su
h thatjF (')j � Ck'kq ; jF (')j � Ck'kq ; j( ;')j � Ck kq k'kq : (2.4.32)We now de�ne the sequen
e of s
alar produ
ts('; )00 := ('; ) ; (2.4.33)('; )0p := C('; )p+q�1 ; p = 1; 2; : : : (2.4.34)The new sequen
e of s
alar produ
ts 
ontains the original s
alar produ
t as the zerothelement, satis�es (';') � (';')00 � (';')01 � � � � � (';')0p � � � � ; (2.4.35)and generates the same topology as the original s
alar produ
ts (';')p do.
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hani
sTherefore, we 
an always assume that the s
alar produ
t (2.4.28) is already the zeroths
alar produ
t of the sequen
e('; ')0 � ('; ')1 � � � � � ('; ')p � � � � (2.4.36)of s
alar produ
ts that will de�ne the topologies on 	. We are mostly interested in twotopologies indu
ed by the s
alar produ
ts (2.4.36) on 	. The �rst topology is generated bythe nhoods of zero given byUm(0) = f' j k'k0 < 1mg ; m = 1; 2; : : : (2.4.37)This is the Hilbert spa
e topology (
f. Se
tion 2.3.3) and is denoted by �H. The se
ondtopology is the 
ountably Hilbert spa
e topology ��, whose nhoods of zero are given byUp;m(0) = f' j k'kp < 1mg ; p = 0; 1; 2; : : : ; m = 1; 2; : : : (2.4.38)If we 
omplete the linear spa
e 	 with respe
t to these two topologies, we obtain the 
hainof spa
es 	 � � � H : (2.4.39)H is obtained by adjoining to 	 the limit elements of �H-Cau
hy sequen
es whereas � isobtained by adjoining to 	 the limit elements of ��-Cau
hy sequen
es. The algebrai
 spa
e	 is ��-dense in � and �H-dense in H, and the 
omplete 
ountably Hilbert spa
e � is�H-dense in H. The se
ond in
lusion in (2.4.39) 
omes from the fa
t that every ��-Cau
hysequen
e is also �H-Cau
hy be
ause fUm(0)g � fUp;m(0)g (and then �H � ��), but not vi
eversa.In appli
ations to physi
s, the s
alar produ
ts (2.4.36) are introdu
ed in order to obtaina topology so that all the elements of the algebra of observables are 
ontinuous. Theyare de�ned in terms of the (primary) s
alar produ
t and the algebra of observables. Forexample, the 
ountable number of s
alar produ
ts 
an be de�ned as(';  )p � (';Ap ) ; p = 0; 1; 2; : : : ; A 2 A ; (2.4.40)where ( � ; � ) is the (primary) s
alar produ
t that des
ribes the probabilities. The quantitiesj(';  )pj = j(';Ap )j = j('; �)j have also an interpretation, namely the probability to�nd the property represented by ' in the transformed state � = Ap . Therefore, thes
alar produ
ts (';  )p, and therewith the topology �� and the spa
e �, depend upon theparti
ular system under study.2.5 Linear Operators on Hilbert Spa
es2.5.1 Introdu
tionIn Quantum Me
hani
s, the observables are represented by a linear operators de�ned onsome linear s
alar produ
t spa
e (	; ( � ; � )). The 
ompletion of this spa
e with respe
t to
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es 57the Hilbert spa
e topology leads to the Hilbert spa
e H (see Se
tion 2.4.3). Therefore, anyobservable 
an be viewed as an operator de�ned on the domain 	 of the Hilbert spa
e H.This will allow us to apply the Hilbert spa
e methods to these operators. Some of thesemethods will be very useful in the Rigged Hilbert Spa
e theory.2.5.2 Bounded Operators on a Hilbert Spa
eCertain 
lasses of bounded operators play an essential role in Quantum Me
hani
s: nu
learoperators are needed in the 
onstru
tion of the nu
lear Rigged Hilbert Spa
e (see Se
tion 2.6)and operators with �nite tra
e (whi
h are de�ned below) are to represent mixed states.Before introdu
ing the 
on
ept of bounded operator, we need some preliminary de�nitions.De�nition Let H be a Hilbert spa
e and M be a 
losed subspa
e of H. The orthogonal
omplementM? ofM is the set of elements in H whi
h are orthogonal to every element ofM, M? := ff 2 H j (f; g) = 0 ; 8g 2 Mg : (2.5.1)IfM is a 
losed subspa
e of a Hilbert spa
e H, then every f 2 H 
an be uniquely writtenas f = g+ g?, where g 2 M and g? 2 M?. We usually say that H is the dire
t sum of thespa
esM andM?, and denote H =M�M? : (2.5.2)De�nition A set feng1n=1 � H is an orthonormal basis for H if:1. The elements of the basis are orthonormal to ea
h other,(en; em) = Ænm ; n;m = 1; 2; : : : ; (2.5.3)where Ænm is the Krone
ker delta.2. Every f 2 H 
an be expanded in terms of this basis as a series of the formf = 1Xn=1(en; f)en ; (2.5.4)whi
h 
onverges in the sense of the norm of H.In a general Hilbert spa
e, an orthonormal basis need not be 
ountable. It 
an be proventhough, that a Hilbert spa
e is separable i� it has a 
ountable orthonormal basis. We shallonly 
onsider separable Hilbert spa
es.Example De�ne l2 to be the set of sequen
es fxng1n=1 of 
omplex numbers whi
h satisfyP1n=1 jxnj2 <1 with the s
alar produ
t(fxng1n=1; fyng1n=1) := 1Xn=1 xn yn : (2.5.5)
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sl2 is a separable Hilbert spa
e and the setf(1; 0; 0; : : : ; 0; : : :); (0; 1; 0; : : : ; 0; : : :); (0; 0; 1; : : : ; 0; : : :); : : : ; (0; 0; 0; : : : ; 1; : : :); : : :g(2.5.6)is an orthonormal basis for l2.Example The spa
e L2(R; dx) is the set of 
omplex-valued fun
tions on R whi
h satisfyR1�1 jf(x)j2dx <1. L2(R; dx) is a Hilbert spa
e under the s
alar produ
t(f; g) = Z 1�1 f(x) g(x) dx : (2.5.7)The Hermite polynomials form an orthonormal basis for L2(R; dx).We now list some de�nitions and results 
on
erning bounded linear operators de�ned ona Hilbert spa
e H. Corresponding statements hold for operators of a Hilbert spa
e H1 intoanother Hilbert spa
e H2.De�nition A linear operator A de�ned on a Hilbert spa
e H is 
alled bounded if there existsa positive number K su
h that kAfk � Kkfk (2.5.8)holds for every f 2 H. This de�nition of bounded operator is equivalent to the de�nitiongiven in Se
tion 2.3.4.The 
olle
tion of all bounded operators on H is denoted by L(H). The spa
e L(H) is alinear spa
e under the usual sum of two operators and multipli
ation of an operator by anumber. The norm of a bounded operator is de�ned bykAk := supf2H;f 6=0 kAfkkfk : (2.5.9)One 
an prove that (2.5.9) is a well de�ned norm that satis�es the 
onditions (2.3.10)-(2.3.12). The spa
e L(H) be
omes a Bana
h spa
e when the norm of its elements is de�nedby (2.5.9).In Se
tion 2.1.2 we gave a preliminary de�nition of the adjoint of an operator. Now wegive a more thorough de�nition.De�nition Let A be a bounded operator on a Hilbert spa
e H. The adjoint operator Ayof A is de�ned on the elements g for whi
h there exists a z 2 H ful�lling(Af; g) = (f; z) (2.5.10)for every f 2 H. The adjoint is then de�ned by Ayg = z. Thus (2.5.10) 
an be restated as(Af; g) = (f; Ayg) ; 8f 2 H ; 8g 2 D(Ay) : (2.5.11)
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es 59A bounded operator A is 
alled Hermitian or self-adjoint if A = Ay, i.e., if(Af; g) = (f; Ag) ; 8f; g 2 H : (2.5.12)An important 
lass of operators on Hilbert spa
es is that of proje
tions.De�nition If P 2 L(H) and P 2 = P , then P is 
alled a proje
tion. If in addition P = P y,then P is 
alled an orthogonal proje
tion.The range R(P ) of a proje
tion P is always a 
losed subspa
e on whi
h P a
ts like theidentity. If in addition P is orthogonal, then P a
ts like the zero operator on (R (P ))?.Conversely, given a 
losed subspa
eM of H, we 
an de�ne a proje
tion operator PM ontoM as follows: sin
eM indu
es on H a de
omposition of the form (2.5.2), any f 2 H 
anbe written as f = g+ g?, where g 2 M and g? 2 M?. We de�ne PMf = PM(g+ g?) := g.The operator PM is a well de�ned orthogonal proje
tion. Therefore, there is a one to one
orresponden
e between orthogonal proje
tions and 
losed subspa
es.De�nition An operator U on H is 
alled unitary if kUfk = kfk for every f 2 H. A unitaryoperator satis�es the relations U yU = UU y = I : (2.5.13)Given a 
losed subspa
eM� H, an operator U 2 L(H) is 
alled a partial isometry onMif U is unitary when restri
ted toM, i.e., ifU yU = PM ; (2.5.14)where PM is the proje
tion ontoM.Evidently, any unitary operator is a partial isometry on the whole of H. A unitaryoperator U is always bounded and kUk = 1.If A is a matrix on C n , then the eigenvalues of A are the 
omplex numbers � su
h thatthe determinant of �I � A is equal to zero. The set of su
h � is 
alled the spe
trum of A.It 
an 
onsist of at most n points sin
e det(�I �A) is a polynomial of degree n. If � is notan eigenvalue, then (�I � A) has an inverse sin
e det(�I � A) 6= 0. In this 
ase, � is in theresolvent set of A. These notions 
an be extended to the 
ase of a linear transformation ona Hilbert spa
e.De�nition Let A 2 L(H). A 
omplex number � is said to be in the resolvent set, Re(A),of A if �I � A is a bije
tion with a bounded inverse. If � =2 Re(A), then � is said to be inthe spe
trum, Sp(A), of A. We distinguish two subsets of the spe
trum:1. An f 2 H whi
h satis�es Af = �f for some � 2 C is 
alled an eigenve
tor of A; � is
alled the 
orresponding eigenvalue. If � is an eigenvalue, then � is in the spe
trumof A. The set of all eigenvalues is 
alled the dis
rete spe
trum of A.
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hani
s2. If � is not an eigenvalue and if � is not in Re(A), then � is said to be in the 
ontinuousspe
trum of A.A very important 
lass of bounded operators is that of 
ompa
t operators.De�nition An operator A 2 L(H) is 
alled 
ompa
t (or 
ompletely 
ontinuous) if for everybounded sequen
e ffng � H, fAfng has a subsequen
e 
onvergent in H.Example The simplest example of 
ompa
t operator is an operator A of the formAf := �(e; f)h ; (2.5.15)where e and h are �xed ve
tors of unit length, and � is a �xed number. This operator mapsall of H onto the one-dimensional subspa
e spanned by h, and is 
alled a one-rank operator.We 
an also de�ne a linear operator A asAf := NXi=1 �i(ei; f) hi (2.5.16)for some �xed 
olle
tions of ve
tors feigNi=1 and fhigNi=1 in H. The range of this operator isthe �nite dimensional subspa
e spanned by the ve
tors fhigNi=1. The operator A in (2.5.16)is 
alled a �nite rank operator. Every �nite rank operator is 
ompa
t.The spe
trum Sp(A) of a 
ompa
t operator A is a dis
rete set having no limit pointsex
epts perhaps � = 0. Further, any nonzero � 2 Sp(A) is an eigenvalue of �nite multipli
ity(i.e., the 
orresponding spa
e of eigenve
tors is �nite dimensional).A self adjoint 
ompa
t operator, i.e., a 
ompa
t operator A su
h that (Af; g) = (f; Ag)for every f; g 2 H, has a parti
ularly simple stru
ture. If A is a 
ompa
t self adjoint operator,then one 
an 
hoose an orthonormal basis e1; e2; : : : in H whi
h 
onsists of eigenve
tors ofA, Aen = �nen. The eigenvalues �1; �2; : : : 
orresponding to the eigenve
tors e1; e2; : : : arereal and 
onverge to zero as n ! 1, i.e., limn!1 �n = 0. Conversely, every operator Awhi
h is de�ned in terms of some orthonormal basis e1; e2; : : : ; by Aen = �nen, where the�n are real numbers and limn!1 �n = 0, is self adjoint and 
ompa
t.An operator A is positive-de�nite if (Af; f) � 0 for every ve
tor f 2 H. The eigenvaluesof a positive-de�nite operator are either positive or equal to zero. A 
ompa
t operator di�ersfrom a positive-de�nite operator only by an isometri
 fa
tor, i.e., the following theoremholds:Theorem Let A be a 
ompa
t operator on a Hilbert spa
e H. Then A has the formA = U jAj ; (2.5.17)where jAj is a positive-de�nite 
ompa
t operator, and U is a partial isometry on the rangeof jAj.
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es 61Any 
ompa
t operator 
an be approximated by a sum of one-rank operators (2.5.15).Spe
i�
ally, a 
ompa
t operator A 
an be represented as the sum of a seriesAf = 1Xn=1 �n (en; f) hn : (2.5.18)The en are the eigenve
tors of the operator jAj in the de
omposition (2.5.17) 
orrespondingto the eigenvalues �n, i.e., jAjen = �nen. The hn are given by hn = Uen. (In parti
ular, theen and the hn are the elements of two orthonormal basis in H, and �1; �2; : : : are positivenumbers that tend to zero as n ! 1). Conversely, every series of the form (2.5.18), inwhi
h en, hn, �n have the aforementioned properties, de�nes a 
ompa
t operator.The requirement that the eigenvalues �n (of the operator jAj appearing in the de
om-position A = U jAj of a 
ompa
t operator A) tend to zero is too weak. We now 
onsideroperators that satisfy more stringent 
onditions.De�nition A 
ompa
t operator A = U jAj is 
alled Hilbert-S
hmidt ifP1n=1 �2n <1, wherethe �n are the eigenvalues of the operator jAj.Therefore, an operator is of Hilbert-S
hmidt type i� admits a de
omposition of the form(2.5.18) su
h that the seriesP1n=1 �2n 
onverges. One 
an also see that in order an operatorA be of Hilbert-S
hmidt type, it is ne
essary and suÆ
ient that the series P1n=1 kAenk2
onverge for at least one orthonormal basis e1; e2; : : : in H.An even more restri
tive requirement that the operator A be Hilbert-S
hmidt is that itbe a nu
lear operator.De�nition A 
ompa
t operator is 
alled nu
lear (or tra
e 
lass) if P1n=1 �n < 1, wherethe �n are the eigenvalues of the operator jAj appearing in the de
omposition A = U jAj.Sin
e the 
onvergen
e of the seriesP1n=1 �2n follows from the 
onvergen
e ofP1n=1 �n, everynu
lear operator is of Hilbert-S
hmidt type.It is 
lear that an operator A is nu
lear i� it admits a de
omposition of the form (2.5.18)su
h that the seriesP1n=1 �n 
onverges. The nu
lear operators will serve in the de�nition ofnu
lear spa
es (
f. Se
tion 2.6), whi
h are the most important 
lass of l.t.s. used in QuantumMe
hani
s.The tra
e of an operator is a generalization of the usual notion of the sum of the diagonalelements of a matrix. For any positive operator A 2 L(H) we de�neTr(A) := 1Xn=1(en; Aen) ; (2.5.19)where feng is an orthonormal basis of H. The number Tr(A) is 
alled the tra
e of A andis independent of the orthonormal basis 
hosen. When Tr(A) is �nite, then A is 
alled anoperator with �nite tra
e. If A is a positive-de�nite 
ompa
t operator, then A is nu
lear i�
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hani
sA has a �nite tra
e. In this 
ase,Tr(A) = 1Xn=1(en; Aen) = 1Xn=1 �n : (2.5.20)In Quantum Me
hani
s, a general (mixed) state is assumed to be des
ribed by a positiveoperator W with �nite tra
e. W is usually 
hosen su
h that Tr(W ) = 1 (if Tr(W ) 6= 1,we just de�ne the equivalent normalized state W 0 � W=Tr(W )). If A is a linear operatorrepresenting a physi
al observable, then the quantity Tr(AW ) is to represent the probabilityto observe A in the state W .2.5.3 Unbounded Operators on a Hilbert Spa
eMost important observables that o

ur in Quantum Me
hani
s are represented by linearoperators that are unbounded with respe
t to the Hilbert spa
e topology. In this se
tionwe will introdu
e some of the basi
 de�nitions and theorems ne
essary for dealing with thistype of operators.An operator A is unbounded if the quantity (2.5.9) is not �nite. Unbounded operatorsare usually de�ned on some subdomain of the Hilbert spa
e. We will always suppose thatthis domain is dense.In order to 
ompare operators that are not de�ned on the whole of H, we introdu
e thefollowing de�nition:De�nition Let A and B be two operators de�ned on H. Let D(A) be the domain of A andD(B) the domain of B. A is said to be an extension of B if D(B) � D(A) and Af = Bffor every f 2 D(B). In this 
ase we shall write B � A. One may also 
all B the restri
tionof A to D(B).For some operators A there is a natural way of de�ning an extension A. One takes aCau
hy sequen
e ffng in D(A). If the sequen
e fAfng is also Cau
hy, and if one denotesby f and g the limits of ffng and fAfng respe
tively, it is natural to de�ne Af = g. Sin
ef is not ne
essarily in D(A), one may de�ne an extension A of A by applying the abovepro
edure to all Cau
hy sequen
es ffng in D(A) whi
h are su
h that fAfng is also Cau
hy.However, this 
onstru
tion makes sense only if the element g is independent of the 
hoi
e ofa parti
ular Cau
hy sequen
e ffng 
onverging to f , i.e., if whenever ffng and ff 0ng are twoCau
hy sequen
es in D(A) 
onverging to the same limit f and fAfng and fAf 0ng are alsoCau
hy, then limn!1Afn = limn!1Af 0n. An operator A verifying this 
ondition is saidto be 
losable, and the extension A is 
alled the 
losure of A. An operator A is said to be
losed if A = A.Closedness is a weaker 
ondition than 
ontinuity sin
e, if an operator A on H is 
ontin-uous, then limn!1 fn = f ; fn 2 D(A) ; (2.5.21)
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es 63implies that the sequen
e fAfng 
onverges, while if it is only 
losed, then the 
onvergen
eof the sequen
e ffng � D(A) does not imply the 
onvergen
e of the sequen
e fAfng.The spe
tral notions for a bounded operator 
an be generalized to the unbounded 
asewhen the operator is 
losed.De�nition Let A be a 
losed operator on a Hilbert spa
e H. A 
omplex number � is in theresolvent set, Re(A), of A if �I�A is a bije
tion from D(A) onto H with a bounded inverse.The de�nitions of spe
trum, dis
rete spe
trum and 
ontinuous spe
trum are the same forunbounded operators as they are for bounded operators. We will sometimes refer to thespe
trum of non
losed, but 
losable operators. In this 
ase we always mean the spe
trumof the 
losure.The adjoint of an unbounded operator A 
an be de�ned in a similar way to the bounded
ase whenever the domain of A is dense in H.De�nition Let A : H ! H be a linear operator (not ne
essarily bounded) on a Hilbertspa
e H whose domain D(A) is a dense linear subspa
e of H. The domain D(Ay) of theadjoint operator Ay is the set of all ve
tors f 2 H for whi
h there exists a z 2 H ful�lling(f; Ag) = (z; g) (2.5.22)for every g 2 D(A). Then, by de�nition, Ayf = z. Sin
e D(A) is dense, the ve
tor z isuniquely determined and Ay is well de�ned. We then write (2.5.22) as(Ayf; g) = (f; Ag) ; 8g 2 D(A) ; 8f 2 D(Ay) : (2.5.23)The adjoint operator is always 
losed. The relation between an unbounded operator Aand its adjoint Ay 
an be more 
ompli
ated than for the bounded 
ase:De�nition An operator A on H is 
alled symmetri
 if D(A) is dense in H and (Af; g) =(f; Ag) for every f , g 2 D(A). This means that a densely de�ned operator is symmetri
 i�A � Ay. A is 
alled self-adjoint if D(A) is dense in H and A = Ay. A is 
alled essentiallyself adjoint (e.s.a.) if A is self adjoint.If A is a symmetri
 operator, then A is 
losable and A = Ayy. An e.s.a. operator hasa unique self adjoint extension that 
oin
ides with its adjoint. Physi
al observables areassumed to be represented by e.s.a. operators.Evidently, any self adjoint operator is e.s.a., and any e.s.a. operator is symmetri
. Infa
t, an operator A (not ne
essarily bounded) issymmetri
 i� A � A = Ayy � Ay ; (2.5.24)e:s:a: i� A � A = Ayy = Ay ; (2.5.25)self adjoint i� A = A = Ayy = Ay : (2.5.26)



64 2 Mathemati
al Framework of Quantum Me
hani
sThe spe
trum of a self-adjoint operator is always a 
losed subset of the real axis.In Quantum Me
hani
s, the elements A of the algebra of observables A are de�ned onsome linear s
alar produ
t spa
e (	; ( � ; � )), and are required to ful�ll (A';  ) = (';A )for every ',  2 	 (i.e., they are required to be symmetri
). These operators are usuallyunbounded. When this is the 
ase, they 
annot be extended to the whole Hilbert spa
eH (whi
h is the 
ompletion of 	 with respe
t to the Hilbert spa
e topology) due to thefollowing theorem:Theorem (Hellinger-Toeplitz) Let A be an everywhere de�ned linear operator on a Hilbertspa
e H with (f; Ag) = (Af; g) for all f and g in H. Then A is bounded.The Hellinger-Toeplitz theorem tells us that symmetri
 unbounded operators 
annot bede�ned on the whole of H. Thus su
h operators 
an be only extended at most into 
ertaindense subspa
es of H. Given two unbounded densely de�ned operators A and B in A, thede�nition of A+B or AB may be diÆ
ult: A+B is a priori only de�ned on D(A)\D(B),and AB is only de�ned on the elements ' 2 D(B) su
h that B' 2 D(A). However, if thereexists a 
ommon invariant subdomain � for the algebra of operators A, i.e., a subspa
e �su
h that � � D(A) and A : � ! � for every A 2 A, then all algebrai
 operations areallowed and domain questions do not arise. The need for this domain, that is not providedby the Hilbert spa
e theory, is one of the reasons why we need to go beyond the Hilbertspa
e to the Rigged Hilbert Spa
e.As an example, let L2(R; dx) be the Hilbert spa
e of square integrable fun
tions on thereal line. Then the multipli
ation (position) operatorQ : f(x)! xf(x) (2.5.27)and the di�erentiation (momentum) operatorP : f(x)! 1i df(x)dx (2.5.28)are not bounded on L2(R; dx). Therefore, the 
ommutation relation[Q;P ℄ = QP � PQ = iI (2.5.29)is not de�ned for every element in the Hilbert spa
e. However, the a
tions of P and Q
an be restri
ted to the S
hwartz spa
e S(R), that is in
luded in the domains of P and Q.On this subdomain both P and Q are bounded (
ontinuous) with respe
t to the topologygenerated by the s
alar produ
ts (2.4.15). On S(R), the 
ommutation relation (2.5.29) iswell de�ned and all algebrai
 operations are allowed. This will serve as a motivation fora physi
ist to 
onsider using 
ountably Hilbert spa
es su
h as S(R) rather than just theHilbert spa
e L2(R; dx).



2.6 Nu
lear Rigged Hilbert Spa
es 652.6 Nu
lear Rigged Hilbert Spa
es2.6.1 Introdu
tionThe 
lass of 
ountably Hilbert spa
es that is of servi
e in Quantum Me
hani
s is that ofnu
lear spa
es. Nu
lear spa
es will appear in 
onne
tion with the spe
tral analysis of selfadjoint operators. This spe
tral analysis will be provided by the Gelfand-Maurin theorem(see Se
tion 3.5).In order to introdu
e the 
on
ept of nu
learity, we 
onsider a 
ountably Hilbert spa
e �on whi
h an in
reasing sequen
e of s
alar produ
ts('; ')1 � ('; ')2 � � � � � ('; ')n � � � � (2.6.1)is de�ned. We 
onsider the Hilbert spa
es �n whi
h are obtained by 
ompleting the spa
e� with respe
t to the norms k'kn = p('; ')n. These 
ompletions lead to the 
hain ofspa
es �1 � �2 � � � � � �n � � � � � � : (2.6.2)By 
onstru
tion, � is dense in ea
h spa
e �n. We denote by '[n℄ and '[m℄ the same element' 2 �, 
onsidered as an element of �n and �m, respe
tively. If m � n, then it follows from(2.6.1) that the identity mapping: � � �n ! � � �m'[n℄ ! '[m℄ (2.6.3)is a 
ontinuous mapping from a dense set in �n onto a dense set in �m. We 
an extend thismapping to a 
ontinuous linear transformation T nm whi
h maps the spa
e �n onto a densesubset of �m (
f. Se
tion 2.3.4).A 
ountably Hilbert spa
e � is 
alled nu
lear if for any m there is an n su
h that themapping T nm of the spa
e �n into the spa
e �m is nu
lear, i.e., it has the formT nm' = 1Xk=1 �k (ek; ')n hk ; (2.6.4)where ' 2 �n, fekg and fhkg are orthonormal systems in �n and �m, respe
tively, �k > 0and P1k=1 �k <1.We 
an extend the 
on
ept of nu
learity to a 
ountably normed spa
e. However, thisgeneralization does not lead to an extension of the 
lass of spa
es 
onsidered: in any nu
lear
ountably normed spa
e it is possible to de�ne a sequen
e of s
alar produ
ts in su
h a waythat the spa
e be
omes a nu
lear 
ountably Hilbert spa
e without altering its topology.Nu
lear spa
es posses 
ertain properties that make them suitable for the purposes ofQuantum Me
hani
s. Here we list the most relevant:1. Any 
losed subspa
e of a nu
lear spa
e is nu
lear.
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al Framework of Quantum Me
hani
s2. If � is a nu
lear 
ountably Hilbert spa
e, then the strong and the weak topology3 on� agree.3. If � is nu
lear, then the strong and weak topologies on �� (whi
h were de�ned inSe
tion 2.4.2) 
oin
ide.4. A nu
lear spa
e is separable (i.e., it 
ontains a dense 
ountable subset).5. A nu
lear spa
e is 
omplete with respe
t to the weak 
onvergen
e.6. A Hilbert (or a Bana
h) spa
e is nu
lear only if it is �nite dimensional.There is a number of 
ountably Hilbert spa
es that are nu
lear. For example, theS
hwartz spa
e S(R) (see Se
tion 2.4.1) is nu
lear with respe
t to the topology generatedby the s
alar produ
ts (2.4.15). The spa
e K(a) of Se
tion 2.4.1 is also nu
lear.2.6.2 Nu
lear Rigged Hilbert Spa
esBy the use of the 
on
epts dis
ussed so far, it is now easy to introdu
e the basi
 notion of(nu
lear) Rigged Hilbert Spa
e.Let � be a nu
lear 
ountably Hilbert spa
e. We introdu
e a s
alar produ
t ( � ; � ) into� satisfying (2.1.12)-(2.1.14). This s
alar produ
t is also required to be 
ontinuous withrespe
t to the 
ountably Hilbert spa
e topology on �. The 
ompletion of � with respe
t tothe norm k'k =p('; ') yields the Hilbert spa
e H. Therefore, the mapping T that bringsany element of � into the 
ompletion H is 
ontinuous. Usually, we identify the spa
e �with the spa
e T (�) and write � � H : (2.6.5)By 
onstru
tion, the topology of � is stronger (�ner) than the topology indu
ed by H on�. Along with the spa
es � and H we 
onsider the adjoint spa
e �� of � and the adjointspa
e H� of H. The adjoint T� of T is an operator mapping H� into ��. T� is de�nedby the equation h'jT�h0i = hT'jh0i (2.6.6)for every h0 2 H� and ' 2 �. Sin
e every antilinear fun
tional h0 on the Hilbert spa
e H
an be written in the form (see Fre
het-Riesz Theorem in Se
tion 2.3.4)h0(f) = (f; h1) ; (2.6.7)where h1 is some element of H, then T� 
an be 
onsidered as a mapping of H into ��.3A sequen
e f'kg of elements in a 
ountably Hilbert spa
e � is said to be weakly 
onvergent to ' iflimn!1 F ('k) = F (') for every fun
tional F on �. By strong 
onvergen
e we mean the 
onvergen
e withrespe
t to the 
ountably Hilbert topology generated by the s
alar produ
ts (2.6.1).



2.6 Nu
lear Rigged Hilbert Spa
es 67A Rigged Hilbert Spa
e4 (abbreviated RHS) or a Gelfand triplet is a triplet of spa
es �,H, ��, having the properties stated above: � is a nu
lear 
ountably Hilbert spa
e on whi
ha s
alar produ
t is de�ned, H is the 
ompletion of � with respe
t to this s
alar produ
t,and �� is the adjoint spa
e of �. For any RHS there exists a 
ontinuous linear operator Twhi
h maps � one-to-one onto a dense subset of H, and its adjoint T� maps H one-to-oneonto a dense subset in ��. Therefore, we will denote a RHS by� � H � �� : (2.6.8)Sin
e T is 
ontinuous, then there exists a norm k'km and an M > 0 su
h thatkT'k =p('; ') �Mk'km : (2.6.9)Thus T 
an be extended onto the entire spa
e �n, n � m. We denote the 
orrespondingoperator by Tn. It 
an be proven that there is a value of n for whi
h Tn, mapping theHilbert spa
e �n into H, is a nu
lear operator. The operator T�n , mapping H into ��n , isalso nu
lear.The nu
learity of Tn will allow us to write T in a simple form. Sin
e Tn is nu
lear, thereexist orthonormal basis fhkg and fekg in H and �n su
h that for every element ' 2 �none has Tn' = 1Xk=1 �k(ek; ')hk ; (2.6.10)where �k � 0 and the series P1k=1 �k 
onverges. Sin
e Tn' = T' if ' belongs to �, thenfor elements ' 2 � formula (2.6.10) takes the formT' = 1Xk=1 �k(ek; ')hk : (2.6.11)One 
an asso
iate with a RHS a two-sided in�nite de
reasing 
hain of spa
es�� � � � � � ��n � � � � � �0 � � � � � �n � � � � � � ; (2.6.12)su
h that for any integer n there exists a nu
lear mapping T n+1n of the spa
e �n+1 onto adense subset of �n, and su
h that� = 1\n=1�n ; �� = 1[n=1��n : (2.6.13)In order to 
onstru
t the 
hain (2.6.12), we take into a

ount the fa
t that a nu
lear spa
e� is the interse
tion of a de
reasing 
hain of Hilbert spa
es (see Se
tion 2.4.1)� = 1\n=1�n ; �1 � �2 � � � � � �n � � � � � � ; (2.6.14)4The word \rigged" in Rigged Hilbert Spa
e has a nauti
al 
onnotation, su
h as the phrase \fully riggedship"; it has nothing to do with any unsavory pra
ti
e su
h as \�xing" or predetermining a result. Thephrase \rigged Hilbert spa
e" is a dire
t translation of the phrase \osnash
hyonnoe Hilbertovo prostranstvo"from the original Russian.
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hani
sand for every n the mapping T n+1n is nu
lear. Now the spa
e �� is the union of an in
reasing
hain of Hilbert spa
es (see Se
tion 2.4.2)�� = 1[n=1��n ; ��1 � ��2 � � � � � ��n � � � � � �� ; (2.6.15)where ��n � ��n . We denote by T n+1n , for n < �1, the operator adjoint to T�n�n�1. Thisoperator is also nu
lear. In order to 
onne
t the 
hains (2.6.14) and (2.6.15), we note thatthere is a value n for whi
h the operator Tn , mapping �n into H, is nu
lear. Then themapping T�n of H into ��n is also nu
lear. Without loss of generality we may suppose thatn = 1. We now denote H by �0, and the mappings T1 and T�1 by T 10 and T 0�1, respe
tively.We thereby obtain the sequen
e of spa
es (2.6.12).Example We de�ne the s
alar produ
t on S(R) by(';  ) = Z +1�1 '(x) (x)dx : (2.6.16)Completion of S(R) with respe
t to this s
alar produ
t yields the Hilbert spa
e L2(R; dx).Sin
e S(R) is nu
lear and the s
alar produ
t (2.6.16) is 
ontinuous with respe
t to thetopology on S(R), then the tripletS(R) � L2(R; dx) � S(R)� (2.6.17)is a (nu
lear) Rigged Hilbert Spa
e. The spa
e S(R)� is 
alled the spa
e of tempered distri-butions. The \plane waves" ei�x may be 
onsidered as elements of S(R)� . The fun
tionalasso
iated to ea
h plane wave ei�x is de�ned byh'jF�i � h'jei�xi := Z 1�1 '(x) ei�xdx : (2.6.18)It is easy to see that jF�i is a well de�ned 
ontinuous antilinear fun
tional on S(R).



Chapter 3The Rigged Hilbert Spa
e of theHarmoni
 Os
illatorIn this 
hapter, we 
onstru
t the RHS of the harmoni
 os
illator. This system is studiedfrom a di�erent point of view to that taken in Quantum Me
hani
s textbooks. Insteadof assuming that the position and momentum operators are given by the multipli
ationand derivative operators, we shall make three simple algebrai
 assumptions: the Heisen-berg 
ommutation relation, the expression of the Hamiltonian in terms of the positionand momentum operators, and the existen
e of an eigenve
tor of the Hamiltonian. Fromthese algebrai
 assumptions, we shall 
onstru
t the RHS of the harmoni
 os
illator and theS
hr�odinger representation of the algebra of the harmoni
 os
illator.
As I sat there, brooding on the old unknown world,I thought of Gatsby's wonder when he �rst pi
ked out thegreen light at the end of Daisy's do
k. He had 
ome a longway to this blue lawn and his dream must have seemed so
lose that he 
ould hardly fail to grasp it. He did not knowthat it was already behind him, somewhere ba
k in the vastobs
urity beyond the 
ity, where the dark �elds of the re-publi
 rolled on under the night.Gatsby believed in the green light, the orgiasti
 future thatyear by year re
edes before us. It eluded us then, but that'sno matter|tomorrow we will run faster, stret
h out ourarms farther.... And one �ne morning||So we beat on, boats against the 
urrent, borne ba
k
easelessly into the past.F. S
ott Fitzgerald, The Great Gatsby
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3.1 Introdu
tion 713.1 Introdu
tionWe shall treat in detail one of the simplest physi
al models, the one-dimensional harmoni
os
illator, using the framework of the pre
eding se
tions. Our formulation will easily gen-eralize to more 
ompli
ated physi
al models, and we will list the algebras for whi
h thesegeneralizations are already known.The standard approa
h to the harmoni
 os
illator is to start out with the (position)S
hr�odinger realization of the algebra of operators, i.e., one takes for granted the wellknown di�erential expressions for the operators position Q, momentum P and energy Hof the harmoni
 os
illator. From these expressions one derives, for instan
e, the Heisen-berg 
ommutation relation. These operators are impli
itly assumed to be de�ned on thesame domain, whi
h is assumed to remain stable under their a
tion, and so all algebrai
operations su
h as the multipli
ation of two operators are allowed. The operators Q andP are assumed to have eigenkets jxi and jpi satisfying Qjxi = xjxi and P jpi = pjpi forevery real x and p, although a satisfa
tory mathemati
al meaning within a Hilbert spa
eformulation is not possible. Dira
 basis expansion is also used, although the Hilbert spa
espe
tral de
omposition does not 
orrespond to it.Here we shall obtain this realization but starting from a di�erent point. We shall justassume some algebrai
 relations to be ful�lled by the operators P , Q and H, namely theHeisenberg 
ommutation relation and the expression of H in terms of P and Q. We shallmake an additional essential assumption: the existen
e of an eigenve
tor of the energyoperator. The operators will be de�ned on a 
ommon linear spa
e that remains stableunder their a
tions.From this algebrai
 starting point, we shall derive �rst that H possesses a 
ountablenumber of eigenvalues ~w(n + 1=2), n = 0; 1; 2; : : :, 
orresponding to some eigenve
tors�n, as it appears in the literature. The linear spa
e spanned by the �n will be 
alled 	.In Se
tion 3.3 this linear spa
e is equipped with two di�erent topologies: the usual Hilbertspa
e topology, whi
h generates the Hilbert spa
eH from 	, and a stronger nu
lear topology,whi
h generates the spa
e � from 	. This nu
lear topology will make the elements of thealgebra 
ontinuous operators.In Se
tion 3.4, the spa
e of antilinear fun
tionals is de�ned, and the Rigged HilbertSpa
e � � H � �� (3.1.1)for the harmoni
 os
illator is 
onstru
ted. Se
tion 3.5 gives the de�nition of generalizedeigenve
tors. This de�nition will provide the proper mathemati
al setting for the eigenketequations Qjxi = xjxi and P jpi = pjpi. The eigenkets jpi and jxi will be 
ontinuousantilinear fun
tionals over �, i.e., they will be elements of ��. A statement of the Gelfand-Maurin Theorem will be given, whi
h will guarantee the existen
e of a 
omplete set ofgeneralized eigenve
tors of the position and momentum operators, as it is usually assumed.It will be shown that this theorem is the mathemati
al statement that justi�es the heuristi
Dira
 basis ve
tor expansion. In Se
tion 3.6, we derive the S
hr�odinger representation ofthe harmoni
 os
illator. In this representation the standard expressions for P , Q and H in
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e of the Harmoni
 Os
illatorterms of di�erential operators will be obtained. The realization of the RHS (3.1.1) by spa
esof fun
tions and distributions is also des
ribed in Se
tion 3.6. The spa
e � will be realizedby the S
hwartz spa
e S(R), and �� by the spa
e of tempered distributions S(R)� . Thusthe RHS (3.1.1) will be realized in the position representation byS(R) � L2(R; dx) � S(R)� : (3.1.2)Therefore, we shall provide a proper mathemati
al framework for the operations thatare needed in physi
s, and we will throw light onto the problem of how the S
hr�odingerrealization of the algebra of operators 
an be singled out. The important point is thatthis realization, whi
h is introdu
ed ad ho
 in the literature, 
an be derived from properalgebrai
 assumptions within the RHS formalism.3.2 Algebrai
 OperationsThe algebra (
f. Se
tion 2.1.3) A of observables for the one dimensional harmoni
 os
illatoris generated by the operators H (representing the observable energy), P (representing theobservable momentum) and Q (representing the observable position). The de�ning algebrai
relations are: H = 12�P 2 + �!22 Q2 ; [P;Q℄ = �i~I ; (3.2.1)where ~ is a universal 
onstant (Plan
k's 
onstant), �; ! are 
hara
teristi
 
onstants of thesystem (mass and frequen
y, respe
tively) and [P;Q℄ � PQ� QP is the 
ommutator of Pand Q. The elements of A are assumed to be linear operators de�ned on a linear spa
e 	.There is a s
alar produ
t ( � ; � ) de�ned on 	 that provides the probability amplitudes (but	 is not a Hilbert spa
e). Further, P , Q and H are supposed to be symmetri
 operators of	 into 	. That is, A : 	! 	 ; (3.2.2)and (A';  ) = (';A ); 8';  2 	 ; (3.2.3)where the operator A 
an be P , Q or H. The assumptions about the algebra of observ-ables stated so far do not spe
ify the mathemati
al stru
ture 
ompletely. There are manyrealizations of the ve
tor spa
e 	 on whi
h A is an algebra of operators. We have to makeone further assumption in order to fully spe
ify the realization of A, i.e., the realization of(3.2.1). This additional requirement 
an be formulated in the following way:there exists at least one non�degenerate eigenvalue ofH whose 
orresponding eigenve
tor is an element of 	 : (3.2.4)In short, our starting point is to assume that the physi
s of the harmoni
 os
illator isdes
ribed by an algebra of observables that satisfy the (algebrai
) assumptions (3.2.1)-(3.2.4).



3.2 Algebrai
 Operations 73In order to 
onstru
t the spa
e 	, we make the elements of A a
t on the eigenve
tor of(3.2.4). The representation of A by linear operators on 	 obtained in this way is 
alled theladder representation. The pro
edure to �nd the ladder representation is well known andwill be sket
hed only very brie
y. One de�nesa := 1p2 �r�!~ Q+ ip�!~P� ; (3.2.5)ay := 1p2 �r�!~ Q� ip�!~P� ; (3.2.6)N := aya = 1!~H � 12I : (3.2.7)These operators 
learly ful�ll, as a 
onsequen
e of (3.2.3),('; a ) = (ay';  ) ; 8';  2 	 ; (3.2.8)(';N ) = (N';  ) ; 8';  2 	 : (3.2.9)Eq. (3.2.1) implies that a and ay ful�ll[a; ay℄ = a ay � aya = I : (3.2.10)Assumption (3.2.4) implies that there exists a '� 6= 0 in 	, su
h thatN'� = �'� : (3.2.11)From (3.2.9) and (3.2.11) it follows that�('�; '�) = ('�; N'�) = (N'�; '�) = �('�; '�) : (3.2.12)Therefore, � = �, i.e., � is real. From the 
ommutation relation (3.2.10), it then followsthat N(a'�) = aya a'� = (a ay � I)a'� = a(aya� I)'�= a(N � I)'� = a(�� 1)'� = (�� 1)a'� : (3.2.13)This implies that either a'� is an eigenve
tor of N with eigenvalue (� � 1) or a'� = 0.Further, from (3.2.8) and from the 
ommutation relation (3.2.10) it follows thatkay'�k2 = ('�; aya'�) + ('�; I'�) = ka'�k2 + k'�k2 6= 0 ; (3.2.14)sin
e '� is di�erent from the zero ve
tor. This means that ay'� 6= 0. In addition, equation(3.2.10) implies that N(ay'�) = (�+ 1)ay'� ; (3.2.15)i.e., ay'� is an eigenve
tor of N with eigenvalue (�+ 1).



74 3 The Rigged Hilbert Spa
e of the Harmoni
 Os
illatorWe now start with the eigenve
tor '�, whi
h was assumed to exist, and su

essivelyde�ne the ve
tors '��m = am'� m = 0; 1; 2; 3; : : : (3.2.16)Sin
e a

ording to (3.2.13) ea
h appli
ation of a lowers the eigenvalue by 1, we haveN'��m = (��m)'��m ; m = 0; 1; 2; : : : (3.2.17)This means that '��m = am'�, m = 0; 1; 2; : : :, are eigenve
tors of N with eigenvalue(� � m) unless '��m is the zero ve
tor. We shall now show that after a �nite number ofsteps m0, the ve
tor '��m0 is the zero ve
tor'��m0 = am0'� = 0 : (3.2.18)To prove this statement, we 
al
ulate the s
alar produ
t of (3.2.16) and (3.2.17)('��m; N'��m) = (��m) ('��m; '��m) = ('��m; aya'��m) = ka'��mk2 : (3.2.19)If '��m 6= 0, then (3.2.19) leads to(��m) = ka'��mk2k'��mk2 : (3.2.20)Sin
e the norm of a non-zero ve
tor is always positive, equation (3.2.20) implies that(� � m) � 0 whenever '��m 6= 0. Now, if '��m were di�erent from zero for everym = 1; 2; : : :, then � �m � 0 
ould not be ful�lled, sin
e � is a �xed real number.Therefore, there must exist an m0 2 N su
h that'��m 6= 0 form < m0 ; (3.2.21)and '��m0 = a'��(m0�1) = 0 : (3.2.22)This proves (3.2.18).After normalization, we denote the last non-zero ve
tor by�0 � '��(m0�1)k'��(m0�1)k : (3.2.23)From �0 (for whi
h a�0 = 0) one de�nes the sequen
e of ve
tors�0�1 = 1p1!ay�0�2 = 1p2!(ay)2�0:::: :: :::::�n = 1pn! (ay)n�0:::: :: ::::: (3.2.24)These ve
tors have the following properties:



3.2 Algebrai
 Operations 751. They are eigenve
tors of the number operator N and of the Hamiltonian HN�n = n�n ; n = 0; 1; 2; : : : (3.2.25)H�n = ~!(n+ 1=2)�n n = 0; 1; 2; : : : (3.2.26)2. For every �n, there exists a �n+1 that is di�erent from the zero ve
tor.3. The a
tions of ay and a on the sequen
e (3.2.24) are given byay�n = pn+ 1�n+1 ; a�n = pn�n�1 : (3.2.27)Equation (3.2.26) is usually interpreted by saying that the energy of the harmoni
 os
illatoris quantized and 
annot take any arbitrary value. Equation (3.2.27) means that if we startwith an eigenstate �n of H 
orresponding to the eigenvalue En = ~!(n+1=2), appli
ation ofthe operator ay yields an eigenve
tor asso
iated with the eigenvalue En+1 = ~!(n+1=2)+~!,and appli
ation of a yields, in the same way, the energy En�1 = ~!(n+1=2)� ~!. For thisreason, ay is said to be a 
reation operator and a an annihilation operator: their a
tion onan eigenve
tor of H makes an energy quantum ~! appear or disappear.The spa
e 	 of the ladder representation of A is the linear spa
e spanned by the eigen-ve
tors �0; �1; : : : ; �n; : : : of (3.2.24), i.e., 	 is the set of all (�nite) linear 
ombinations = MXn=0 �n�n ; (3.2.28)where �n 2 C and M is a natural number whi
h is arbitrarily large but �nite. In 	 we havethe s
alar produ
t ( � ; � ) for whi
h (3.2.3), (3.2.8) and (3.2.9) holds. With respe
t to thiss
alar produ
t, the ve
tors �n are orthogonal and normalized,(�n; �m) = Ænm : (3.2.29)We 
all the set of ve
tors f�ng an algebrai
 orthonormal basis for the spa
e 	.The set 	 
an be also viewed as the linear spa
e of all sequen
es of the form � (�0; �1; : : : ; �M ; 0; 0; : : :) � MXn=0 �n�n ; (3.2.30)where �n 2 C . The algebrai
 operations of this linear spa
e are de�ned 
omponentwise: let = (�0; �1; : : : ; �M1; 0; 0; : : :) � M1Xn=0 �n�n (3.2.31)and ' = (�0; �1; : : : ; �M2; 0; 0; : : :) � M2Xn=0 �n�n (3.2.32)
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 Os
illatorbe two elements of 	 (M2 > M1). Then + ' := (�0 + �0; �1 + �1; : : : ; �M1 + �M1 ; : : : ; �M2; 0; 0; : : :)= M2Xn=0(�n + �n)�n ; (3.2.33)and � := (��0; ��1; : : : ; ��M1; 0; 0; : : :) = M1Xn=0(��n)�n : (3.2.34)The s
alar produ
t of  and ' is( ; ') = M2Xn=0(�n�n; �n�n) = M2Xn=0 �n �n : (3.2.35)Then the norm of  is given byk k2 = M1Xn=0(�n�n; �n�n) = M1Xn=1 j�nj2 : (3.2.36)Sin
e the sums (3.2.30)-(3.2.36) only go up to a �nite number, the question of the 
onver-gen
e of these sums does not arise. The algebrai
 operations (3.2.33), (3.2.34) and (3.2.35)show 	 is a linear s
alar produ
t spa
e (
f. Se
tion 2.1.2).We now introdu
e the spa
e spanned by ea
h �n. This is the subspa
eRn = f��n j � 2 C g : (3.2.37)Rn is a one dimensional subspa
e 
alled the energy eigenspa
e asso
iated to the n-th eigen-value of H, be
ause all of its elements are eigenve
tors of the operator H with eigenvalueEn = ~!(n + 1=2). Although we 
an just as well work with the ve
tors �n, by using thespa
es Rn we obtain a formulation whi
h immediately generalizes to the 
ase where Rn isnot one dimensional. The spa
e 	, that is given by	 = f = (�0; �1; : : : ; �M ; 0; 0; : : :) � MXn=0 �n�n ; �n 2 C ; M 2 Ng ; (3.2.38)is usually rewritten as the algebrai
 dire
t sum of the spa
es Rn:	 = Xalgebrai
�Rn : (3.2.39)The right hand side of the equation (3.2.39) means that every  2 	 
an be uniquely writtenas a �nite linear 
ombination  � r0 + r1 + � � �+ rM (3.2.40)of elements rn = �n�n 2 Rn that are orthogonal to ea
h other (i.e., (rn; rm) = 0 if n 6= m).
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tion of the Topologies 773.3 Constru
tion of the Topologies3.3.1 Introdu
tionThe spa
e 	 has so far an algebrai
 stru
ture, namely it is a linear spa
e provided with as
alar produ
t. In order to be able to use 
ertain tools (su
h as the Gelfand-Maurin theoremof Se
tion 3.5) we need to equip 	 with a topologi
al stru
ture, i.e., we need to 
onstru
t alinear topologi
al spa
e (
f. Se
tion 2.3).We will de�ne a topology in terms of the notion of sequen
e 
onvergen
e. All the rest ofthe topologi
al notions su
h as 
ontinuity, denseness, boundedness, 
losure, 
ompleteness,et
. will be derived from the notion of sequen
e 
onvergen
e. When this notion fully de-s
ribes the topology, the topologi
al spa
e is said to be �rst 
ountable (
f. Se
tion 2.2.2).The topologies introdu
ed in this se
tion are all �rst 
ountable. Only Se
tion 3.4 will dealwith topologies that are not �rst 
ountable.Intuitively, a sequen
e f'ng 
onverges to a point ' if whenever we follow the terms ofthat sequen
e we get 
loser and 
loser to the limit point ' with respe
t to a 
ertain sense of
loseness. This de�nition of 
onvergen
e must be su
h that the linear and the topologi
alstru
tures 
an be pie
ed together. This is a

omplished by requiring that the algebrai
operations be 
ontinuous with respe
t to the topology under 
onsideration. Therefore, alinear topologi
al spa
e has1. A linear stru
ture.2. A topology � that provides a notion of 
onvergen
e of sequen
es. If a sequen
e f'ng
onverges to a point ', then we denote'n ���!n!1' : (3.3.1)3. The algebrai
 operations are 
ontinuous. That is,(3a) If 'n ���!', then �'n ���!�' for every � 2 C .(3b) If C 3 �n��!� 2 C , then �n' ���!�' for every '.(3
) If 'n ���!' and  n ���! , then 'n +  n ���!'+  .This is not the most general de�nition of a linear topologi
al spa
e (
f. Se
tion 2.3) but itis suÆ
ient when the topology is �rst 
ountable.A sequen
e f'ng will be said to be Cau
hy if the terms of the sequen
e get more andmore 
lose to ea
h other as n!1. We then write'n � 'm ���!n;m!1 0 : (3.3.2)One may expe
t that whenever we follow the elements of a Cau
hy sequen
e, we always endup in an element of the spa
e. However, this is the 
ase only in 
ertain kind of spa
es, thatare 
alled 
omplete. Therefore, a spa
e is 
omplete with respe
t to a given topology if everyCau
hy sequen
e has a limit that belongs to the spa
e. When a spa
e is not 
omplete, it
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illator
an be 
ompleted by adding to it all the limit points of Cau
hy sequen
es. In this 
ase, thein
omplete spa
e 
an be viewed as a dense set of the 
omplete spa
e (
f. Se
tion 2.3.2).We shall introdu
e two di�erent topologies on 	, the Hilbert spa
e topology and anu
lear topology. Completion with respe
t to ea
h topology will lead to the spa
e H and �,respe
tively. These two topologies will be fully des
ribed by the de�nition of 
onvergen
eof sequen
es (i.e., they are �rst 
ountable).3.3.2 Hilbert Spa
e TopologyFirst, we introdu
e into 	 the well known Hilbert spa
e topology, whi
h we shall denote by�H. For ea
h  2 	, we de�ne the norm of  byk k :=p( ;  ) ; (3.3.3)where ( ;  ) is the s
alar produ
t of 	. The norm (3.3.3) 
an be used to introdu
e ameaning of 
onvergen
e, i.e., to spe
ify in whi
h sense the terms of a sequen
e get 
loserand 
loser to a limit point. We will say that a sequen
e f ng in 	 
onverges to  2 	 withrespe
t to the Hilbert spa
e topology �H ifk n �  k ! 0 as n!1 : (3.3.4)This means that f ng tends to  if for every � > 0 there is a positive integer N(�) su
h thatk n �  k < � for every n > N . Symboli
ally, this 
ondition is written as n �H��!n!1  i� k n �  k��!n!1 0 : (3.3.5)The 
on
ept of Cau
hy sequen
e 
an be stated as: a sequen
e f ng in 	 is Cau
hy withrespe
t to �H if for every � > 0 there exists a positive integer N su
h that k n �  mk < �for every m;n > N . In other words, the sequen
e f ng is Cau
hy ifk n �  mk ! 0 as n;m!1 : (3.3.6)The spa
e 	 is not 
omplete with respe
t to the Hilbert spa
e topology. That is to say,there exist Cau
hy sequen
es of elements  n in 	 (i.e., sequen
es ful�lling (3.3.6)) that donot have a �H-limit element in 	 (i.e., there is no  2 	 su
h that (3.3.4) holds). As anexample, let us 
onsider the following in�nite sequen
e: 0 = (�01 ; 0; 0; : : :) � �01 1 = (�01 ; �12 ; 0; : : :) � �01 + �12:::: ::: ::::::::: n = (�01 ; �12 ; : : : ; �nn+ 1 ; 0; : : :) � nXi=0 �ii+ 1:::: ::: ::::::::: ; (3.3.7)
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tion of the Topologies 79where the �n are the eigenve
tors (3.2.24) of N . The sequen
e (3.3.7) is �H-Cau
hy, be
ausefor any positive integers n;m (m > n without loss of generality)k n �  mk2 = mXi=n+1 k�ik2(i+ 1)2 = mXi=n+1 1(i+ 1)2 ��!n;m!1 0 : (3.3.8)But (3.3.7) tends, with respe
t to �H, toz = (�01 ; �12 ; : : : ; �nn+ 1 ; �n+1n + 2 ; : : :) � 1Xi=0 �ii+ 1 : (3.3.9)whi
h is an in�nite sequen
e and therefore is not in 	. This shows that 	 is not 
omplete.The spa
e 	 
an be 
ompleted with respe
t to the topology �H by adding to 	 all thelimit points of �H-Cau
hy sequen
es of elements of 	. The resulting spa
e, denoted by H,is the Hilbert spa
e. 	, that is a s
alar produ
t spa
e whi
h is not 
omplete with respe
tto �H, is usually 
alled a pre-Hilbert spa
e. The spa
e H is the set of in�nite sequen
esh = (r0; r1; : : : ; rn; : : :) � 1Xn=0 rn ; (3.3.10)where rn = �n�n 2 Rn and �n 2 C , su
h that1Xn=0 krnk2 = 1Xn=0 j�nj2 <1 ; (3.3.11)or in a more 
ompa
t notationH = fh � (r0; r1; : : : ; rn; : : :) j 1Xn=0 krnk2 <1 ; rn 2 Rng : (3.3.12)Its topology is given by the pres
ription (3.3.5) for sequen
e 
onvergen
e:hn �H��!n!1 h, khn � hk �C��!n!1 0 : (3.3.13)It 
an be proven that the spa
e H de�ned by (3.3.12) is 
omplete with respe
t to thetopology de�ned by (3.3.13).A ve
tor h 2 H given by (3.3.10) is uniquely determined by the sequen
e of 
omplexnumbers h � (�0; �1; : : : ; �n; : : :) ; (3.3.14)where rn = �n�n. This sequen
e is not arbitrary, but it must ful�ll (3.3.11). In fa
t, it 
anbe shown that the norm (3.3.3) of any h 2 H is given bykhk2 = 1Xn=0 j�nj2 : (3.3.15)
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 Os
illatorAn in�nite sequen
e (�0; �1; : : : ; �n; : : :) that satis�es (3.3.11) is said to be square summable.The set of square summable sequen
es is denoted by l2(C ). It is 
lear that h 2 H i� its
orresponding sequen
e (3.3.14) is square summable. Therefore, (3.3.14) and (3.3.15) set upa one-to-one 
orresponden
e of the Hilbert spa
e H onto the spa
e l2(C ). The spa
es H andl2(C ) are, from a linear topologi
al point of view, the same. We then say that l2(C ) is therealization of H by the spa
e of square summable sequen
es. In terms of these sequen
es,the spa
e H is given byH = fh = 1Xn=0 �n�n j �n 2 C ; 1Xn=0 j�nj2 <1g : (3.3.16)The �n of (3.3.14) 
an be obtained as the s
alar produ
t of h with �n�n = (�n; h) ; n = 0; 1; 2; : : : (3.3.17)Thus we 
an write any element h 2 H ash � 1Xn=0 �n(�n; g) � 1Xn=0 j�n)(�n; g) ; (3.3.18)in analogy to the three-dimensional 
ase~x = 3Xi=1 ~ei(~ei � ~x) = 3Xi=1 ~ei xi : (3.3.19)Equation (3.3.18) is usually interpreted by saying that the f�ng form an orthonormal basisfor H and that the �n are the 
omponents along the basis ve
tors �n.We are now going to show that H is a
tually a �H-
ompletion of 	. First, the algebrai
operations on 	 
an be readily extended to the Hilbert spa
e H. The sum of two elementsh � (�0; �1; : : : ; �n; : : :) � 1Xn=0 �n�n (3.3.20)and g � (�0; �1; : : : ; �n; : : :) � 1Xn=0 �n�n (3.3.21)of H is de�ned 
omponentwise ash+ g := (�0 + �0; �1 + �1; : : : ; �n + �n; : : :) � 1Xn=0(�n + �n)�n : (3.3.22)It 
an be proven that if h and g are elements of H, i.e., the sequen
es (3.3.20) and (3.3.21)satisfy (3.3.11), then h+ g is also an element of H, i.e., it obeys1Xn=0 j�n + �nj2 <1 : (3.3.23)
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tion of the Topologies 81The multipli
ation of an element h of H by a 
omplex number � is de�ned by�h := (��0; ��1; : : : ; ��n; : : :) � 1Xn=0(��n)�n : (3.3.24)The s
alar produ
t on H is de�ned by(h; g) = 1Xn=0(�n�n; �n�n) = 1Xn=0 �n �n : (3.3.25)If h and g are in H, then it 
an be shown that the series (3.3.25) 
onverges and that thiss
alar produ
t is well de�ned. Therefore, H is a linear s
alar produ
t spa
e that is 
ompletewith respe
t to the topology �H generated by this s
alar produ
t, i.e., H is a Hilbert spa
e.Sin
e every element  2 	 is given by a �nite sequen
e of the form = (r0; r1; : : : ; rM ; 0; 0; : : :) (3.3.26)that obviously satis�es (3.3.11), the spa
e 	 is a subset of H. The algebrai
 operations(3.3.22), (3.3.24) and (3.3.25) on H 
learly extend the operations (3.2.33), (3.2.34) and(3.2.35) on 	. We 
an see that 	 is dense in H with respe
t to this topology. In fa
t, everyelement h � (�0; �1; : : : ; �n; : : :) � 1Xn=0 �n�n (3.3.27)of H is the �H-limit of a sequen
e of elements of 	 with the form n � (�0; �1; : : : ; �n; 0; 0; : : :) � nXi=0 �i�i : (3.3.28)In other words, H is the �H-
ompletion of 	 with respe
t to the topology de�ned by thenorm k k =p( ;  ).In terms of the spa
es Rn, the spa
e H is usually written asH = XHilbert� Rn : (3.3.29)The right hand side of (3.3.29) is usually 
alled the Hilbertian dire
t sum or orthogonaldire
t sum of the Rn be
ause the spa
es Rn are orthogonal to ea
h other, sin
e (rn; rm) = 0for n 6= m, where rn 2 Rn and rm 2 Rm.An example of an element of H is the sequen
ez � (1; 12 ; 13 ; : : : ; 1n; : : :) � 1Xn=0 �nn+ 1 (3.3.30)



82 3 The Rigged Hilbert Spa
e of the Harmoni
 Os
illatorof (3.3.9). For this sequen
e, it holds thatkzk2 = 1Xn=0 k�nk2(n+ 1)2 = 1Xn=1 1n2 = �26 : (3.3.31)z is the �H-limit element of the Cau
hy sequen
e (3.3.7), be
ause for every  n in (3.3.7)k n � zk2 = 1Xi=n+1 k�ik2(i+ 1)2 = 1Xi=n+1 1(i+ 1)2 ��!n!1 0 : (3.3.32)Summarizing, we started with the linear s
alar produ
t spa
e 	 of �nite linear 
ombi-nations of the eigenve
tors �n. In this spa
e, we introdu
ed the topology �H through themeaning of sequen
e 
onvergen
e (3.3.5). The spa
e 	 was not 
omplete with respe
t to�H, i.e., there were Cau
hy sequen
es of elements of 	 that did not have a �H-limit elementin 	. 	 was 
ompleted to a spa
e H by adjoining to it all limit elements of �H-Cau
hysequen
es. Thus, the Hilbertian dire
t sum was obtained by 
ompleting the algebrai
 dire
tsum with respe
t to �H:	 = Xalgebrai
� Rn 7�! �H�
ompletion 7�! H = XHilbert� Rn : (3.3.33)The operators of the algebra of observables A 
an be 
onsidered now as linear operatorsde�ned on a subdomain of the Hilbert spa
e. These operators 
an be extended to largersubdomains of H (see Se
tion 3.3.5). But these extensions are not 
ontinuous with respe
tto �H. Moreover, their domains do not remain stable under the a
tions of the operators.Therefore, algebrai
 operations su
h as the sum or multipli
ation of two operators are notalways allowed. Sin
e in physi
s these kind of operations are always assumed to be wellde�ned, it is reasonable to sear
h for a spa
e � that1. remains stable under the a
tion of the elements of the algebra A,A : �! � ; (3.3.34)where A is any element of A.2. Every A 2 A is 
ontinuous with respe
t to 
ertain topology on �. This 
ontinuitywill allow us to extend the operators from 	 to their extension on � in a unique way.The domain � is 
hara
teristi
 of the parti
ular physi
al system (i.e., of the parti
ular alge-bra of observables) upon 
onsideration. The 
onstru
tion of this domain for the harmoni
os
illator is the subje
t of the next se
tion.
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tion of the Topologies 833.3.3 Nu
lear TopologyWe now 
onstru
t the spa
e �, whi
h will be the 
ompletion of 	 with respe
t to a nu
leartopology ��. We take the original s
alar produ
t ( � ; � ) and de�ne the quantities(';  )p := ('; (N + I)p ) ; 8';  2 	 ; p = 0; 1; 2; : : : (3.3.35)and k kp :=q( ;  )p ; 8 2 	 : (3.3.36)From the properties of the linear operator N , it is easy to see that (';  )p of (3.3.35) ful�llsthe 
onditions (2.1.12)-(2.1.14) of a s
alar produ
t and that the quantities of (3.3.36) forman in
reasing sequen
e of normsk k0 � k k1 � k k2 � � � � (3.3.37)Further, these norms are 
ompatible, i.e., if a sequen
e 
onverges to zero with respe
t toone norm and is a Cau
hy sequen
e with respe
t to another, then it also 
onverges to zerowith respe
t to this other norm (
f. Se
tion 2.4.1).We now de�ne the notion of 
onvergen
e that will determine the nu
lear topology ��.A sequen
e f ng of elements in 	 
onverges to an element  with respe
t to the topology�� if f ng 
onverges to  with respe
t to every norm in (3.3.36): n ����!n!1  , k n �  kp ! 0 ; for every p = 0; 1; 2; : : : (3.3.38)The reason why we introdu
e the s
alar produ
ts (3.3.35) and the topology (3.3.38) isthat the operator N will be 
ontinuous with respe
t to �� (
f. Se
tion 3.3.5). Moreover, dueto the spe
ial stru
ture of the algebra of the harmoni
 os
illator, the 
ontinuity of N willimply the 
ontinuity of the rest of the observables of this algebra (
f. Se
tion 3.3.5).From  n ����! it follows that  n �H��! , but not vi
e versa. Therefore �� is stronger(�ner) than �H, and �H is weaker (
oarser) than ��.A sequen
e f ng in 	 is ��-Cau
hy if for every p and for every � > 0 there exists apositive integer N = N(�; p) su
h thatk n �  mkp < � for every n;m > N ; (3.3.39)i.e., f ng is ��-Cau
hy if it is Cau
hy with respe
t to every norm of (3.3.36).We now 
omplete 	 with respe
t to �� by adding to 	 the limit points of all ��-Cau
hysequen
es. The 
omplete linear topologi
al spa
e obtained in this way is denoted by �.� is 
alled a 
ountably Hilbert spa
e (
f. Se
tion 2.4). Sin
e there are more �H-Cau
hysequen
es than ��-Cau
hy sequen
es (be
ause a �H-Cau
hy sequen
e must ful�ll (3.3.39)only for p = 0), this implies 	 � � � H : (3.3.40)Thus, 	 is ��-dense in �, and sin
e 	 is �H-dense in H, � is �H-dense in H.
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 Os
illatorIn order to 
onstru
t � expli
itly, let us see whi
h of the in�nite sequen
es that areelements of H, i.e., that ful�ll (3.3.11), are also elements of �. A sequen
e' = (r0; r1; : : : ; rn; : : :) ; rn 2 Rn ; (3.3.41)is an element of � i� it is the limit point of the sequen
e n = (r0; r1; : : : ; rn; 0; 0; : : :) (3.3.42)of elements of 	 with respe
t to ��, i.e., i�k n � 'kp ! 0 ; for every p = 0; 1; 2; : : : (3.3.43)Equation (3.3.43) is equivalent to(( n � '); (N + I)p( n � '))! 0 ; for every p = 0; 1; 2; : : : ; (3.3.44)whi
h is equivalent to1Xi=n+1(ri; (N + I)pri) = 1Xi=n+1(i+ 1)pkrik2��!n!1 0 ; for every p = 0; 1; 2; : : : (3.3.45)Therefore, ' is the ��-limit point of a ��-Cau
hy sequen
e of elements of 	 i� it ful�lls(3.3.45). Then the spa
e � is given by� = f' = 1Xn=0 �n�n j �n 2 C ; 1Xn=0(n + 1)pj�nj2 <1 for every p = 0; 1; 2; : : :g : (3.3.46)Obviously, � is a linear spa
e under the algebrai
 operations inherited from H.If we denote the 
ompletion of 	 with respe
t to ea
h norm k kp of (3.3.36) by �p, forevery p = 0; 1; 2; : : :, then it 
an be shown that� = 1\p=0�p : (3.3.47)� is also 
alled the ��-dire
t sum of the spa
es Rn, that is denoted by� = Xnu
lear�Rn : (3.3.48)This ��-dire
t sum has been 
onstru
ted by 
ompleting the algebrai
 dire
t sum with respe
tto the �� topology	 = Xalgebrai
� Rn 7�! ���
ompletion 7�! Xnu
lear� Rn : (3.3.49)The operators in the algebra of observables 
an be extended to � (
f. Se
tion 3.3.5).These extensions will be proven to be 
ontinuous with respe
t to �� and the spa
e � willbe proven to remain stable under the a
tion of the operators of the algebra. Therefore, allalgebrai
 operations will be allowed. This is, in fa
t, the very reason why we have introdu
edthe spa
e �.
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al Interpretation of 	, � and HTo see what these various spa
es might mean for physi
s, we re
all that Rn is the energyeigenspa
e 
orresponding to the energy eigenvalueEn = ~!�n + 12� : (3.3.50)If h = (�0; �1; : : : ; �n; : : :) =P1n=0 �n�n, where �n = (�n; h), thenh 2 H , 1Xn=0 j�nj2 <1 ; (3.3.51)h 2 � , 1Xn=0(n + 1)pj�nj2 <1 for p = 0; 1; 2; : : : ; (3.3.52)h 2 	 , all �n but a �nite number are equal to 0 : (3.3.53)Clearly, dire
t experimental data 
an only tell us something about 	. In fa
t for mostreal physi
al systems whose idealization is the harmoni
 os
illator, e.g. diatomi
 mole
ules,only the very lowest energy levels are relevant; for higher energy the diatomi
 mole
uleis no longer a harmoni
 os
illator and �nally not even an os
illator. � and H are bothidealizations, though � appears \
loser" to reality.The reason why we prefer the mathemati
al idealization provided by � over the one pro-vided by H 
an be vaguely summarized by saying that � admits Dira
's bra-ket formalism.Two aspe
ts of this formalism are:1. All algebrai
 operations involving the observables are allowed and no questions re-garding the domain of de�nition arise.2. For every observable there exists a 
omplete system of eigenve
tors su
h that everywave fun
tion 
an be expanded in terms of these eigenve
tors.The �rst aspe
t follows from the fa
t that all the elements of the algebra A leave invariant�, are 
ontinuous operators with respe
t to �� and therefore uniquely de�ned on the wholespa
e �. This will be dis
ussed in the next se
tion. The se
ond aspe
t will need the 
on
eptsof dual spa
e and generalized eigenfun
tion, and will be dis
ussed in Se
tion 3.5.3.3.5 Extension of the Algebra of OperatorsThe operators of the algebra of observables were assumed to be de�ned on the spa
e 	. Sin
e	 � H, these observables 
an be 
onsidered as linear operators de�ned on the subdomain	 of the Hilbert spa
e H. They 
an be extended to larger subdomains of H by using thenotion of 
losure (see Se
tion 2.5.3). If  n 2 	 and  n �H��! f , but f 62 	, then A n 2 	for every n but A is not de�ned on f . If A n �H��!g, then we de�ne the 
losure A of A byAf = g. We 
an do this only for those f 2 H whi
h are �H-limit points of some sequen
es
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illator n 2 	 and for whi
h A n �H-
onverges. The domain D(A) of A is the set of elements forwhi
h the above pro
edure 
an be applied. Evidently, the 
losure of an operator extendsthe operator itself. Thus, in 
orresponden
e to the relation	 � H (3.3.54)between the spa
es, we have the relation A � A (3.3.55)between the operators. However, in general, D(A) 6= H. This means that there are elementsh in H on whi
h A is not de�ned, i.e., kAhk =1.As an example, we 
onsider the operator N . This operator 
an be extended from 	 tolarger subdomains of H. But N 
annot be extended to the whole of H. For instan
e, thea
tion of N 
annot be extended to the Hilbert spa
e elementz � (1; 12 ; : : : ; 1n+ 1 ; : : :) (3.3.56)be
ause  n � (1; 12 ; : : : ; 1n+ 1 ; 0; : : :) �H��!n!1 z ; (3.3.57)but N n � (0; 1; 12 ; 23 ; : : : ; nn+ 1 ; 0; : : :) �H��!n!1 (0; 1; 12 ; 23 ; : : : ; nn+ 1 ; : : :) ; (3.3.58)whi
h is not an element of H. In fa
t, the largest subdomain of H to whi
h N 
an beextended is given by fh = 1Xn=0 �n�n j 1Xn=0 n2j�nj2 <1g : (3.3.59)The extension of any other operator A of the algebra A 
an be 
onstru
ted in a similar way.If h = P1n=0 �n�n is an element of H, then the a
tion of the extension of A (that is alsodenoted by A) on h is given byAh = A 1Xn=0 �n�n! := 1Xn=0 �n(A�n) : (3.3.60)This extension, however, is not de�ned for every element of the Hilbert spa
e, but only forthose h 2 H for whi
h kAhk <1. Therefore, the operators of A 
annot be extended to thewhole of H and their extensions are not �H-
ontinuous. The domains of the extensions ofthe operators of A are, in general, di�erent for di�erent operators, and do not remain stableunder the a
tion of the extensions. In order to avoid domain questions, we need the spa
e�. This spa
e is the largest subspa
e of H on whi
h all the extensions of the operators arewell de�ned and that remains stable under the a
tion of these extensions. From now on, we
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onsider the domain of the operators to be �. We will denote the (Hilbert spa
e)extension of P , Q, H : : : to � also by P , Q, H : : : These extensions are also symmetri
,(A';  ) = (';A ) ; 8';  2 � ; (3.3.61)where A 
an be P , Q or H.It 
an be shown that the operatorH is not only symmetri
 but also essentially self-adjoint(e.s.a.) (
f. Se
tion 2.5.3), i.e., it 
an be shown thatH = Hy : (3.3.62)In fa
t, it 
an be proven (see referen
e [65℄) that the requirement that H has at least oneeigenve
tor (see (3.2.4)) is equivalent to the requirement that H is e.s.a.:There exists a 'E su
h that H'E = E'E i� H = Hy : (3.3.63)We remark that either of these requirements leads to a representation of A whi
h integratesto a representation of the group generated by P , Q and I (Weyl group): the requirementthat H is e.s.a. be
ause of the Nelson theorem (see [65℄) and the requirement that H hasone eigenve
tor be
ause it leads to the ladder representation, and ladder representations arealways integrable.Sin
e N = 1=(~!)H � 1=2I, N is also e.s.a. That is,N y = N : (3.3.64)As a 
onsequen
e of the fa
t that P and Q are elements of the Lie algebra of the Weyl group,it follows that P and Q are also e.s.a. by a theorem of Nelson and Stinespring (see [66℄).That is, P y = P ; Qy = Q : (3.3.65)H + I is, ex
ept for some 
onstant fa
tors, the Nelson operator, and is also e.s.a.In our example, one 
an easily see that N is e.s.a. without invoking the Nelson theorem.It 
an be easily proved by using one of the 
riteria of essentially self-adjointness:Lemma: An operator A is e.s.a. if (A+ I)�1 is 
ontinuous and has a dense domain inH.The spe
trum (
f. Se
tion 2.5) of (N +1)�1 is 1=(n+1), n = 0; 1; 2; : : : Consequently,it is a 
ontinuous operator. Its domain is dense in H. Therefore, N is e.s.a. As a
onsequen
e, N + I is e.s.a. Further, (N + I)p is e.s.a.1 for every p = 1; 2; : : :The extension of any operator A of A from 	 to � is 
onstru
ted as follows: givenany element ' =P1n=0 �n�n of �, the sequen
e  n =Pni=0 �i�i of elements of 	 
onverge1That (N + I)p is e.s.a. 
an be proved in many ways. It also follows from the fa
t that (N + I)p is anellipti
 element in the enveloping algebra of a group representation (see referen
e [66℄).
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illatorto ' with respe
t to ��, i.e.,  n ����!'. The a
tion of A on ' is de�ned by A' := �� �limn!1A n, or A' := 1Xn=0 �nA�n : (3.3.66)These extensions are unique if the operators are ��-
ontinuous on 	 (
f. Se
tion 2.3.4). Sin
ethe produ
t and the sum of two 
ontinuous operators are 
ontinuous operators, the elementsof our algebra A are 
ontinuous if a and ay are 
ontinuous operators. In parti
ular, P , Q andH are 
ontinuous if a and ay are 
ontinuous. In a spa
e on whi
h the topology 
an be de�nedby the 
onvergen
e of sequen
es, i.e., a spa
e in whi
h the �rst axiom of 
ountability holds,a linear operator A is 
ontinuous i� for all sequen
es f'ng with 'n ����! 0 it follows thatA'n ����! 0 (
f. Se
tion 2.3.4). Sin
e our topology �� satis�es the �rst axiom of 
ountability,the operator ay is 
ontinuous if from 'n ����!0 it follows that ay'n ����!0:To prove that ay is ��-
ontinuous we use a lemma (see Appendix 3.7.4) that statesthat for every norm k kp of (3.3.36) there is a real 
onstant � <1 su
h that( ; a(N + I)pay ) � �( ; (N + I)p+1 ) ; 8 2 	 : (3.3.67)Let  n ����! 0 as n!1. Then k nkp ! 0 for every p = 0; 1; 2; : : :,( n; (N + I)p n)! 0 for every p = 0; 1; 2; : : : (3.3.68)To show that ay n ����!0, we have to show thatkay nkq ! 0 (3.3.69)for every q = 0; 1; 2; : : :, i.e., that(ay n; (N + I)qay n) = ( n; a(N + I)qay n)! 0 (3.3.70)for every q = 0; 1; 2; : : : By (3.3.67)( n; a(N + I)qay n) � �( n; (N + I)q+1 n) : (3.3.71)By (3.3.68) the right hand side of (3.3.71) tends to zero for every q = 0; 1; 2; : : :, and
onsequently also the left hand side, whi
h proves (3.3.70). Then ay is 
ontinuous.The proof of the ��-
ontinuity of a is analogous.We remark that the 
onvergen
e of kay'nkq ! 0 as n ! 1 for a �xed q follows fromthe 
onvergen
e of k'nkq+1 ! 0. Therefore it is important to have a 
ountably in�niterather than a �nite number of norms; in the 
ase of a �nite number of norms, ay is not a
ontinuous operator, sin
e the topology generated by a �nite number of norms is equivalentto the topology generated by one norm. In parti
ular, this implies that ay 
annot be a
ontinuous operator with respe
t to the Hilbert spa
e topology.We have shown that a and ay, and therewith the elements of the algebra of observables,are ��-
ontinuous operators on the linear topologi
al spa
e 	. Their ��-
ontinuous exten-sions to � are then unique. We denote the ��-extensions of the operators a, ay, P , Q,
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illator 89H; : : : to � also by a, ay, P , Q, H; : : : Domain questions do not arise when we perform thealgebrai
 operations, be
ause the operators are de�ned on the whole spa
e �, and be
ause� remains invariant under their a
tion. It is worthwhile noting that the ��-extension to �of any operator A is the same as the Hilbert spa
e extension of A to �.The se
ond aspe
t of the Dira
 formalism, the existen
e of a 
omplete set of eigenve
tors,follows from the nu
lear spe
tral theorem (see Se
tion 3.5 below). In order to be able toapply this theorem to our example, we need to prove that the topology �� is nu
lear.Before introdu
ing the notion of nu
lear topology, we need the following de�nition: abounded self-adjoint operator B de�ned on a Hilbert spa
e H is Hilbert-S
hmidt if B 
anbe written as B = 1Xk=1 �kPk ; (3.3.72)where the Pk are proje
tion operators (
f. Se
tion 2.5.1) onto �nite dimensional spa
es Hkand P1k=1(j�kj dimHk)2 < 1. Instead of giving the original de�nition of nu
lear spa
e(
f. Se
tion 2.6.1), we shall use a theorem by Roberts (see [10℄) whi
h gives a ne
essary andsuÆ
ient 
ondition for a spa
e to be nu
lear: a linear topologi
al spa
e � is nu
lear if thereexists an e.s.a. ��-
ontinuous operator A 2 A, whose inverse is Hilbert-S
hmidt.It is now very easy to see that our � is nu
lear be
ause N , and therefore N + I, ise.s.a., the spe
trum of (N + I)�1 is (n + 1)�1; n = 0; 1; 2; : : :, Rn is one dimensional andP1n=0 1=(n+ 1)2 <1. Thus N + I is the operator that ful�lls the above de�nition.Having established that � is nu
lear, we 
an now addu
e the nu
lear spe
tral theoremto show that the essentially self-adjoint operators P and Q ea
h has a 
omplete set ofeigenve
tors in the sense of Dira
. Unlike the 
ompa
t operators, for whi
h su
h a setof ve
tors 
an be found from among the elements of the 
orresponding Hilbert spa
e, theeigenve
tors given by the nu
lear spe
tral theorem neither reside in the spa
e � nor in H.Instead, these ve
tors a
quire mathemati
al sense as elements of the topologi
al dual of �,and therewith the more pre
ise terminology generalized eigenve
tors. Before presenting thenu
lear spe
tral theorem in Se
tion 3.5 we shall dis
uss the dual spa
e of �, the subje
t ofthe next se
tion.3.4 The RHS of the Harmoni
 Os
illator3.4.1 The Conjugate Spa
eAs mentioned above, the generalized eigenve
tors of the Dira
 basis ve
tor expansion willbe des
ribed by 
ontinuous antilinear fun
tionals over the spa
e �. This is the notion thatwe are about to present (see also Se
tion 2.3.4).An antilinear fun
tional F on the linear spa
e � is a fun
tion F (') from � into the
omplex plane C whi
h satis�esF (�'+ � ) = �F (') + �F ( ) ; 8';  2 � ; 8�; �;2 C : (3.4.1)



90 3 The Rigged Hilbert Spa
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 Os
illatorIn the bra-ket notation F (') = h'jF i, Eq. (3.4.1) readsh�'+ � jF i = �h'jF i+ �h jF i : (3.4.2)In the spa
e �, on whi
h the topology �� is de�ned, we 
an use the notion of 
ontinuitywith respe
t to this topology to introdu
e the 
on
ept of 
ontinuous mapping: a fun
tionF is 
ontinuous if the image of every 
onvergent sequen
e is also 
onvergent,'n ����!n!1 ' =) F ('n) �C��!n!1 F (') ; (3.4.3)where ����! indi
ates 
onvergen
e with respe
t to the topology �� and �C��! means 
onver-gen
e in the sense of 
omplex numbers.A 
ontinuous antilinear fun
tional F on � is a fun
tion from � into C that is antilinearand 
ontinuous. One 
an prove that a fun
tional F on the 
ountably Hilbert spa
e � is��-
ontinuous i� there exist a positive 
onstant K and a norm k � kq among the 
olle
tionof norms (3.3.36) that obey jF (')j < Kk'kq ; 8' 2 � : (3.4.4)We now 
onsider the 
olle
tion of all 
ontinuous antilinear fun
tionals over �, whi
h isdenoted by ��. The sum of two fun
tionals and the multipli
ation of a fun
tional by anumber are de�ned by:(�F1 + �F2)(') = �F1(') + �F2(') ; 8' 2 � ; 8�; � 2 C ; (3.4.5)or in bra-ket notation h'j�F1 + �F2i = �h'jF1i+ �h'jF2i : (3.4.6)One 
an prove that if F1; F2 2 ��, i.e., if F1 and F2 satisfy (3.4.1) and (3.4.3), then �F1+�F2is also in ��. Thus, �� is a linear spa
e under the operations de�ned by (3.4.5).The dual spa
e of the Hilbert spa
e H 
an be 
onstru
ted in a similar way. A fun
tionF from H into C is a �H-
ontinuous antilinear fun
tional if1. F is antilinear,F (�f + �g) = �F (f) + �F (g) ; 8f; g 2 H ; 8�; � 2 C : (3.4.7)2. F is �H-
ontinuous, fn �H��! f =) F (fn) �C��!F (f) : (3.4.8)The adjoint spa
e H� of H is the 
olle
tion of all �H-
ontinuous antilinear fun
tionals overH. The spa
e H� 
an be endowed with a linear stru
ture if the sum of two fun
tionals andthe multipli
ation of a fun
tional by a number are de�ned as in (3.4.5).From the relation � � H, it 
an be shown thatH� � �� : (3.4.9)
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illator 91Let F 2 H�. If ffng is any sequen
e of elements of H that 
onverges to f 2 H withrespe
t to �H, then F (fn) 
onverges to F (f),fn �H��! f =) F (fn) �H��!F (f) : (3.4.10)Let 'n be a sequen
e of elements of � that 
onverges to ' 2 � with respe
t to ��.Sin
e 'n ����!' implies that 'n �H��!', if follows from (3.4.10) that F ('n) �H��!F (').Therefore, 'n ����!' =) F ('n) �H��!F (') ; (3.4.11)whi
h proves that F 2 ��.3.4.2 Constru
tion of the Rigged Hilbert Spa
eWe are now in a position to 
onstru
t the Rigged Hilbert Spa
e for the Harmoni
 Os
illator.We begin this 
onstru
tion 
onsidering the antilinear fun
tional on H de�ned byFf(g) := (g; f) ; 8g 2 H ; (3.4.12)where f is a �xed element of H. It is easy to see that Ff , whi
h is determined by the ve
torf 2 H, ful�lls the 
ondition (3.4.7) if the fun
tion ( � ; � ) ful�lls the 
onditions for a s
alarprodu
t. Further, Ff 2 H�, i.e., it also ful�lls (3.4.8). In order to prove this, we take asequen
e gn of elements of H that 
onverges to g 2 H with respe
t to �H. In a Hilbertspa
e, the �H-
onvergen
e implies that(gn; h) �C��! (g; h) (3.4.13)for ea
h h 2 H. This s
alar produ
t 
onvergen
e for ea
h h 2 H is 
alled the weak
onvergen
e of gn to g, in 
ontrast to the norm 
onvergen
e gn �H��! g (
alled also strong
onvergen
e in H). Applying Eq. (3.4.13) to f of (3.4.12), it follows that Ff(gn) ! Ff(g).Thus, Eq. (3.4.12) de�nes a �H-
ontinuous antilinear fun
tional for every f 2 H. Further-more, the 
onverse is also true (see Fre
het-Riesz Theorem in Se
tion 2.3.4), i.e., for everyantilinear �H-
ontinuous fun
tional F (H) 2 H� there exists a unique ve
tor fF 2 H su
hthat hgjF (H)i = F (H)(g) = (g; fF ) ; for every g 2 H : (3.4.14)Therefore we 
an identify the Hilbert spa
e H and its 
onjugate spa
e H� by equating thefun
tional F (H) 2 H� with the ve
tor fF 2 H given by (3.4.14)H� 3 F (H) � fF 2 H : (3.4.15)Then we have that 	 � � � H ' H� : (3.4.16)For �H-
ontinuous fun
tionals F (H) the symbols h � j � i and ( � ; � ) are equivalent after theidenti�
ation F (H) � fF . This identi�
ation is possible be
ause the a
tion of the fun
tionalF (H) at any ve
tor g 2 H is equal to the s
alar produ
t of g with fF :hgjF (H)i = hgjfF i = (g; fF ) : (3.4.17)
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e of the Harmoni
 Os
illatorIn the bra-ket notation, the identi�
ation F (H) � fF is written as jF (H)i � jfF ) or evenas jF i � jf). However, for the 
lass of ��-
ontinuous fun
tionals F the symbol h'jF i (thea
tion of the fun
tional F at the point ') is equal to ('; F ) (the s
alar produ
t of ' andF ) only if F 2 H�. That is,h'jF i = h'jF (H)i = ('; F ) only if F � F (H) 2 H� : (3.4.18)From Eqs. (3.4.9) and (3.4.16), it follows that� � H � �� : (3.4.19)This triplet of spa
es is the Rigged Hilbert spa
e (RHS) or the Gelfand Triplet for theHarmoni
 os
illator.In the spa
e ��, one 
an introdu
e various topologies and therewith various meanings ofsequen
e 
onvergen
e (
f. Se
tion 2.4.2). An example is the weak topology, that is denotedby �� or by �W (
f. Se
tion 2.4.2). This topology leads to a meaning of sequen
e 
onvergen
ethat is analogous to the weak 
onvergen
e in H: a sequen
e of fun
tionals fF
g1
=1 � ��
onverges (weakly) to a fun
tional F with respe
t to �� ifh'jF
i ! h'jF i ; for every ' 2 � : (3.4.20)However, this notion of sequen
e 
onvergen
e does not spe
ify the weak topology 
ompletely,i.e., �� is not �rst 
ountable.On
e �� is equipped with the topology ��, we 
an 
onstru
t its dual spa
e, that isdenoted by ���. The elements of ��� are the ��-
ontinuous antilinear fun
tionals e' on��, i.e., the mappings e' from �� into C that satisfy1. e' is linear,e'(�F1 + �F2) = �e'(F1) + � e'(F2) ; 8F1; F2 2 �� and 8�; � 2 C ; (3.4.21)or in bra-ket notation h�F1 + �F2je'i = �hF1je'i+ �hF2je'i : (3.4.22)2. e' is 
ontinuous with respe
t to ��.The spa
e ��� is also a linear topologi
al spa
e if addition and multipli
ation are de�nedby hF j�e'1 + � e'2i = �hF je'1i+ �hF je'2i (3.4.23)and the (weak) 
onvergen
e is de�ned bye'
 �����! e', hF je'
i ! hF je'i for every F 2 �� : (3.4.24)One 
an prove that to ea
h element ' 2 � there 
orresponds an antilinear 
ontinuousfun
tional e' in ��� de�ned by e'(F ) = F (') ; (3.4.25)
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's notation hF je'i = h'jF i : (3.4.26)Thus, we 
an identify every element e' 2 ��� with an element ' 2 � through (3.4.26) andvi
e versa. Further, it 
an be shown that the 
onvergen
e de�ned by (3.4.24) is the sameas the 
onvergen
e with respe
t to ��. Therefore, the spa
es ��� and � are, from a lineartopologi
al point of view, the same and 
an be identi�ed��� ' � : (3.4.27)The Hilbert spa
e H 
ertainly satis�es (3.4.27) be
ause it already satis�es H� ' H. Sin
ethe fun
tionals over H are given by (3.4.12), the Hilbert spa
e relation that 
orresponds tothe relation (3.4.26) is (f; h) = (h; f) ; (3.4.28)whi
h is a property of the s
alar produ
t.3.4.3 Continuous Linear Operators on the Rigged Hilbert Spa
eThe operators of the algebra of observables were assumed to be de�ned on the linear s
alarprodu
t spa
e 	. Later on, they were extended to the spa
e � in a unique way. We nowextend their a
tions to the dual spa
e ��. For every operator A on �, one 
an de�ne the
onjugate operator (also 
alled the dual operator) A� on �� by(A�F )(') := F (A') ; 8' 2 � ; 8F 2 �� ; (3.4.29)or in bra-ket notation h'jA�jF i = hA'jF i : (3.4.30)If A is a ��-
ontinuous operator on �, then A� is a ��-
ontinuous operator on ��. Inparti
ular, this implies thatA�F
 ����!A�F whenever F
 ����!F : (3.4.31)We have de�ned the notion of 
ontinuous operator through the notion of sequen
e
onvergen
e. This is possible only in spa
es where the �rst axiom of 
ountability issatis�ed. The Hilbert spa
e and the spa
e � are su
h spa
es. In these 
ases, every
ontinuous operator is bounded and every bounded operator is 
ontinuous. If thespa
es are not �rst 
ountable, the notion of 
ontinuity of an operator 
annot be fullyspe
i�ed by the notion of sequen
e 
onvergen
e. This is why in the spa
e ��|thatis not �rst 
ountable|operators A� that ful�ll (3.4.31) are not ne
essarily bounded.If a ��-
ontinuous operator A is also symmetri
, then we have in 
orresponden
e to therelation (3.4.19) between the spa
es the relationA � A � Ay � A� (3.4.32)between the operators. When the operator A is also e.s.a., Eq. (3.4.32) be
omesA � A = Ay � A� : (3.4.33)In parti
ular, the adjoint operators P�, Q�, H� of the operators P , Q, H are ��-
ontinuousoperators on �� and satisfy (3.4.33).
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e of the Harmoni
 Os
illator3.5 Basis Systems, Eigenve
tor De
omposition and theGelfand-Maurin TheoremThe next se
tion is presented a heuristi
 motivation for Dira
 basis ve
tor expansion. Themathemati
al details are 
overed in Se
tion 3.5.2.3.5.1 Basis Systems and Eigenve
tor De
omposition|a Heuristi
Introdu
tionThe simplest example of basis system and eigenve
tor de
omposition is given by the three-dimensional spa
e R3 . In R3 it is 
ustomary to 
hoose a system of three orthonormal ve
torse1; e2; e3 satisfying ei � ej = Æij ; i; j = 1; 2; 3 ; (3.5.1)where ei � ej is the s
alar produ
t of ei and ej and Æij is the Krone
ker delta de�ned byÆij = � 1 if i = j0 if i 6= j : (3.5.2)The basis system ful�lling (3.5.1) 
an be 
hosen somewhat arbitrarily. But it is 
onvenientto 
hoose it in su
h a way that the parti
ular physi
al problem under 
onsideration takes itssimplest mathemati
al form. For example, if one des
ribes a three-dimensional rigid bodywith moment of inertia tensor I, then it is useful to 
hoose the basis system feig su
h thatei � I � ej = I(j)Æij; (3.5.3)i.e., to 
hoose the feig to be eigenve
tors of the (rank 2) tensor I. Every ve
tor v 2 R3 
anbe expanded with respe
t to this basis system of eigenve
tors of I,v = 3Xi=1 ei vi ; (3.5.4)where the vi = ei �v are the 
oordinates (or 
omponents) of the ve
tor v with respe
t to thebasis feig of eigenve
tors of the symmetri
 tensor I.In analogy to the three-dimensional spa
e R3 , one introdu
es a system of basis ve
torsin a general linear spa
e �. If � is an N -dimensional linear spa
e, then there are N linearlyindependent ve
tors feigNi=1 that form an orthonormal basis system for �. We denote thesebasis ve
tors ei also by jei). The s
alar produ
ts of the elements of the basis system arewritten in one of the following ways:ei � ej � (ei; ej) � (eijej) = Æij; i; j = 1; 2; : : : ; N : (3.5.5)As the basis system for the spa
e �, it is often extremely 
onvenient to 
hoose the eigen-ve
tors of an operator A whi
h represents an important observable (most frequently one
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hooses the energy operator H, the position operator Q or the momentum operator P ).Therefore, one seeks a set of basis ve
tors ei 2 � whi
h also ful�llAei = aiei (3.5.6)for some ai 2 C . These eigenve
tors are often labeled by their eigenvalues ai and denotedby ei � jai) : (3.5.7)It 
an be proven that if A is a Hermitian operator on an N -dimensional spa
e �, then thereexists an orthonormal basis system of eigenve
tors of A,Ajai) = aijai) ; i = 1; 2; : : : ; N ; (3.5.8)(aijaj) = Æij ; i; j = 1; 2; : : : ; N ; (3.5.9)su
h that every ve
tor ' 2 � 
an be written as' = NXi=1 jai)(aij') : (3.5.10)This result is the spe
tral theorem for a Hermitian operator A de�ned on a �nite dimensionals
alar produ
t spa
e �. Eq. (3.5.10) is 
alled the spe
tral de
omposition of the ve
tor ' orthe eigenve
tor expansion of ' with respe
t to the basis system fjai)g. The 
omplex numbers'i � (aij') (3.5.11)are the 
omponents of the ve
tor ' with respe
t to the basis fjai)g. The set of ai's (whi
hare real if A is Hermitian) is 
alled the spe
trum of A.In general, the dimension of the linear spa
e � is not �nite. In this 
ase, the above result
annot be applied, and a proper generalization to the in�nite dimensional 
ase is needed.In this in�nite dimensional 
ase, there are two possibilities depending on the spe
trum ofthe observable upon 
onsideration. When the possible measurements of an observable areelements of a dis
rete set of numbers, then only a dis
rete set of eigenvalues is ne
essary.In this 
ase, only an in�nite dimensional generalization of (3.5.8)-(3.5.10) is needed. How-ever, there seem to be observables in physi
s whose possible measurements are elements ofa 
ontinuous set of numbers (e.g., the momentum and position 
an, in many 
ases, takeany real value). In this se
ond 
ase, we need not only the in�nite dimensional general-ization of (3.5.8)-(3.5.10) but also the 
ontinuous in�nite dimensional generalization. Thisgeneralization is the Dira
 basis ve
tor expansion (
f. [1℄) or, in mathemati
al terms, theGelfand-Maurin Theorem (
f. [5℄). This theorem is valid under 
ertain 
onditions on thespa
e �. Sin
e the eigenve
tor de
omposition is essential in quantum physi
s, we will only
onsider spa
es for whi
h this theorem holds.To explain the Gelfand-Maurin Theorem in detail requires mu
h more mathemati
s.These mathemati
s are provided in Se
tion 3.5.2. In this se
tion, we just give an intuitivestatement, whi
h 
an be a

epted in analogy to (3.5.10).
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e of the Harmoni
 Os
illatorWe 
onsider the 
ases of an in�nite dis
rete number of eigenvalues and a 
ontinuous setof eigenvalues in parallel. The self-adjoint operator with dis
rete spe
trum will be 
alledH. Its spe
trum will 
onsist of the in�nitely many real eigenvalues En, n = 0; 1; 2; : : : Theself-adjoint operator with 
ontinuous spe
trum will be denoted by Q.2 The spe
trum ofQ will be the 
ontinuous interval of real numbers [m;M ℄. Then the (heuristi
) spe
traltheorem asserts:There exists a system of eigenve
tors, jEn) in the dis
rete 
ase and jxi in the 
ontinuous
ase, HjEn) = EnjEn); n = 0; 1; 2; : : : ; (3.5.12)Qjxi = xjxi; �1 < m � x �M < +1; (3.5.13)su
h that every ' 2 � 
an be expanded in terms of these eigenve
tors,' = 1Xn=0 jEn)(Enj'); (3.5.14)' = Z Mm dxjxihxj'i ; (3.5.15)and ' = 0 if and only if all its 
omponents are zero, i.e., (Enj') = 0 for all En or hxj'i = 0for all x.3 A system of eigenve
tors jEn) or jxi with these properties is 
alled 
omplete or abasis system. The jxi are 
alled kets, the hxj are 
alled bras and the hxj'i are 
alled bra-kets(see [1℄). The bra-ket hxj'i is a generalization of the usual s
alar produ
t.Thus the spe
tral theorem asserts the existen
e of a 
omplete system of eigenve
tors ofa self-adjoint operator. (Enj') or hxj'i are 
alled the 
oordinates or 
omponents of ' withrespe
t to the basis system fjEn)g or fjxig. They 
an be thought of, in analogy to theN -dimensional 
ase stated in Eq. (3.5.11), as the s
alar produ
ts of the eigenve
tors withthe ve
tor ' (Enj') = (jEn); ') ; (3.5.16)hxj'i = (jxi; ') : (3.5.17)Thus the (Enj') are the dis
rete in�nite dimensional generalization of the 'i in (3.5.11),and the hxj'i are the 
ontinuous in�nite dimensional generalizations of the 'i.Whereas the jEn) are proper eigenve
tors, i.e., they are normalizable, the jxi are not.This is why the jxi are 
alled generalized eigenve
tors or eigenkets and denoted by 
orner-kets j � i, in 
ontrast to the normalizable eigenve
tors jEn), that are denoted by round-kets j � ). Though we 
an manipulate the 
orner-kets as if they were proper eigenve
tors,2For instan
e, H 
an be the Hamiltonian for the harmoni
 os
illator and Q the position operator for theharmoni
 os
illator.3The simple nondegenerate form (3.5.14), (3.5.15) is valid if the operator A (H or Q) is 
y
li
, i.e., ifthere exists an f 2 � su
h that fAnf � f(n)g spans the entire spa
e �. This means that any ' 2 � 
an bewritten as ' =Pn f(n)
(n), where 
(n) are 
omplex numbers. Degenerate spe
tra, whi
h o

ur when morethan one quantum number is needed, will be dis
ussed in Se
tion 3.7.2.
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tor De
omposition and the Gelfand-Maurin Theorem 97mathemati
ally there is an important di�eren
e between the dis
rete basis ve
tors jEn) andthe 
ontinuous basis ve
tors jxi: the jEn) are in � while the jxi are in ��, the spa
e of
ontinuous antilinear fun
tionals over �. Further, (Enj') is indeed the s
alar produ
t ofthe normalized ve
tor jEn) with ', whereas hxj'i is the a
tion of the fun
tional jxi at theve
tor '.If an operator H has dis
rete spe
trum En, n = 0; 1; 2 : : :, then all the 
orrespondingeigenve
tors jEn) enter into the dis
rete basis ve
tor expansion (3.5.14) and there are noother eigenve
tors that enter into this basis ve
tor expansion. If an operator Q has a
ontinuous spe
trum, then in general|and this depends upon the properties of the spa
e�|there are more generalized eigenve
tors of Q (i.e., more kets whi
h ful�ll (3.5.13)) thanappear in the eigenve
tor expansion (3.5.15). Whereas the dis
rete eigenvalues of a self-adjoint operator are always real, the generalized eigenvalues of a self-adjoint operator neednot be real. They 
an be real or 
omplex, and even if they are real, they do not ne
essarilybelong to the spe
trum, i.e., appear in the integral (3.5.15). However, for a self-adjointoperator there is always a real subset of the set of generalized eigenvalues su
h that the setof 
orresponding eigenve
tors is 
omplete.The most general form of the spe
tral theorem for an operator A representing a physi
alobservable is a 
ombination of (3.5.14) and (3.5.15)' =Xi jai)(aij') + Z dajaihaj'i ; (3.5.18)where the sum runs over the dis
rete spe
trum of A and the integral runs over the 
ontinuousspe
trum of A.4 This is the 
ase for the Hamiltonian of the hydrogen atom. It is possiblethat some or all of the values ai appearing in the sum also appear in the integral. In that
ase, they are 
alled dis
rete eigenvalues embedded in the 
ontinuous spe
trum. If thishappens for ak, then jak) is still orthogonal to all the jai in
luding jaki(akjai = 0 ; (akjaki = 0 : (3.5.19)To see that the 
oordinates (Enj') are indeed what their notation indi
ates, namely thes
alar produ
t of the ve
tor ' with the basis ve
tor jEn), we 
al
ulate the s
alar produ
t of(3.5.14) with the eigenve
tor jEm):(jEm); ') = 1Xn=0(jEm); jEn))(Enj') : (3.5.20)4The nu
lear spe
tral theorem for an arbitrary self-adjoint operator a
tually does not assert (3.5.18)but rather (3.5.43) with a general measure d�(x), and it does not say anything about the spe
tral measured�(x) in addition to the assertion of its existen
e. However, all operators used in this dissertation are of thespe
ial kind that either d�(x) = �(x)dx with �(x) a positive smooth measurable fun
tion (su
h operatorsare said to have an absolutely 
ontinuous spe
trum) or d�(x) = Pi Æ(x � xi)dx (these are the operatorswith dis
rete spe
trum), or they have both an absolutely 
ontinuous and a dis
rete spe
trum. So (3.5.18),after a normalization 
hange (3.5.45), is the most general form used in this dissertation.
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 Os
illatorSin
e jEm) and jEn) are eigenve
tors of the same Hermitian operator H,(jEm); jEn)) = 0 if En 6= Em : (3.5.21)For En = Em we normalize them(jEn); jEn)) = k jEn) k2 = 1 : (3.5.22)We 
ombine (3.5.21) and (3.5.22) and obtain(jEm); jEn)) = (EmjEn) = ÆEnEm = Ænm ; n;m = 0; 1; 2; : : : : (3.5.23)Thus, the eigenve
tors of the self-adjoint operator H have the property (3.5.5) as requiredfor orthonormal basis ve
tors. Inserting (3.5.23) into (3.5.20) one obtains(jEm); ') = 1Xn=0 Æmn(Enj') = (Emj') : (3.5.24)This is the expe
ted identity (3.5.16).The spe
tral theorem (3.5.14) leads to other spe
tral de
ompositions: one 
an omit thearbitrary ve
tor ' 2 � on both sides of (3.5.14) and obtain the spe
tral resolution of theidentity operator I I = 1Xn=0 jEn)(Enj ; (3.5.25)where the quantities jEn)(Enj are 
alled proje
tion operators. One 
an also apply the oper-ator H to both sides of (3.5.14)H' = 1Xn=0HjEn)(Enj') = 1Xn=0 EnjEn)(Enj') ; (3.5.26)and then omit the arbitrary ve
tor ' on both sidesH = 1Xn=0 EnjEn)(Enj : (3.5.27)This identity between the operatorH and the weighted sum of proje
tion operators jEn)(Enjis 
alled the spe
tral resolution of the self-adjoint operator H with a dis
rete spe
trum.The s
alar produ
t of any two elements ';  2 � 
an be written in terms of the 
ompo-nents of these ve
tors along the basis ve
tors jEn) as( ; ') = 1Xn=0( jEn)(Enj') = 1Xn=0 (Enj ) (Enj') : (3.5.28)
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omposition and the Gelfand-Maurin Theorem 99In parti
ular, if one 
hooses  = ', then one obtainsk'k2 = ('; ') = 1Xn=0('jEn)(Enj') = 1Xn=0 j(Enj')j2: (3.5.29)Equation (3.5.28) is the analog to the formulav � x = 3Xi;j=1 vi ei�ej xj = 3Xi=1 vi xi (3.5.30)for the ordinary s
alar produ
t in R3 .In the three-dimensional spa
e R3 , a ve
tor v is spe
i�ed by its 
omponents (v1; v2; v3)with respe
t to the basis system fe1; e2; e3g. Moreover, any sequen
e of three real numbers(v1; v2; v3) determines a ve
tor v. In the dis
rete in�nite dimensional 
ase, any ve
tor ' isalso 
ompletely spe
i�ed by its 
omponents (Enj') with respe
t to a given basis jEn). But,unlike the three-dimensional 
ase, the sequen
e of 
omponents((E0j'); (E1j'); (E2j'); : : : ; (Enj'); : : :) (3.5.31)is not arbitrary but has to ful�ll 1Xn=0 j(Enj')j2 <1 ; (3.5.32)i.e., it must be square summable (
f. Eq. (3.5.29)). The sequen
e (3.5.31) is 
alled therealization of ' by the sequen
e of its 
omponents. In the 
ase of a Hilbert spa
e H, ea
h' 2 H is asso
iated to a sequen
e of 
omponents (3.5.31) that ful�lls (3.5.32), and H is saidto be realized by the spa
e of in�nite square summable sequen
es.The elements of the spa
e � are usually required to satisfy further 
onditions besides(3.5.32). The ' 2 � must be su
h that every operator A representing a physi
al observableis de�ned on the whole spa
e �. This implies that A' must be well de�ned for ea
h ' 2 �,i.e., (A';A') must be �nite. If the observable under 
onsideration is represented by theoperator H, then H and all of its powers must be well de�ned on �, i.e., (Hp';Hp') mustbe �nite for ea
h p = 0; 1; 2; : : : This leads to(Hp';Hp') = 1Xn=0('jHpjEn)(EnjHpj')= 1Xn=0 E2pn j(Enj')j2 <1 for any p = 0; 1; 2; : : : (3.5.33)Thus, not only f(Enj')g1n=0 but also fEp(Enj')g1n=0, p = 1; 2; : : :, have to be squaresummable for any ' 2 �. When ea
h element of a spa
e � is asso
iated to a sequen
e'$ ( (E0j'); (E1j'); : : : ; (Enj'); : : :) (3.5.34)
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e of the Harmoni
 Os
illatorwhi
h ful�lls (3.5.33), we say that � is realized by the spa
e of rapidly de
reasing in�nitesequen
es.We now turn to the 
ontinuous spe
trum 
ase and repeat the above 
onsiderations forthis 
ase. We 
al
ulate the s
alar produ
t of ' with the generalized eigenve
tor jxi 5 usingEq. (3.5.15) (jxi; ') = Z +1�1 dy (jxi; jyi) hyj'i ; (3.5.35)where we have assumed that the 
ontinuous spe
trum runs over the whole real line (whi
his the 
ase for e.g. the position operator Q of the harmoni
 os
illator). Using the de�nitionhxjyi � (jxi; jyi) ; (3.5.36)Eq. (3.5.35) 
an be rewritten as(jxi; ') = Z +1�1 dy hxjyihyj'i : (3.5.37)In analogy to the N -dimensional 
ase (3.5.10), hxj'i is the 
omponent of the ve
tor ' alongthe dire
tion of the basis ve
tor jxi, while (jxi; ') is the \s
alar produ
t" of ' with the basisve
tor jxi. This analogy also suggests that the 
omponent of ' along jxi should be givenby the \s
alar produ
t" of ' with jxi, i.e., it should be of the form hxj'i � (jxi; '). Then,one would have hxj'i = Z +1�1 dy hxjyi hyj'i : (3.5.38)The 
omponents hyj'i are fun
tions of the 
ontinuous variable y in the same way as the s
alarprodu
ts (Enj') are fun
tions of the dis
rete variable En. Equation (3.5.38) therefore saysthat the mathemati
al quantity hxjyi has the property that it maps the fun
tion '(y) =hyj'i by integration into '(x) = hxj'i, its value at the �xed point x. There is no well-behaved (or even a lo
ally integrable) fun
tion hxjyi whi
h has the property (3.5.38).Quantities like hxjyi, whi
h are de�ned by integration, are 
alled distributions or gener-alized fun
tions (see, for example, [67℄). The distribution hxjyi de�ned by (3.5.38) is 
alledthe Dira
 delta fun
tion (though it is not a fun
tion). It is denoted in analogy to (3.5.23)by hxjyi = Æ(x� y) : (3.5.39)Æ(x�y) is the 
ontinuous analog to ÆEnEm : the Krone
ker delta is usually de�ned by (3.5.2),but it 
ould as well have been de�ned as the fun
tion that maps any sequen
e f(Enj')g bysummation into (Emj'), the m-th 
omponent of the sequen
e,(Emj') = 1Xn=0 ÆEmEn(Enj') : (3.5.40)5More pre
isely, we should say that we 
al
ulate the value (jxi; ') of the fun
tional jxi at the ve
tor' 2 �.
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tor De
omposition and the Gelfand-Maurin Theorem 101De�ning the Krone
ker delta by (3.5.40) gives a 
learer analogy to (3.5.38).The jxi are not dimensionless. They have the dimension 1=pdim(dx). For example, ifdx has the dimension 
m, then hx0jxi has the dimension 
m�1, and jxi has the dimension
m�1=2.The eigenve
tors jEn) are normalized a

ording to (3.5.23). The normalization (3.5.39)for the generalized eigenve
tors jxi is 
alled Æ-fun
tion normalization.Instead of the generalized eigenve
tors with Æ-fun
tion normalization (3.5.39), one 
analso 
hoose generalized eigenve
tors of Q with a di�erent normalization. One 
an de�ne anew set of generalized eigenve
tors byjxg� := jxi 1p�(x) ; (3.5.41)where �(x) is a real nonnegative and integrable fun
tion. These new kets are still eigenve
-tors of the operator Q, Qjxg� = xjxg� : (3.5.42)Now instead of (3.5.15), the eigenfun
tion expansion in terms of the jxg� kets reads' = Z d�(x) jxg� �fxj'i ; (3.5.43)where d�(x) = �(x) dx. In order for the new 
omponents of ' (the �fxj'i) to be the s
alarprodu
t of ' with the new eigenve
tors jxg�, i.e., in order that�fxj'i = Z d�(y) �fxjyg� �fyj'i ; (3.5.44)one has to demand d�(y) �fxjyg� = dy hxjyi = dy Æ(x� y) : (3.5.45)So, the normalization of the new generalized eigenve
tors is�fxjyg� = �d�(y)dy ��1Æ(x� y) = ��1(y)Æ(x� y): (3.5.46)Thus, when the integration 
ontains the weight fun
tion �(x), the generalized eigenve
tornormalization will 
ontain the fa
tor ��1(x).The most appropriate 
hoi
e for �(x) depends upon the property of the operator Q andits relation to the other operators of the problem. The 
hoi
e �(x) = 1 is not always themost 
onvenient. For instan
e, it may be 
onvenient to 
hoose �(x) in su
h a way that themeasure d�(x) in (3.5.43) is invariant under some important symmetry transformation ofthe physi
al system.The s
alar produ
t of ' 2 � with  2 � is given in the notation of (3.5.38) by( ; ') = h j'i = Z +1�1 dx h jxi hxj'i : (3.5.47)
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e of the Harmoni
 Os
illatorIn the same way (';  ) = Z +1�1 dx h'jxi hxj i : (3.5.48)Taking 
omplex 
onjugates on both sides of (3.5.48), we get(';  ) = Z +1�1 dx h'jxi hxj i : (3.5.49)But the s
alar produ
t ful�lls ( ; ') = (';  ) : (3.5.50)Thus, 
omparing (3.5.47) and (3.5.49) we see that the following relation is natural:hxj i = h jxi ;  2 � ; jxi 2 �� : (3.5.51)Using the notation hxj'i � '(x) (3.5.52)and (3.5.51), one 
an write (3.5.47) in the form( ; ') = Z +1�1 dx (x)'(x) : (3.5.53)In parti
ular, if one 
hooses  = ', one obtainsk'k2 = ('; ') = Z +1�1 dx'(x)'(x) = Z +1�1 dx j'(x)j2: (3.5.54)This implies that the 
omponents of a ve
tor ' 2 � with respe
t to the 
ontinuous basissystem jxi 
annot be given by any arbitrary fun
tion '(x). Rather, they 
an be given onlyby those fun
tions for whi
h the integral on the right-hand side of Eq. (3.5.54) exists, i.e.,the fun
tions '(x) must be at least square integrable.The asso
iation of ' with its 
omponents� 3 '$ hxj'i = '(x) (3.5.55)is 
alled the realization of the spa
e � by the spa
e of fun
tions '(x). The fun
tion '(x) =hxj'i is 
alled the wave fun
tion of the ve
tor '; in parti
ular, if Q is the position operator,then '(x) is 
alled the position wave fun
tion.If the integrals in (3.5.53) and (3.5.54) are ordinary Riemann integrals, then the linearspa
e of fun
tions '(x) is not 
omplete with respe
t to the norm de�ned by (3.5.54). Thismeans that there will be sequen
es of fun
tions  n(x) that are Cau
hy sequen
es,k n �  mk2 = Z +1�1Riemann dx j n(x)�  m(x)j2 ! 0 as n;m!1 ; (3.5.56)
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omposition and the Gelfand-Maurin Theorem 103but for whi
h there exists no fun
tion  (x) whi
h is the limit element of that sequen
e,k n �  k2 = Z +1�1Riemann dx j n(x)�  (x)j2 ! 0 as n!1 : (3.5.57)In order to obtain a 
omplete spa
e of fun
tions with respe
t to the s
alar produ
t(3.5.53), one has to repla
e the Riemann integrals in (3.5.56) and in (3.5.57) by Lebesgueintegrals. Then, for any sequen
e of (Lebesgue) square integrable fun
tions  n(x) satisfyingk n �  mk2 = Z +1�1Lebesgue dx j n(x)�  m(x)j2 ! 0 as n;m!1 ; (3.5.58)there is always a (Lebesgue) square integrable fun
tion  (x) satisfyingk n �  k2 = Z +1�1Lebesgue dx j n(x)�  (x)j2 ! 0 as n!1 : (3.5.59)The (
omplete) spa
e of Lebesgue square integrable fun
tions is denoted by L2(R). Justlike the spa
e of in�nite square summable sequen
es, the spa
e L2(R) of square integrablefun
tions is a realization of the Hilbert spa
e.The elements of the spa
e � of physi
al states ' are required, in addition to be squarenormalizable, to be su
h that the operator Q and all of its powers be well de�ned on every' 2 �. Then one must havekQp'k2 = (Qp';Qp') = Z +1�1 dx x2pj'(x)j2 <1 ; p = 0; 1; 2; : : : (3.5.60)Thus, the fun
tions '(x) that belong to the realization that ful�lls (3.5.60) must de
reasefaster than any power of 1=x. If other operators are also to be de�ned everywhere on �,further 
onditions will have to be imposed on the 
omponents hxj'i of ' 2 �. Consequently,the realization of � by a spa
e of fun
tions must be a subset of L2(R).For instan
e, we 
an de�ne a linear operator P on the spa
e � by giving a pres
riptionfor its a
tion on ea
h fun
tion '(x) whi
h realizes a ve
tor ' 2 �. Let this operator bede�ned by hxj'i ! hxjP'i := 1i ddx hxj'i (3.5.61)for every ' 2 �. We also de�ne, a

ording to (3.5.13), the operator Q on � byhxj'i ! hxjQ'i := x hxj'i (3.5.62)for ea
h ' 2 �. If we demand that Qp and P p, p = 0; 1; 2; : : :, are well de�ned at every' 2 �, then the fun
tions '(x) must be in�nitely di�erentiable, rapidly de
reasing fun
tions,i.e., in addition to (3.5.60) the '(x) must be in C1(R) and must satisfykP p'k2 = (P p'; P p') = Z +1�1 dx ����dp'(x)dxp ����2 <1 ; p = 0; 1; 2; : : : (3.5.63)
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illatorThe requirement that QqP p', q; p = 0; 1; 2; : : :, is well de�ned leads to the 
onditionskQqP p'k2 = Z +1�1 dx ����xq dp'(x)dxp ����2 <1 ; p; q = 0; 1; 2; : : : : (3.5.64)This means that the realization of the spa
e � is the linear spa
e of in�nitely di�eren-tiable 
omplex-valued fun
tions whi
h together with their derivatives vanish at in�nite morerapidly than any power of 1=x. This spa
e is the S
hwartz spa
e S(R), and we 
all thesefun
tions well behaved. Conditions (3.5.64) are equivalent tolimx!�1xn dmdxm'(x) = 0 ; n;m = 0; 1; 2; : : : (3.5.65)The spa
e S(R) is not 
omplete with respe
t to the norm 
onvergen
e de�ned through(3.5.54). In fa
t, its 
ompletion with respe
t to this norm is the spa
e L2(R). However,S(R) is a 
omplete 
ountably Hilbert spa
e with respe
t to the topology generated by the
ountable number of s
alar produ
ts( ; ')p := ( ; (P 2 +Q2 + 12I)p') = Z 1�1 dx (x) �� d2dx2 + x2 + 12�p '(x) ; p = 0; 1; 2; : : :(3.5.66)A sequen
e 'n 2 S(R) 
onverges to ' 2 S(R) with respe
t to this topology ifk'n � 'kp ��!n!1 0 ; p = 0; 1; 2; : : : ; (3.5.67)where k'kp =p('; ')p.In Se
tion 3.6.3, we shall show that the S
hwartz spa
e is the realization of the spa
e �for the harmoni
 os
illator.The Lebesgue integral, though mathemati
ally well de�ned, is not easy to handle inpra
ti
al 
omputations, while Riemann integrations are easy to 
al
ulate. In physi
s, theRiemann integral is the one that is ex
lusively used to perform 
omputations. The Hilbertspa
e uses Lebesgue integration, whereas the spa
e � uses Riemann integration. This makes� a mu
h simpler spa
e to work with and mu
h more suitable for representing the physi
alwave fun
tions than the Hilbert spa
e. As an example, the integrals (3.5.54) in L2(R)are Lebesgue integrals, whereas the integrals (3.5.66) in S(R) are Riemann integrals. Thismakes S(R) a mu
h easier spa
e to handle than L2(R).3.5.2 Gelfand-Maurin TheoremWe are now in a position to address the Gelfand-Maurin Theorem, whi
h provides themathemati
al justi�
ation for the heuristi
 Dira
 basis ve
tor expansion.Before stating the Gelfand-Maurin Theorem, let us review the situation in �nite dimen-sional spa
es 	 and in the Hilbert spa
e H.A nonzero ve
tor h in 	 or in H is 
alled an eigenve
tor of an operator A de�ned on 	or on H if there exists a 
omplex number �, 
alled the eigenvalue, su
h thatAh = �h : (3.5.68)
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omposition and the Gelfand-Maurin Theorem 105Theorem Every self-adjoint operator A de�ned on an N -dimensional s
alar produ
t spa
e	 has a 
omplete system of orthonormal eigenve
tors hi = j�i) 2 	, i = 1; 2; : : : ; N ,Aj�i) = �ij�i) ; (3.5.69)(�ij�j) = Æij ; (3.5.70)su
h that every h 2 	 
an be expanded ash = NXi=1 j�i)(�ijh) : (3.5.71)The set Sp(A) = f�1; �2; : : : ; �Ng of the eigenvalues of A is 
alled the spe
trum of A.For an in�nite dimensional Hilbert spa
eH this statement is no longer true. For example,it is well known that the di�erential operatorP'(x) = �id'dx (x) (3.5.72)and the multipli
ation operator Q'(x) = x'(x) (3.5.73)have no eigenve
tors in L2(R). However, there is a 
lass of operators in the Hilbert spa
e
alled 
ompa
t operators for whi
h the generalization of (3.5.69)-(3.5.71) holds.A bounded operator A on a Hilbert spa
e H is said to be 
ompa
t if for every boundedsequen
e fhng � H, fAhng has a subsequen
e 
onvergent in H. A self-adjoint 
ompa
toperator A on an in�nite dimensional Hilbert spa
e H has only a dis
rete spe
trum whi
h
oin
ides with the set of its eigenvalues, Sp(A) = f�1; �2; : : : ; �n; : : :g. In this 
ase, thestatements (3.5.69)-(3.5.71) for operators on �nite dimensional spa
es 
arry over to thein�nite dimensional 
ase.Theorem For any 
ompa
t self-adjoint operator A de�ned on a Hilbert spa
e H, thereexists an orthonormal set of eigenve
tors hi � j�i), �i 2 Sp(A) = f�1; �2; : : : ; �n; : : :g,Aj�i) = �ij�i) ; (3.5.74)(�ij�j) = Æij ; (3.5.75)su
h that every h 2 H 
an be expanded ash = 1Xi=1 j�i)(�ijh) ; (3.5.76)where ea
h eigenvalue �i is repeated a

ording to its (�nite) multipli
ity.The observables that usually appear in Quantum Me
hani
s are des
ribed by unboundedoperators de�ned on some dense subdomains of the Hilbert spa
e. In this 
ase, the (Hilbert
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illatorspa
e) spe
trum of the operator is not dis
rete in general, but has a 
ontinuous part (
f. Se
-tion 2.5.3). For example, P and Q in (3.5.72) and (3.5.73) ea
h has a 
ontinuous spe
trumwhi
h 
oin
ides with the real line. When the spe
trum of an operator has a 
ontinuouspart, the spe
tral de
ompositions (3.5.71) and (3.5.76) are no longer valid be
ause there areno ve
tors in the Hilbert spa
e that are eigenve
tors 
orresponding to eigenvalues in the
ontinuous part of the spe
trum. In order to extend (3.5.71) and (3.5.76) to the 
ase wherethe spe
trum has a 
ontinuous part, we need the Gelfand-Maurin Theorem whi
h is statedbelow.Dira
 formalism is the way physi
ists handle 
ontinuous spe
trum. For instan
e, theoperators P and Q, as de�ned in (3.5.72) and (3.5.73), have a 
ontinuous spe
trum that
overs the whole real line but do not have any eigenve
tor in H. Nevertheless, physi
ists,following Dira
, always asso
iate an eigenket to ea
h element of the 
ontinuous spe
trum ofP and of Q, P jpi = pjpi ; p 2 R ; (3.5.77)Qjqi = qjqi ; q 2 R ; (3.5.78)and use the assumption that these eigenve
tors form a \
omplete" system in the sense thatevery ' 
an be written as ' = Z +1�1 dp jpihpj'i ; (3.5.79)' = Z +1�1 dq jqihqj'i : (3.5.80)When we omit ' in (3.5.79) and in (3.5.80), we obtain the resolution of the identityI = Z +1�1 dp jpihpj ; (3.5.81)I = Z +1�1 dq jqihqj : (3.5.82)However, the kets jpi and jqi are not in the Hilbert spa
e, and the eigenvalues p and q arenot proper eigenvalues. The eigenkets 
orresponding to elements in the 
ontinuous spe
trumof an operator a
quire mathemati
al meaning as generalized eigenve
tors 
orresponding togeneralized eigenvalues in the sense of the following de�nition:De�nition Let A be a ��-
ontinuous operator on � and A� its dual extension to ��. Ageneralized eigenve
tor of the operator A 
orresponding to the generalized eigenvalue � isan antilinear fun
tional F 2 �� su
h thatF (A') = �F (') ; 8' 2 � ; (3.5.83)or in bra-ket notation hA'jF i = h'jA�F i = �h'jF i : (3.5.84)
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omposition and the Gelfand-Maurin Theorem 107Equations (3.5.83) and (3.5.84) are often written asA�F = �F or A�jF i = �jF i ; (3.5.85)respe
tively. Following Dira
, the ket in (3.5.85) is often labeled by its eigenvalue, jF i � j�i.Then we write A�j�i = �j�i : (3.5.86)If A is essentially self-adjoint, we may also writeAj�i = �j�i : (3.5.87)Let us assume that A has a generalized eigenve
tor in the Hilbert spa
e, i.e., F � f inequation (3.5.84) is an element of H. Then (3.5.84) reads(A'; f) = (';Ayf) = �('; f) (3.5.88)for every ' 2 �. Sin
e � is �H-dense in H, (3.5.88) implies thatA�F � Ayf = �f : (3.5.89)Thus, a generalized eigenve
tor whi
h is also an element of the Hilbert spa
e is an ordinaryeigenve
tor of the Hilbert spa
e adjoint operator 
orresponding to the same eigenvalue.To avoid 
ompli
ations whi
h are inessential for our main purposes and inappli
able forthe parti
ular problem of the one-dimensional harmoni
 os
illator, we restri
t ourselves hereto 
y
li
 operators.De�nition An operator A de�ned on a subdomain D(A) of a Hilbert spa
e H is 
y
li
 ifthere exists a ve
tor f 2 D(A) su
h that fAkfg1k=0 spans the entire Hilbert spa
e.For instan
e, the operators P and Q in (3.5.72) and (3.5.73) are 
y
li
 be
ause the setsfQk�0 ; k = 0; 1; 2; : : :g (3.5.90)and fP k�0 ; k = 0; 1; 2; : : :g ; (3.5.91)where �0 is the zero-th Hermite polynomial, both span H.If A has a 
ontinuous spe
trum, the spe
tral de
omposition (3.5.76) is not possible in theHilbert spa
e. However, a generalization of (3.5.76), 
alled the Gelfand-Maurin Theorem orthe Nu
lear Spe
tral Theorem, is possible in the Rigged Hilbert Spa
e.Theorem (Gelfand-Maurin Theorem or Nu
lear Spe
tral Theorem) Let � � H � �� bea Rigged Hilbert Spa
e and A a 
y
li
, e.s.a., ��-
ontinuous operator. Then, for ea
h � inthe spe
trum of A, there exists a generalized eigenve
tor F� � j�i,A�j�i = �j�i ; � 2 Sp(A) ; (3.5.92)
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illatori.e., hA'j�i = h'jA�j�i = �h'j�i ; 8' 2 � : (3.5.93)Furthermore, there is some uniquely de�ned positive measure d�(�) on Sp(A) su
h that forevery ';  2 � ( ; ') = ZSp(A) d�(�)h j�ih�j'i ; (3.5.94)where h�j'i = h'j�i : (3.5.95)Furthermore, if f(�) is a well-behaved fun
tion on Sp(A), then( ; f(A)') = ZSp(A) d�(�)h j�ih�j'if(�) (3.5.96)If we set  = ' in (3.5.94), we see that if all the 
omponents h�j'i of the spe
tralde
omposition of ' with respe
t to the operator A vanish, then k'k = 0, i.e., ' = 0.Be
ause of this property, the set of generalized eigenve
tors j�i o

urring in (3.5.92) is
alled 
omplete in analogy to the 
ompleteness of the system of ordinary eigenve
tors in aHilbert spa
e.In general, an e.s.a. operator has more generalized eigenve
tors than those that appear inthe spe
tral de
omposition (3.5.94). In parti
ular, a generalized eigenvalue may be 
omplex.The spe
tral de
omposition provided by the Gelfand-Maurin theorem needs not beunique and it is also valid in many 
ases when � is not a nu
lear spa
e.The statement of the Gelfand-Maurin Theorem is still too general for the purposes ofQuantum Me
hani
s. For the 
ases of physi
al interest, the measure d�(�) that appears inthis theorem has a dis
rete and an absolutely 
ontinuous part, i.e., it 
an be written asd�(�) = Xdis
retespe
trum�(�i)Æ(�� �i) + �(�)d� : (3.5.97)After a delta-normalization given by (3.5.41), equations (3.5.94) and (3.5.97) yield( ; ') = Xdis
retespe
trum( j�i)(�ij') + Z
ontinuousspe
trum d� h j�ih�j'i ; ';  2 � : (3.5.98)Eq. (3.5.98) is the form in whi
h the Gelfand-Maurin theorem is used in physi
s be
auseit is pre
isely the Dira
 basis ve
tor expansion. This expansion treats the elements of thedis
rete spe
trum and the elements of the 
ontinuous spe
trum of the operator A on thesame footing: there is always an eigenve
tor 
orresponding to ea
h element of the spe
trumof the operator. If this element belongs to the dis
rete spe
trum, then the 
orrespondingeigenket is an ordinary eigenve
tor (i.e., it is square normalizable). If the element is in the
ontinuous part of the spe
trum, then the 
orresponding eigenket is a generalized eigenve
tor
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illator 109(i.e., it is a fun
tional). It is worthwhile noting that the spe
tral de
omposition (3.5.98) isonly valid for elements  ; ' in the spa
e �, but not for every element h in the Hilbert spa
eH. The Gelfand-Maurin Theorem provides a mathemati
al rephrasing of several formalexpressions used in Quantum Me
hani
s. For instan
e, omission of  in (3.5.98) leads tothe spe
tral de
omposition of any wave fun
tion ' 2 � ,' =Xi j�i)(�ij') + Z d�j�ih�j'i : (3.5.99)In the same way, we 
an obtain the spe
tral resolution of the identity operatorI =Xi j�i)(�ij+ Z d� j�ih�j (3.5.100)and of the operator itself A =Xi �i j�i)(�ij+ Z d� � j�ih�j : (3.5.101)As an example, Eq. (3.5.79) is a parti
ular 
ase of (3.5.94) with Sp(P ) = R, � = p 2 Rand d�(�) = dp, the Lebesgue measure on R, and similarly for the position operator.3.6 Gelfand-Maurin Theorem Applied to the Harmoni
Os
illatorIn this se
tion, we will apply the Gelfand-Maurin Theorem to the operators of the algebra ofobservables of the harmoni
 os
illator. We will show that the de�ning algebrai
 assumptions(3.2.1)-(3.2.4) and the ��-
ontinuity of the algebra of observables lead to the S
hr�odingerrepresentation in the S
hwartz spa
e S(R). The operators P , Q and H will be realized bythe standard di�erential operators and the spa
e � will be realized by the S
hwartz spa
e.3.6.1 Spe
tral Theorem Applied to the Energy OperatorWe now re
all the spe
tral properties of H. These spe
tral properties were derived in the
onstru
tion of the RHS for the harmoni
 os
illator.The spe
trum of H is the dis
rete setSp(H) = fEn = ~!(n+ 12) ; n = 0; 1; 2; : : :g : (3.6.1)Corresponding to ea
h eigenvalue En, there is an eigenve
tor �n � jn) of H:Hjn) = Enjn) : (3.6.2)
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 Os
illatorThe eigenve
tors jn) are proper eigenve
tors, i.e., jn) 2 �, rather than generalized eigenve
-tors, i.e., elements of ��. These eigenve
tors form a basis system for �, i.e., every ' 2 �
an be written as ' = 1Xn=0 jn)(nj') ; (3.6.3)where the 
omponents (nj') 2 C satisfy1Xn=0(n+ 1)p j(nj')j2 <1 (3.6.4)for every p = 0; 1; 2; : : :3.6.2 Spe
tral Theorem Applied to the Position and MomentumOperatorsWe now want to 
al
ulate the spe
tra of the operators Q and P and the generalized eigen-ve
tors that 
orrespond to the elements of these spe
tra. These generalized eigenve
torswill be 
ontinuous antilinear fun
tionals over the spa
e � 
onstru
ted in Se
tion 3.3.We �rst determine whether the Gelfand-Maurin Theorem of Se
tion 3.5.2 
an be appliedto the operators Q and P . The spa
e �, whose topology is de�ned by the 
ountable numberof s
alar produ
ts (';  )p = ('; (N + I)p ) ; (3.6.5)was proved to be a nu
lear spa
e (
f. Se
tion 3.3.5). The operators position Q and momen-tum P were proved to be ��-
ontinuous (
f. Se
tion 3.3.5). Q and P are 
y
li
 operators,sin
e the sets fQn�0 j n = 0; 1; 2; : : :g (3.6.6)and fP n�0 j n = 0; 1; 2; : : :g ; (3.6.7)where �0 is the zeroth eigenve
tor of the Hamiltonian operator, both span the whole of H.Therefore, we 
an apply the Gelfand-Maurin to these operators. This theorem assures theexisten
e of a 
omplete set of generalized eigenve
tors of the operators Q and P ,Q�jxi = xjxi ; x 2 Sp(Q) ; (3.6.8)P�jpi = pjpi ; p 2 Sp(P ) ; (3.6.9)and either of these two sets 
an be used for the spe
tral de
omposition of any ve
tor ' in�: ' = ZSp(Q) d�(x) jxihxj'i ; (3.6.10)or ' = ZSp(P ) d�(p) jpihpj'i ; (3.6.11)
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illator 111where d�(x) and d�(p) are measures on Sp(Q) and Sp(P ), respe
tively.It is well known that the spe
trum of both P and Q is the real line. However, it is notso widely known that the derivation of this is far from being trivial (see [68℄ and referen
estherein). The approa
h of a physi
ist is usually the reverse of the one des
ribed here, namelya physi
ist �nds the de�ning assumptions (3.2.1)-(3.2.4) of the harmoni
 os
illator from thespe
tra of Q and P , whi
h are 
onje
tured from experimental data to be the real line. Weshall derive these spe
tra in the present se
tion. We will see that d�(x) = dx, Sp(Q) = R,d�(p) = dp and Sp(P ) = R. We shall see that the set of generalized eigenvalues of Q (ofP ) agrees with the spe
trum of Q (of P ) when we 
hoose for the spa
e � in the RHSthe 
ountably Hilbert spa
e de�ned by the 
ountable number of s
alar produ
ts (3.6.5).However, sin
e the set of generalized eigenvalues depends upon the 
hoi
e of the spa
e �,we 
ould 
hoose a di�erent 
ountably Hilbert spa
e and obtain also 
omplex generalizedeigenvalues of the essentially self-adjoint operator Q (or P ).We begin by examining for whi
h values x 2 C the equationQ�jxi = xjxi (3.6.12)
an be ful�lled, i.e., for whi
h 
omplex numbers x the equationhQ'jxi = h'jQ�jxi = xh'jxi (3.6.13)holds for every ' 2 �. Sin
e every ' 2 � 
an be expanded in terms of the basis ofeigenve
tors �n = jn) of H as in (3.6.3), it will be suÆ
ient to know for whi
h x theequation (njQ�jxi = x(njxi (3.6.14)holds for every jn).From (3.2.5), (3.2.6) and (3.2.27) it follows thatQjn) = s ~2�! (a + ay)jn)= s ~2�! �pnjn� 1) +pn + 1jn+ 1)� : (3.6.15)Taking the \s
alar produ
t" of this equation with jxi we obtain(njQ�jxi =s ~2�! (pn(n� 1jxi+pn + 1(n+ 1jxi) : (3.6.16)Equation (3.6.16) is mathemati
ally well de�ned even though we used the term \s
alarprodu
t" of Qjn) with jxi, whi
h is not well de�ned sin
e jxi 2 ��. The pre
isemeaning of (3.6.16) is as follows: sin
e jn) 2 �, so is ' � Qjn), be
ause Q leaves �invariant. Therefore, we 
an 
onsider the value of the fun
tional jxi � Fx 2 �� at
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e of the Harmoni
 Os
illatorthe point ' 2 �, Fx(') = h'jFxi. A

ording to (3.4.25), this is related to the valueof the fun
tional e' 2 ��� � � at the point Fx 2 �� byFx(') = e'(Fx) ; (3.6.17)or in bra-ket notation h'jFxi = hFxje'i � hFxj'i ; (3.6.18)where the identi�
ation ��� 3 e' � ' 2 � was used. Returning to ' � Qjn) = Q�n,(3.6.18) is written as hxjQjn) = hxjQ�ni = hQ�njxi = (njQ�jxi : (3.6.19)This is the quantity that appears on the left hand side of (3.6.16). The quantities(n� 1jxi and (n+ 1jxi are similarly de�ned by 
hoosing ' = jn� 1) and ' = jn+ 1)respe
tively.On the other hand, taking the s
alar produ
t of (3.6.12) with jn), (more pre
isely, thea
tion of the fun
tional Q�jxi at jn)) we obtain(njQ�jxi = x (njxi : (3.6.20)Comparing (3.6.16) with (3.6.20) yieldsx (njxi =s ~2�! �pn(n� 1jxi+pn+ 1(n + 1jxi� ; (3.6.21)or with n+ 1 = m,pm(mjxi =r2�!~ x(m� 1jxi � pm� 1(m� 2jxi : (3.6.22)Sin
e Eq. (3.6.15) is valid for n = 1; 2; : : : ; Eq. (3.6.22) is valid for m = 2; 3; : : : For n = 0(m = 1), we obtain instead of (3.6.15)Qj0) =s ~2�! p0 + 1 j0 + 1) =s ~2�! j1) ; (3.6.23)and instead of (3.6.22) p1 (1jxi =r2�!~ x (0jxi : (3.6.24)Thus we see that (3.6.22) is a re
urren
e relation for (mjxi: if (0jxi is known, we 
andetermine (1jxi by (3.6.24) and then determine (2jxi by (3.6.22). With (1jxi and (2jxi we
an determine (3jxi by (3.6.22), and so on.To �nd out what the transition 
oeÆ
ients (mjxi are, we introdu
ey �r�!~ x (3.6.25)
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illator 113and fn(y) � p2nn! (njxi(0jxi ; (3.6.26)whi
h is de�ned for all x su
h that (0jxi 6= 0 (if (0jxi = 0, then by (3.6.22) and (3.6.24)(njxi = 0 for all n). Then from (3.6.22) it follows thatr m2mm! fm(y) =s 22m�1(m� 1)! y fm�1(y)�s m� 12m�2(m� 2)! fm�2(y) ; (3.6.27)or fm(y) = 2yfm�1(y)� 2(m� 1)fm�2(y) (3.6.28)From (3.6.24) we have f1(y) = 2yf0(y) ; (3.6.29)and from (3.6.26) f0(y) = 1 : (3.6.30)Equations (3.6.28)-(3.6.30) are the re
urren
e relations for the Hermite fun
tions and havesolutions for any 
omplex number y. Thus for any 
omplex value x there is a solution(njxi of the re
urren
e relation (3.6.22). Sin
e Q is an e.s.a. operator, the (Hilbert spa
e)spe
trum of Q must be real (
f. Se
tion 2.5.3). Therefore the generalized eigenvalues thatappear in the integral de
omposition (3.6.10) must be real, and we need to 
onsider onlythe solutions fm(y) for y 2 R.For real values of y, the solutions fm(y) of (3.6.28)-(3.6.30) are the Hermite polynomials:fn(y) = Hn(y) = (�1)ney2 dn(e�y2)dyn : (3.6.31)Thus from (3.6.26) we 
an obtain the transition 
oeÆ
ient (njxi for every real value of x forwhi
h (0jxi is de�ned. We restri
t ourselves to those solutions of (3.6.22) for whi
h (0jxi is�nite, be
ause j(0jxij2, the probability for obtaining the value x in a measurement of Q inthe ground state �0 = j�0)(�0j, is assumed to be �nite.Combining (3.6.25), (3.6.26) and (3.6.31), we have(njxi = 1p2nn! (0jxiHn�r�!~ x� (3.6.32)for �1 < x < +1.Sin
e every ' 2 � 
an be expanded as' = 1Xn=0 jn)(nj') ; (3.6.33)the jxi 
an be de�ned at ea
h ' byhxj'i = 1Xn=0hxjn)(nj') : (3.6.34)
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e of the Harmoni
 Os
illatorThe quantities hxj'i � '(x) are 
alled the position wave fun
tions or the wave fun
tions inthe position representation. The quantities hxjn) � �n(x) are 
alled the energy eigenfun
-tions, sin
e they ful�ll hxjHjn) = Enhxjn) : (3.6.35)Be
ause of Eq. (3.6.34), the energy eigenfun
tions hxjn) 
an be viewed also as \transitionelements" between the x- and the n-representation.If we 
onsider the expansion�n = ZSp(Q) d�(x) jxihxj�n) (3.6.36)of the energy eigenve
tors �n in terms of the eigenkets of Q as a fun
tional a
ting on thegeneralized eigenve
tor Fx0 = jx0i 2 ��, x0 2 Sp(Q), then a

ording to (3.6.18) we obtainfrom (3.6.36) e�n(Fx0) = hx0j�ni = ZSp(Q) d�(x) hx0jxihxj�ni : (3.6.37)Thus d�(x) hx0jxi must be the Dira
 measure, i.e., the distribution de�ned by (3.6.37) musthave the property of the Dira
 delta-fun
tiond�(x) hx0jxi = dx Æ(x0 � x) : (3.6.38)We now 
al
ulate the s
alar produ
t of �n = jn) and �m = jm) using (3.6.36)Æmn = (�m; �n) = (mjn) = ZSp(Q) d�(x) (mjxi hxjn) : (3.6.39)We shall make use of hxjn) = (njxi : (3.6.40)We insert (3.6.32) and (3.6.40) into (3.6.39) and obtainr 12n2mn!m! ZSp(Q) d�(x) j(0jxij2 Hm(r�!~ x)Hn(r�!~ x) = Æmn : (3.6.41)Comparing (3.6.41) with the orthogonality relations for the Hermite polynomials,1n!2np� Z +1�1 dy e�y2Hm(y)Hn(y) = Ænm ; (3.6.42)and taking into a

ount that the Hermite polynomials are only orthogonal polynomials ifasso
iated with the interval �1 < y < +1 and the weight e�y2 (one 
an de�ne Hn(y) by(3.6.42) and derive (3.6.28)-(3.6.30) for real y) we 
on
luded�(x) j(0jxij2 = dxr�!�~ e�(�!=~)x2 (3.6.43)
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illator 115and Sp(Q) = fx j � 1 < x < +1g : (3.6.44)If we agree to normalize the generalized eigenve
tors su
h thathx0jxi = Æ(x0 � x) ; (3.6.45)then a

ording to (3.6.38) d�(x) = dx : (3.6.46)From (3.6.43) and (3.6.46) we 
on
ludej(0jxij2 =r�!�~ e�(�!=~)x2 : (3.6.47)Thus, up to an arbitrary phase fa
tor (whi
h we 
hoose to be unity),(0jxi = ��!�~�1=4e�(�!=2~)x2 : (3.6.48)With this and (3.6.32) we obtain the transition 
oeÆ
ients (njxi between the x- and n-basis, i.e., the harmoni
-os
illator energy wave eigenfun
tions �n(x):(njxi = ��!�~�1=4 1p2nn!Hn�r�!~ x�e�(�!=2~)x2 = hxjn) = �n(x) : (3.6.49)We now repeat for the operator P the pro
edure that we have gone through for theoperator Q. The generalized eigenve
tors of P will be denoted by jpi:P�jpi = pjpi : (3.6.50)The a
tion of P on jn) is, using (3.2.5), (3.2.6) and (3.2.27),P jn) = �ir~�!2 (a� ay)jn)= �ir~�!2 �pnjn� 1)�pn+ 1jn+ 1)� : (3.6.51)If we apply the fun
tional jpi 2 �� on the ve
tor P jn) 2 � and use (3.6.50), we obtainphpjn) = �ir~�!2 �pnhpjn� 1)�pn + 1hpjn+ 1)� ; (3.6.52)or p(njpi = ir~�!2 �pn(n� 1jpi � pn+ 1(n+ 1jpi� : (3.6.53)
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e of the Harmoni
 Os
illatorIf we introdu
e the new quantities (njpg de�ned by(njpg := i�n(njpi ; (3.6.54)then i(n� 1jpi = in(n� 1jpg ; (3.6.55)�i(n + 1jpi = in(n+ 1jpg ; (3.6.56)so (3.6.53) may be written asp(njpg =r~�!2 �pn(n� 1jpg+pn + 1(n+ 1jpg� : (3.6.57)We see that this is exa
tly the same re
urren
e relation as in (3.6.21), with xp�!=~ repla
edby p=p�!~. Thus by the same argument as for (njxi, we �nd (using (3.6.54)) that(njpi = in� 1��!~�1=4 1p2nn!Hn� 1p~�!p�e�p2=2�!~ : (3.6.58)Therefore, the eigenve
tors jn) of the energy operator H for the harmoni
 os
illator havethe very parti
ular property that the transition 
oeÆ
ients (3.6.49) between these ve
torsand the x-basis have the same fun
tional form as the transition 
oeÆ
ients (3.6.58) betweenthese ve
tors and the p-basis ex
ept for a phase fa
tor.By the same argument as above for the operator Q, we 
on
lude that the spe
trum ofP is 
ontinuous, Sp(P ) = fp j � 1 < p <1g ; (3.6.59)and that if we normalize the generalized eigenve
tors jpi a

ording tohp0jpi = Æ(p0 � p) ; (3.6.60)then the measure d�(p) is the Lebesgue measure on the real line,d�(p) = dp : (3.6.61)The transition 
oeÆ
ients hpjn) injn) = Z +1�1 dp jpihpjn) (3.6.62)are 
alled the energy wave eigenfun
tions in the momentum representation and are denotedby b�n(p) � hpjn) : (3.6.63)Also, for any arbitrary ve
tor ' the transition 
oeÆ
ientb'(p) = hpj'i (3.6.64)
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illator 117in ' = Z +1�1 dp jpihpj'i (3.6.65)is 
alled the momentum wave fun
tion or the wave fun
tion in the momentum representationof '. We have used the notation b'(p) = hpj'i instead of the notation '(p) = hpj'i be
ausethe fun
tion b'(p) of p is in general di�erent to the fun
tion '(x) = hxj'i of x. Therefore, toavoid 
onfusion, we label the two di�erent fun
tions b'(p) and '(x) by two di�erent symbols.3.6.3 Realizations of the RHS of the Harmoni
 Os
illator by Spa
esof Fun
tionsThus far, we have obtained the matrix elements of Q in the x-representation,hxjQjn) = xhxjn) ; hxjQj'i = xhxj'i ; (3.6.66)and the matrix elements of P in the p-representation,hpjP jn) = phpjn) ; hpjP j'i = phpj'i : (3.6.67)We now want to 
al
ulate hxjP j'i, the matrix elements of P in the x-representation,and hpjQj'i, the matrix elements of Q in the p-representation. We do this in two steps:1. We introdu
e the new mathemati
al obje
ts hxjpi and hpjxi. They are generalizationsof the s
alar produ
t, but are the \s
alar produ
ts" between the eigenve
tors jxi 2 ��and jpi 2 ��. Thus, they are something like the hxjyi in (3.5.39) of Se
tion 3.5, i.e.,distributions that are de�ned by integration. Like the (njxi and the (njpi in (3.6.36)and (3.6.62), the hxjpi (and hpjxi) are transition 
oeÆ
ients between basis systems.But whereas hxjn) are transition 
oeÆ
ients between the 
ontinuous basis system fjxigand the dis
rete basis system fjn)g, the hxjpi are the transition 
oeÆ
ients betweenthe 
ontinuous basis system fjxig and the 
ontinuous basis system fjpig.2. We 
ompute hxjP j'i and hpjQj'i using the expressions for hxjpi and hpjxi.The mathemati
al obje
t hpjxi appears when we take the \s
alar produ
t" of�n = Z +1�1 dx jxihxjn) (3.6.68)with jpi (or, more pre
isely, we 
onsider �n as a fun
tional at the generalized eigenve
torjpi 2 ��; p 2 Sp(P ), and use (3.6.68)):hpjn) = Z +1�1 dx hpjxihxjn) : (3.6.69)
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e of the Harmoni
 Os
illatorOn the other hand, the mathemati
al obje
t hxjpi appears when we take the s
alar produ
tof �n = Z +1�1 dp jpihpjn) (3.6.70)with hxj (or, more pre
isely, we 
onsider �n as a fun
tional a
ting on the generalized eigen-ve
tor jxi 2 ��, x 2 Sp(Q), and use (3.6.70)):hxjn) = Z +1�1 dp hxjpihpjn) : (3.6.71)In (3.6.69) and (3.6.71), hxjn) and hpjn) are given by (3.6.49) and (3.6.58), respe
tively.The Hermite polynomials have the propertyine��2=2Hn(�) = Z +1�1 d� ei��p2� e��2=2Hn(�) ; (3.6.72)where � = pp~�w and � =p�w~ x. Inserting (3.6.49) and (3.6.58) into this relation, it followsthat (njpi = Z +1�1 dx eixp=~p2�~ (njxi ; (3.6.73)or taking the 
omplex 
onjugatehpjn) = Z +1�1 dx e�ixp=~p2�~ hxjn) : (3.6.74)Comparing (3.6.74) with (3.6.69), we �nd that the hpjxi are given byhpjxi = 1p2�~ e�ixp=~ : (3.6.75)In the same way one obtains from (3.6.71) and (3.6.72)hxjpi = 1p2�~ eixp=~ : (3.6.76)Eqs. (3.6.75) and (3.6.76) together givehxjpi = hpjxi: (3.6.77)It is now simple to 
al
ulate the matrix element of P in the basis of generalized eigenve
torsof Q using (3.6.76):hxjP j'i = Z +1�1 dp p hxjpihpj'i = Z +1�1 dp p eixp=~p2�~ hpj'i= Z +1�1 dp ~i ��xhxjpihpj'i = ~i ddx Z +1�1 dp hxjpihpj'i : (3.6.78)
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illator 119Thus hxjP j'i = ~i ddxhxj'i : (3.6.79)In the same way using (3.6.75) one obtainshpjQj'i = �~i ddphpj'i : (3.6.80)Therewith, we have shown that the operators Q and P are \realized" in the spa
e of positionwave fun
tions hxj'i = '(x) by the multipli
ation operatorQ'(x) = x'(x) (3.6.81)and by the di�erentiation operator P'(x) = ~i ddx'(x) ; (3.6.82)respe
tively. These are the standard expressions that are usually assumed to representthe position and momentum operators. We have derived them here from the Heisenberg
ommutation relation [P;Q℄ = �i~I, the relation H = 12�P 2 + �!22 Q2, and the additionalassumption of the existen
e of an eigenve
tor of H.We shall now derive the position representation of the energy operator H, i.e., we shall
al
ulate the matrix element hxjHjn). In this position representation, the energy eigenvalueequation H�n = En�n (3.6.83)is 
alled the time-independent S
hr�odinger equation. The Hamiltonian for the harmoni
os
illator is given by H = 12�P 2 + �!22 Q2 : (3.6.84)Let us take the matrix element of H between hxj and jn) (or, more pre
isely, the a
tion ofof the fun
tional hxj at the point Hjn)):hxjHjn) = 12�hxjP 2jn) + �!22 hxjQ2jn) : (3.6.85)From (3.6.79), it follows that hxjP 2jn) = hxjP 2j�ni= ~i ddxhxjP j�ni= �~i �2 d2dx2 hxj�ni= �~i �2 d2dx2 hxjn) : (3.6.86)
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e of the Harmoni
 Os
illatorFrom (3.6.66), hxjQ2jn) = x2hxjn) : (3.6.87)Inserting (3.6.86) and (3.6.87) into (3.6.85), we have for the matrix element of the energyoperator hxjHjn) = � ~22� d2dx2 hxjn) + �!22 x2hxjn)= �� ~22� d2dx2 + �!22 x2�hxjn) : (3.6.88)Therefore, the S
hr�odinger representation of the eigenvalue equation (3.6.83) reads�� ~22� d2dx2 + �!22 x2��n(x) = En�n(x) ; (3.6.89)where hxjn) = �n(x) is given in terms of the n-th Hermite polynomial as in (3.6.49).Eq. (3.6.89) is the time-independent S
hr�odinger equation. This equation, that is usu-ally taking as the starting point in the study of the harmoni
 os
illator, has been derivedhere from the algebrai
 assumptions (3.2.1)-(3.2.4).So far we have dis
ussed the a
tion of the operators Q, P and H on the wave fun
tions'(x) = hxj'i without spe
ifying the parti
ular properties of these fun
tions. We shall nowshow that as a 
onsequen
e of the properties of the spa
e �, it follows that the positionrealization of � is the S
hwartz spa
e S(R) (
f. Se
tion 2.4.1):Sin
e the spa
e � remains stable under the a
tion of the algebra of observables, �remains stable under the a
tion of any power of P and Q. This means that the quantities(';Qn') = Z +1�1 dx xn j'(x)j2 <1 ; n = 0; 1; 2; : : : ; (3.6.90)('; Pm') = (�i~)m Z +1�1 dx'(x) dmdxm'(x) <1 ; m = 0; 1; 2; : : : ; (3.6.91)(';QnPm') = (�i~)m Z +1�1 dx'(x) xn dmdxm'(x) <1 ; n;m = 0; 1; 2; : : : (3.6.92)must be well de�ned for every ' 2 �. This implies that the fun
tions '(x) = hxj'i in therealization spa
e must be in�nitely di�erentiable and that the fun
tions and their derivativesmust de
ay at in�nity faster than any power of x. Therefore, '(x) 2 S(R). Moreover, thetopology on � is equivalent to the topology on S(R). To show that equivalen
e, we re
allthat the topology on � is des
ribed by the following pres
ription for sequen
e 
onvergen
e:a sequen
e 'k 2 � 
onverges to ' 2 � ifk'k � 'kp ! 0 ; p = 0; 1; 2; : : : ; (3.6.93)where k'kp =p('; (N + I)p). In the realization of�, the 
onditions (3.6.93) are equivalentto the following: a sequen
e 'k(x) = hxj'ki, whi
h is the realization of the ��-
onvergent
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e 'k ! ', 
onverges to '(x) = hxj'i if the xn dmdxm'k(x) 
onverge uniformly onevery bounded region to xn dmdxm'(x) for ea
h n;m = 0; 1; 2; : : : Therefore the topology ofthe realization of � is equivalent to the topology of the S
hwartz spa
e.Sin
e the spa
e � is realized by the S
hwartz spa
e S(R), the dual spa
e �� is realizedby the spa
e of tempered distributions S(R)� . The realization of the generalized eigenve
torjxi of Q is the Dira
 delta fun
tion (see Eq. (3.6.45)), whi
h is a distribution that belongsto S(R)� , �� 3 jxi  ! hx0jxi = Æ(x0 � x) 2 S(R)� : (3.6.94)The realization of the generalized eigenve
tor jpi of P is the exponential fun
tion eixp, whi
his also a distribution,6 �� 3 jpi  ! hxjpi = 1p2�~eixp=~ 2 S(R)� : (3.6.95)To say that Æ(x0 � x) and 1p2�~eixp=~ are distributions in S(R)� means that they only makesense as kernels of integrals that involve fun
tions '(x) 2 S(R),Z +1�1 dx0Æ(x0 � x)'(x0) = '(x) ; '(x) 2 S(R) ; (3.6.96)Z +1�1 dp 1p2�~eixp=~b'(p) = '(x) ; '(x) 2 S(R) ; (3.6.97)or in bra-ket notation Z +1�1 dx0hxjx0ihx0j'i = hxj'i ; (3.6.98)Z +1�1 dp hxjpihpj'i = hxj'i : (3.6.99)Finally, it is 
lear that the Hilbert spa
e H is realized by the spa
e of Lebesgue squareintegrable fun
tions L2(R; dx).Summarizing, ea
h ve
tor ' in the ve
tor spa
e � 
an be fully 
hara
terized by its
omponents with respe
t to the 
ontinuous basis system of eigenve
tors jxi of Q,' = Z +1�1 dx jxihxj'i : (3.6.100)Thus to the ve
tor ' 
orresponds the fun
tion hxj'i = '(x) and to the ve
tor P' 
orre-sponds the fun
tion hxjP j'i � P'(x). Equation (3.6.79) then states that in the realizationof the spa
e of ve
tors ' by the spa
e of wave fun
tions hxj'i = '(x), the momentumoperator is realized by the di�erential operator times ~=i,P  ! �i~ ddx ; (3.6.101)6The exponential fun
tion is not square integrable.



122 3 The Rigged Hilbert Spa
e of the Harmoni
 Os
illatorEq. (3.6.66) states that the position operator is realized by the operator of multipli
ationby x Q ! x ; (3.6.102)and Eq. (3.6.88) states that the energy operator is realized by the di�erential operatorH  ! �� ~22� d2dx2 + �!22 x2� : (3.6.103)The realization of the spa
e � for the harmoni
 os
illator given by the asso
iation� 3 ' ! '(x) = hxj'i 2 S(R) (3.6.104)between the ve
tor ' and its \
ontinuous 
omponents" hxj'i = '(x) establishes an equiva-len
e between two Rigged Hilbert Spa
es, the RHS of the harmoni
 os
illator� � H � �� (3.6.105)and the RHS of S
hwartz spa
e fun
tionsS(R) � L2(R; dx) � S�(R) : (3.6.106)This realization is 
alled the S
hr�odinger (position) representation or the x-representation.We stress that the S
hr�odinger representation 
ould not be derived from the Heisenberg
ommutation relation [P;Q℄ = �i~I (3.6.107)and the relation H = 12�P 2 + �!22 Q2 (3.6.108)alone, but required an additional assumption: the operator H has at least one propereigenve
tor in the spa
e of states.It is usually very useful to show the realizations of the abstra
t mathemati
al obje
ts(RHS, operators, fun
tions, eigenve
tors) through a diagram. For instan
e, the positionrepresentation of the operator Q is visualized by the following diagram:x-representation diagram for the operator QQ; ' 2 � � H � �� 3 jxil l l l l lx; '(x) = hxj'i 2 S(R) � L2(R; dx) � S(R)� 3 hx0jxi = Æ(x� x0)(3.6.109)On the top line of the diagram (3.6.109), we have the abstra
t obje
ts. On the bottom line,we have the x-realizations of all these abstra
t obje
ts: Q is realized by the multipli
ation
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tion '(x), � by the S
hwartz spa
e S(R), Hby the Hilbert spa
e of square integrable fun
tions L2(R; dx), �� by the spa
e of tempereddistributions S(R)� and jxi by the Dira
 delta fun
tion Æ(x� x0).In a similar way, we 
an 
onstru
t the position representation diagram for the momentumoperator P , x-representation diagram for the operator PP; ' 2 � � H � �� 3 jpil l l l l l�i~ ddx ; '(x) = hxj'i 2 S(R) � L2(R; dx) � S(R)� 3 hxjpi = eixp=~p2�~(3.6.110)As in the diagram (3.6.109), the top line of (3.6.110) 
ontains the abstra
t mathemati
alobje
ts and the bottom line 
ontains their x-realizations.The x-diagram for the energy operator readsx-representation diagram for the operator HH; ' 2 � � H � �� 3 jnil l l l l l�~22� d2dx2 + �!22 x2; '(x) 2 S(R) � L2(R; dx) � S(R)� 3 �n(x) (3.6.111)The momentum representation leads to similar 
onsiderations. The operator P is realizedby the multipli
ation operator (see Eq. (3.6.67))P b'(p) = pb'(p) ; (3.6.112)and the operator Q by the di�erentiation operator (see Eq. (3.6.80))Qb'(p) = �~i ddp b'(p) : (3.6.113)The spa
e � is realized by the S
hwartz spa
e of fun
tions b'(p). In the p-representation,the generalized eigenve
tor jxi is realized by the exponential fun
tion�� 3 jxi  ! hpjxi = 1p2�~e�ipx=~ ; (3.6.114)and the eigenve
tor jpi by the Dira
 delta fun
tion�� 3 jpi  ! hp0jpi = Æ(p0 � p) : (3.6.115)
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e of the Harmoni
 Os
illatorAs a 
onsequen
e of (3.6.114),b'(p) = hpj'i = Z +1�1 dx hpjxihxj'i = Z +1�1 dx 1p2�~e�ixp=~'(x) ; (3.6.116)Therefore, we 
an transform from the position representation '(x) into the momentumrepresentation b'(p) using (3.6.95) and (3.6.116). Note that Eqs. (3.6.95) and (3.6.116) showthat the x- and the p-representation are related by the Fourier transform.We 
an also 
onstru
t diagrams similar to those 
onstru
ted for the position represen-tation. For instan
e, the p-representation of the position operator leads top-representation diagram for the operator QQ; ' 2 � � H � �� 3 jxil l l l l l�~i ddp ; b'(p) = hpj'i 2 S(R) � L2(R; dp) � S(R)� 3 hpjxi = 1p2�~e�ipx=~(3.6.117)For the momentum operator we have:p-representation diagram for the operator PP; ' 2 � � H � �� 3 jpil l l l l lp; b'(p) = hpj'i 2 S(R) � L2(R; dp) � S(R)� 3 hp0jpi = Æ(p0 � p)(3.6.118)Finally, the p-representation diagram for the energy operator readsp-representation diagram for the operator HH; ' 2 � � H � �� 3 jn)l l l l l l�~2�!22 d2dp2 + 12�p2; b'(p) 2 S(R) � L2(R; dp) � S(R)� 3 hpjn) = b�n(p)(3.6.119)For the sake of 
ompleteness, we re
all the energy representation '(n) = (nj'i. In thisrepresentation, the variable n � En is dis
rete, and the realization of the ve
tors ' are given
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es of 
omplex numbers '(n) = (nj'i rather than by fun
tions. The Hilbert spa
eH is realized by the sequen
e of square integrable fun
tions (3.3.51) and the spa
e � by thespa
e of rapidly de
reasing sequen
es (3.3.52). The matrix elements of the operators H, Qand P are (njHjm) = En Ænm ; (3.6.120)(mjQjn) =s ~2�! �pn Æm;n�1 +pn+ 1 Æm;n+1� ; (3.6.121)and (mjP jn) = �ir~�!2 �pn Æm;n�1 �pn+ 1 Æm;n+1� ; (3.6.122)respe
tively. In this representation, these operators are visualized as in�nite matri
es whoseentries are given by the equations (3.6.120)-(3.6.122).3.6.4 SummaryIn the pre
eding se
tions, we have 
onstru
ted the Rigged Hilbert Spa
e for the one-dimensional harmoni
 os
illator. We started out with the algebra of observablesA generatedby P , Q and H. These operators ful�ll the algebrai
 relations[P;Q℄ = �i~I ; H = 12�P 2 + �w22 Q2 : (3.6.123)The elements of A were assumed to be symmetri
 operators de�ned on a linear spa
e 	,(A';  ) = (';A ) ; ';  2 	 ; A 2 A ; (3.6.124)where ( � ; � ) is the s
alar produ
t that provides the probabilities. This spa
e 	 was assumedto remain stable under the a
tion of the elements of A. We made the 
ru
ial additionalassumption that the operator H has at least one eigenve
tor7 �0 in the spa
e 	,H�0 = 12~!�0 : (3.6.125)From this one eigenve
tor we de�ned the ve
torsjn) = 1pn! (ay)n�0 ; n = 0; 1; 2; : : : ; (3.6.126)whi
h ful�ll Hjn) = ~!(n+ 1=2)jn) : (3.6.127)7This is equivalent to the assumption that H is essentially self-adjoint on the invariant dense subspa
eof the algebra A.
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e of the Harmoni
 Os
illatorThese eigenve
tors span the linear spa
e 	. With respe
t to the s
alar produ
t on 	, theeigenve
tors jn) are orthonormal to ea
h other,(njm) = Ænm : (3.6.128)The spa
e 	 was 
ompleted to the Hilbert spa
e H using the topology generated by thenorm k'k =p('; ') : (3.6.129)The (
omplete) Hilbert spa
e H isH = f' = 1Xn=0 jn)(nj') j 1Xn=0 j(nj')j2 <1g : (3.6.130)The operators in the algebra of observables were extended from 	 into larger subdomains ofH. However, these extensions are not 
ontinuous with respe
t to the Hilbert spa
e topology,and the domains do not remain stable under the a
tion of the operators. In order to �nda 
ommon invariant subdomain � for the algebra A that is endowed with a topology thatmakes these observables 
ontinuous operators, we introdu
ed the sequen
e of s
alar produ
ts(';  )p = ('; (N + I)p ) ; p = 0; 1; 2; : : : (3.6.131)The 
ompletion of 	 with respe
t to the topology generated by these s
alar produ
ts is thespa
e� = f' = 1Xn=0 jn)(nj') j 1Xn=0(n+ 1)p j(nj')j2 <1 ; p = 0; 1; 2; : : :g : (3.6.132)The elements of the algebra A were extended 
ontinuously into �. The spa
e � remainsstable under the a
tion of these extensions and all these extensions are 
ontinuous withrespe
t to the topology on �. Therefore, all the algebrai
 
al
ulations needed in physi
sinvolving the elements of the algebra of observables are allowed.The operators P and Q are essentially self-adjoint8 and have a 
ontinuous spe
trumthat 
oin
ides with the real line. In order to asso
iate an eigenve
tor to ea
h element of thespe
trum of these operators, we introdu
ed the adjoint spa
e �� and 
onstru
ted the RHS� � H � �� : (3.6.133)In this RHS, the Gelfand-Maurin Theorem holds. This theorem assured the existen
e of a
omplete system of generalized eigenve
tors of QQ�jxi = xjxi ; jxi 2 �� ; (3.6.134)8As a 
onsequen
e of H being essentially self-adjoint.



3.6 Gelfand-Maurin Theorem Applied to the Harmoni
 Os
illator 127su
h that any ' 2 � was expanded in terms of these generalized eigenve
tors of Q,' = Z +1�1 dx jxihxj'i : (3.6.135)Eq. (3.6.135) is the mathemati
al rephrasing of the heuristi
 Dira
 basis ve
tor expansion.Using the spe
tral de
omposition (3.6.135), we derived the x-realization of the abstra
t' by fun
tions '(x) in the S
hwartz spa
e,� 3 '  ! '(x) = hxj'i 2 S(R) : (3.6.136)In parti
ular, to every eigenve
tor jn) of H there 
orresponds a fun
tion hxjn) = �n(x),jn)  ! hxjn) = �n(x) ; (3.6.137)given in terms of the Hermite polynomials. The x-representation of the operator Q is themultipli
ation operator Q'  ! x'(x) ; (3.6.138)the x-representation of the operator P is given by the di�erentiation operatorP'  ! ~i ddx'(x) ; (3.6.139)and the x-representation of the Hamiltonian isH'  ! �� ~22� d2dx2 + �!22 x2�'(x) : (3.6.140)The realization of � given by the asso
iation between the ve
tor ' and its \
ontinuous
omponents" '(x) yields the realization of the abstra
t RHS� � H � �� (3.6.141)by the RHS of S
hwartz spa
e fun
tionsS(R) � L2(R; dx) � S�(R) : (3.6.142)The generalized eigenve
tor jxi of Q is realized by the Dira
 delta fun
tion�� 3 jxi  ! hx0jxi = Æ(x0 � x) 2 S(R)� ; (3.6.143)and the generalized eigenve
tor jpi of P by the exponential fun
tion�� 3 jpi  ! hxjpi = 1p2�~eixp=~ 2 S(R)� : (3.6.144)Therewith, we have derived the S
hr�odinger representation of the harmoni
 os
illatorfrom the algebrai
 assumptions (3.6.123)-(3.6.125). We remark again that the S
hr�odinger
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e of the Harmoni
 Os
illatorrepresentation is only one of the many possible representations of (3.6.123), and that it isthe additional assumption (3.6.125) whi
h singles out the S
hr�odinger representation amongall the possible representations.9From a mathemati
al point of view, the RHS formulation extends the Hilbert spa
eformulation and justi�es the mathemati
ally unde�ned operations that physi
ists are a

us-tomed to in their 
al
ulations. In parti
ular, using the Rigged Hilbert Spa
e formalism weare able to reprodu
e the main features of the Dira
 formalism.3.7 A Remark Con
erning Generalizations3.7.1 Realization of the Abstra
t RHS by Spa
es of Fun
tionsThe realization of the RHS of the harmoni
 os
illator by the RHS of S
hwartz fun
tionssuggests that any RHS asso
iated to the spe
tral de
omposition of an operator 
an berealized by spa
es of fun
tions.Let A be an operator de�ned on the RHS � � H � �� and' = ZSp(A) d�(�) j�ih�j'i (3.7.1)be the spe
tral de
omposition of ' 2 � provided by the Gelfand-Maurin Theorem. Thequantity h�j'i whi
h appears in this spe
tral de
omposition may be regarded as a 
omplexfun
tion of the real variable � 2 Sp(A), i.e., we 
an de�ne'(�) : Sp(A) 7�! C� 7�! '(�) := h�j'i : (3.7.2)(In this se
tion, we shall write '(�) when we want to speak about a fun
tion and '(�) whenwe want to speak about the value of this fun
tion at a parti
ular point �). If we write('; ') = ZSp(A) d�(�) h'j�i h�j'i = ZSp(A) d�(�) jh�j'ij2 ; (3.7.3)we immediately realize that '(�) in (3.7.2) must be a square integrable fun
tion with respe
tto d�(�). We shall denote the spa
e of fun
tions ful�lling (3.7.3) as L2(Sp(A); d�(�)). Thes
alar produ
t on L2(Sp(A); d�(�)) is de�ned as('(�);  (�))L2 := ZSp(A) d�(�)'(�) (�) : (3.7.4)9There are several equivalent forms of the assumption (3.6.125):(a) The assumption that H is essentially self adjoint.(b) The assumption that P , Q, and I are the generators of a group, the Weyl group (subgroup of thesymmetry group of non-relativisti
 spa
e-time, the Galilei group).



3.7 A Remark Con
erning Generalizations 129If ',  2 �, we have('(�);  (�))L2 = ZSp(A) d�(�) h'j�i h�j i = (';  ) : (3.7.5)Thus the mapping ' $ '(�) that takes ' 2 H into the fun
tion '(�) 2 L2(Sp(A); d�(�))preserves the s
alar produ
ts, (';  )H = ('(�);  (�))L2 : (3.7.6)Further, this mapping is obviously linear, be
ause h�j�' + � i = �h�j'i + �h�j i for�; � 2 C . Thus, this mapping 
an be represented by means of a linear operator U y su
hthat U y : � 7�! L2(Sp(A); d�(�))' 7�! U y' = '(�) : (3.7.7)Sin
e U y preserves s
alar produ
ts, U y is an isometry (
f. Se
tion 2.5.2). Moreover, it 
anbe proved that the image of � by U y is dense in L2(Sp(A); d�(�)). Therefore, U y has aunique extension to H. This extension (whi
h we also denote by U y) is a unitary operatorfrom H onto L2(Sp(A); d�(�)),U y : H 7�! L2(Sp(A); d�(�))f 7�! U yf : (3.7.8)It is important to remark that the equation f(�) = h�jfi, i.e., the statement that the valueof the fun
tion f(�) at the point � equals the a
tion of the fun
tional h�j at f , holds onlywhen f is an element of �. For a general f in H, the 
orresponding U yf � f(�) has nomeaning as a fun
tion, but only as a 
lass of equivalen
e of fun
tions whi
h di�er on a setof zero Lebesgue measure.We 
an endow U y� with a topology �� by transporting the topology of � into U y� viaU y. Sin
e � is assumed to satisfy the �rst axiom of 
ountability, so does U y�. Therefore, we
an transport the topology �� on � into U y� by using the notion of sequen
e 
onvergen
e.Then, we say that 'n(�)! '(�) with respe
t to �� i� 'n ! ' with respe
t to ��. With thisde�nition, all topologi
al properties are transferred from � into U y� by means of U y. Inparti
ular, U y� is a ��-
omplete nu
lear spa
e, and it is ��-dense in L2(Sp(A); d�(�)), i.e.,for any f(�) 2 L2(Sp(A); d�(�)) there exists a sequen
e of fun
tions f'n(�)g1n=1 in U y� su
hthat ZSp(A) d�(�) j'n(�)� f(�)j2��!n!1 0 : (3.7.9)Our next step is to extend the operator U y on � to an operator U� on ��. This operatoris de�ned by hU y'jU�F�i := h'jF�i ; ' 2 � ; F� 2 �� : (3.7.10)
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e of the Harmoni
 Os
illatorU� is a well de�ned linear operator from �� into (U y�)�. To show this, we just need toprove that U�F� is a 
ontinuous antilinear fun
tional on U y�. The antilinearity followsfrom the de�nition (3.7.10), and the 
ontinuity from the fa
t that if U y'n ! U y', thenhU y'njU�F�i = h'nj�i ! h'j�i = hU y'jU�F�i : (3.7.11)Therefore, U�F� is an element of (U y�)�.The a
tion of U� extends the a
tion of U y. This means that if f 2 H, then U�f = U yf .In fa
t, hU y'jU�fi = h'jfi � ('; f) = (U y'; U yf) � hU y'jU yfi (3.7.12)for any ' 2 � or, equivalently, for any U y' 2 U y�. Therefore, the fun
tionals U�f andU yf 
an be identi�ed.One 
an also prove that U� : �� ! (U y�)� is 
ontinuous when �� is endowed withthe �� topology and (U�)� with the ��� topology. Hen
eU��� = (U y�)� (3.7.13)and both spa
es have the same linear topologi
al stru
ture.In summary, we have 
onstru
ted a realization of the RHS� � H � �� (3.7.14)by the RHS of spa
es of fun
tionsU y� � L2(Sp(A); d�(�)) � (U y�)� (3.7.15)using the unitary operator U y provided by the Gelfand-Maurin Theorem.At this point, it is important to stress that the unitary operator U y whi
h yields therealization of� � H � �� depends drasti
ally on A (the operator providing the generalizedeigenve
tors). The dependen
e of the spa
e L2(Sp(A); d�(�)) on A is twofold: both Sp(A)and d�(�) depend on A. However, it is also possible that two di�erent observables A andB (with two di�erent U y's) lead to the same spa
e L2(Sp(A); d�(�)). For instan
e, inthe 
ase of the harmoni
 os
illator we have seen that A = Q and B = P both lead toL2(Sp(A); d�(�)) = L2(R). However, the Gelfand-Maurin theorem for Q gives a unitaryoperator U y from H onto L2(R), and for P gives the operator V y = F U y, where F is theFourier transform operator.Along with the realization of the ve
tors of the triplet� � H � ��, we 
an also 
onsidera realization of observables. If A is an operator on �, then U yAU is the 
orrespondingoperator on U y�. We 
all U yAU the realization of A on U y�.As we did in the 
ase of the harmoni
 os
illator, we show the realization of an abstra
tRHS through the following diagram:
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A; ' 2 � � H � �� 3 j�i# # U y # U y # U� #U yAU; U y' = '(�) 2 U y� � L2(Sp(A); d�(�)) � �� 3 U�j�i (3.7.16)

The top line of the diagram (3.7.16) 
ontains the abstra
t mathemati
al obje
ts, andthe bottom line 
ontains their realizations.An abstra
t RHS and its realization are equivalent Rigged Hilbert Spa
es|there is nolinear topologi
al property that distinguishes one from the other. This suggests the followingde�nition:De�nition Two Rigged Hilbert Spa
es � � H � �� and 	 � G � 	� are equivalent i�there exists a unitary operator U y from H onto G su
h that1. U yH = G, U y� = 	.2. U y and U are 
ontinuous with respe
t to the topologies on � and 	.As a 
onsequen
e, U y 
an be extended to an operator U� : �� ! 	� de�ned byhU y'jU�F i = h'jF i : (3.7.17)This extension U� is a bi
ontinuous bije
tive10 linear mapping from �� onto 	� and hen
eU��� = 	�.The RHS spe
tral de
omposition' = ZSp(A) d�(�) j�ih�j'i (3.7.18)of ' 2 � is a \
ontinuous in�nite dimensional" generalization of the Hilbert spa
e spe
tralde
omposition of a 
ompa
t self-adjoint operator. However, there are some di�eren
esbetween these two spe
tral de
ompositions. The 
ontent of (3.7.18) is that any ve
tor in �
an be written in terms of the generalized eigenve
tors of A. Therefore, the eigenve
tors ofA� form a \system of generators" for the spa
e �. This system of generators is not a basisfor � in the usual Hilbert spa
e sense for the following reasons:1. The ve
tors j�i do not, in general, belong to � or to H.10One-to-one, onto, with 
ontinuous inverse.
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e of the Harmoni
 Os
illator2. The �nite or 
ountably in�nite sum' = 1Xn=0 
nen = 1Xn=0(en; ')en (3.7.19)in the Hilbert spa
e spe
tral de
omposition is repla
ed by an integral' = ZSp(A) d�(�) j�i h�j'i : (3.7.20)In the Hilbert spa
e spe
tral de
omposition (3.7.19), 
n is the dis
rete 
oeÆ
ient (or weight)for en. The 
n 
an be viewed as the n-th 
omponent of ' with respe
t to the basis en. In theRHS spe
tral de
omposition (3.7.20), '(�) = h�j'i is the 
ontinuous 
oeÆ
ient (or weight)for j�i. For a �xed � 2 Sp(A), '(�) = h�j'i 
an be viewed as the \�-th" 
omponent of 'with respe
t to the system of generators j�i.The de
omposition (3.7.19) leads to a realization of the Hilbert spa
e H by the spa
eof sequen
es f
ng of 
omplex numbers having the property P1n=0 j
nj2 < 1. Analogously,(3.7.20) leads to a realization of the spa
e � by the spa
e of fun
tions '(�).The Gelfand-Maurin Theorem allows us to spe
trally de
ompose the s
alar produ
t ofany two ve
tors ',  2 � as ( ; ') = ZSp(A) d�(�) h'j�ih�j i : (3.7.21)In analogy to (3.7.21), we also spe
trally de
ompose the a
tion of any fun
tional F at ave
tor ', h'jF i = ZSp(A) d�(�) h'j�ih�jF i : (3.7.22)Hen
e, quantities of the type h�jF i are distributions that are well de�ned only as a kernelof integration whenever we write the a
tion of a fun
tional F as an integral operator. Asan example, the fun
tional jxi that asso
iates to any ' 2 S(R) the value of the fun
tion atthe point x, jxi : S(R) 7�! C' 7�! h'jxi := '(x) ; (3.7.23)
an be written as an integral operator:h'jxi = Z +1�1 dx h'jx0ihx0jxi : (3.7.24)The fun
tional jxi in (3.7.23) is the S
hwartz delta fun
tional, whereas the distributionhx0jxi in (3.7.24) is the Dira
 delta fun
tion,hx0jxi = Æ(x0 � x) : (3.7.25)Therefore, the Dira
 delta fun
tion appears when we spe
trally de
ompose the a
tion of theS
hwartz delta fun
tion as an integral operator.
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erning Generalizations 1333.7.2 General Statement of the Gelfand-Maurin TheoremThe version of the Gelfand-Maurin Theorem stated in Se
tion 3.5.2 is only suitable for
y
li
 operators. In general, the linear operators in the algebra of observables are not
y
li
. Then more than one quantum number is needed to 
hara
terize pure states, and oneneeds a 
omplete system of 
ommuting operators to obtain a 
omplete set of generalizedeigenve
tors.De�nition The 
olle
tion of operators fAkgNk=1 is a system of 
ommuting operators if1. [Ai; Ak℄ = 0 for all i; k = 1; : : : ; N ,2. PNk=1 A2k is essentially self-adjoint.Let A be the algebra generated by a 
olle
tion of operators fAkgNk=1. Then the 
olle
tionfAkgNk=1 is said to be a 
omplete system if there exists a ve
tor ' 2 � su
h that the spa
efA' j A 2 Ag (3.7.26)spans the Hilbert spa
e H.The notions of generalized eigenve
tor and generalized eigenvalue of an operator 
an beextended to the 
ase of a system fAkgNk=1. An antilinear fun
tional F on � is a generalizedeigenve
tor for a system fAkgNk=1 if for every k = 1; : : : ; N there exists a 
omplex number�(k) su
h that A�k F = �(k)F : (3.7.27)The numbers � � (�(1); �(2); : : : ; �(N)) are 
alled generalized eigenvalues 
orresponding tothe generalized eigenve
tor F � j�(1); �(2); : : : ; �(N)i.Theorem (Gelfand-Maurin Theorem) Let fAkgNk=1 be a 
omplete system of 
ommuting,e.s.a., ��-
ontinuous operators on the Rigged Hilbert Spa
e � � H � ��. Then, thereexists a set of generalized eigenve
tors,j�(1); �(2); : : : ; �(N)i 2 �� ; (3.7.28)A�k j�(1); �(2); : : : ; �(N)i = �(k)j�(1); �(2); : : : ; �(N)i ; (3.7.29)�(k) 2 �(k) = Sp(Ak) ; (3.7.30)and a uniquely de�ned measure d�(�) on � = �(1) � �(2) � � � � � �(N), (where � denotesthe Cartesian produ
t), su
h that for every  ; ' 2 �( ; ') = Z� d�(�) h j�(1); �(2); : : : ; �(N)ih�(1); �(2); : : : ; �(N)j'i ; (3.7.31)or omitting  , ' = Z� d�(�) j�(1); �(2); : : : ; �(N)ih�(1); �(2); : : : �(N)j'i : (3.7.32)
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e of the Harmoni
 Os
illatorThis theorem gives the mathemati
al formulation of the famous Dira
 
onje
ture if thestarting point is a pre
isely de�ned algebra of observables.The mathemati
al task that has to be a

omplished if one starts out with a well de-�ned algebra is to �nd a 
omplete 
ommuting system and its spe
trum. The problem ofdetermining when a system is 
omplete is far from trivial. Already for the simplest 
ases ofenveloping algebras of group representations the number of 
ommuting observables is notindependent of the parti
ular 
ommuting system.The problem of the physi
ist is usually the reverse. From the experimental data one�nds out how many quantum numbers are required, and what their possible values are.This gives a minimum number of operators for the 
omplete 
ommuting system be
ausethe \matrix elements" of the Ak's 
al
ulated from the properties of this algebra must agreewith the experimental values of the 
orresponding observables.3.7.3 Generalization of the Algebra of OperatorsThe 
onstru
tion of the nu
lear spa
e � 
arried out for the harmoni
 os
illator 
an beimmediately generalized to more general algebras of operators. The analog of the lemma(3.3.67) is (';X(� + I)pX') � �('; (� + I)p+1') ; (3.7.33)where X is one of the generators Xi and � = PX2i is the Nelson operator (Lapla
ian).Eq. (3.7.33) holds for all enveloping algebras (lemma by Nelson). Therewith the 
ontinuityof the algebra in a linear topologi
al spa
e in whi
h the topology is de�ned by the 
ountablenumber of s
alar produ
ts (';  )p = ('; (� + I)p ) (3.7.34)follows immediately. Further, if � is e.s.a., then all symmetri
 generators are also e.s.a. (the-orems by Nelson and Stinespring).Eq. (3.7.33) is mu
h stronger than what is required for the proof of the 
ontinuity of thegenerators. The 
ontinuity of the generators (and therewith of the whole algebra) 
an beproved if instead of p + 1 on the right hand side of (3.7.33) one has p + n, where n is anypositive integer. Therefore, it appears that the 
ontinuity of the generators 
an already beproved for any �nitely generated asso
iative algebra.The nu
learity is a mu
h harder property to establish. It has been proven for the 
asesthat the algebra is the enveloping algebra E(G) of the following groups G:1. G is nilpotent (be
ause then E(G) is isomorphi
 to the enveloping algebra generatedby P�, Q�, � = 1; 2; : : :m, with [P�; Q�℄ = �Æ��I for some m (a theorem by Kirillovin [69℄) and we have just an m-dimensional generalization of the harmoni
 os
illator).2. G is semi-simple (Bohm in [70℄).3. G = A�K, where � stands for semidire
t produ
t, with A Abelian and K 
ompa
t(B. Nagel in [71℄).4. G is the Poin
are group, for some of the representations (see [71℄).
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erning Generalizations 1353.7.4 Appendix: Continuity of the Algebra of the Harmoni
 Os-
illatorIn this appendix, we provide a proof for Eq. (3.3.67)( ; a(N + I)pay ) � �( ; (N + I)p+1 ) ; 8 2 	 : (3.7.35)Before pro
eeding with the proof, we need some preliminary results. From the 
om-mutation relation (3.2.10), it follows that(N + I)ay = ay(N + 2I) ; (3.7.36)a(N + I) = (N + 2I)a : (3.7.37)It also holds that ( ; (N + I) ) � ( ; (N + I)2 ) ; 8 2 	 : (3.7.38)Eq. (3.7.38) 
omes from the fa
t that N is a positive operator, i.e., ( ;N ) � 0 forea
h  in 	 and then( ; (N + I)2 )� ( ; (N + I) ) = (N ;N ) + ( ;N )= kN k2 + ( ;N ) � 0 : (3.7.39)From the positive de�niteness of N , it also follows that ifm and n are positive integersand m � n, then ( ; (N + I)m ) � ( ; (N + I)n ) ; 8 2 	 : (3.7.40)We are now going to prove Eq. (3.7.35) by indu
tion. Eq. (3.7.35) is true for p = 1,be
ause ( ; a(N + I)ay ) = ( ; aay(N + 2I) )= ( ; (N + I)(N + 2I) )= ( ; (N + I)2 ) + ( ; (N + I) )� 2( ; (N + I)2 ) ; (3.7.41)where in the last step we have made use of Eq. (3.7.38).We now assume that (3.7.35) is true for p � q, i.e.,( ; a(N + I)pay ) � �( ; (N + I)p+1 ) ; 8 2 	 ; p = 1; 2; : : : ; q : (3.7.42)We have to prove that (3.7.35) is also true for p = q + 1 using (3:7:42). So we 
al
ulate( ; a(N + I)q+1ay ) = ( ; a(N + I)(N + I)q�1(N + I)ay )= ( ; (N + 2I)a(N + I)q�1ay(N + 2I) ) (3.7.43)= ((N + 2I) ; a(N + I)q�1ay(N + 2I) )
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 Os
illator� �((N + 2I) ; (N + I)q(N + 2I) ) (3.7.44)= �[((N + I) ; (N + I)q(N + I) ) + ( ; (N + I)q )+((N + I) ; (N + I)q ) + ( ; (N + I)q(N + I) )℄= �[( ; (N + I)q+2 ) + ( ; (N + I)q )+( ; (N + I)q+1 ) + ( ; (N + I)q+1 )℄� 4�( ; (N + I)q+2 ) ; (3.7.45)where we have used Eqs. (3.7.36)-(3.7.37) in step (3.7.43), Eq. (3.7.42) in step (3.7.44) andEq. (3.7.40) in the last step.Consequently, (3.7.35) has been shown to be ful�lled also for p = q + 1 and, therefore,it is true for any integer p.



Chapter 4A Rigged Hilbert Spa
e of the SquareBarrier PotentialIn this 
hapter, we 
onstru
t a RHS of the square barrier Hamiltonian. In order to do it, weshall use the Sturm-Liouville theory. This theory provides the dire
t integral de
ompositionof the Hilbert spa
e. From this dire
t integral de
omposition, we shall 
onstru
t the RHS.
CHARLIE [Stopping HAPPY's movement and reply. To BIFF℄Nobody dast blame this man. You don't understand: Willywas a salesman. And for a salesman, there is no ro
k bottomto the life. He don't put a bolt to a nut, he don't tell youthe law or give you medi
ine. He's a man way out there inthe blue, riding on a smile and a shoeshine. And when theystart not smiling ba
k|that's an earthquake. And then youget yourself a 
ouple of spots on your hat, and you're �n-ished. Nobody dast blame this man. A salesman is got todream, boy. It 
omes with the territory.BIFF: Charley, the man didn't know who he was.HAPPY[infuriated℄: Don't say that!BIFF: Why don't you 
ome with me, Happy?HAPPY: I'm not li
ked that easily. I'm staying right in this
ity, and I'm gonna beat this ra
ket! [He looks at BIFF, his 
hinset.℄ The Loman Brothers!BIFF: I know who I am, kid.Arthur Miller, Death of a Salesman
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4.1 Introdu
tion 1394.1 Introdu
tionIn the previous 
hapter, we have 
onstru
ted the RHS of the harmoni
 os
illator. This sys-tem has a Hamiltonian whose spe
trum is dis
rete, i.e., the solutions of the time independentS
hr�odinger equation 
orresponding to the harmoni
 os
illator are square normalizable. Be-
ause the spe
trum of its Hamiltonian has no 
ontinuous part, the harmoni
 os
illator 
annothave s
attering states.We now turn to study systems whose time independent S
hr�odinger equation has non-square normalizable solutions. That is, systems whose Hamiltonian has a 
ontinuous spe
-trum. We shall fo
us on the square barrier potential, be
ause its S
hr�odinger equation 
anbe solved expli
itly. The square barrier potential will give us the long-sought example of theRigged Hilbert Spa
e generated by a S
hr�odinger Hamiltonian with 
ontinuous spe
trum.First, we review the gist of the Dira
 formalism for the 
ase of a Hamiltonian with
ontinuous spe
trum. The dynami
al equation that governs the behavior of a quantumsystem at any time is the time dependent S
hr�odinger equation:i~ ��t'(t) = H'(t) ; (4.1.1)where H denotes the Hamiltonian of the system and '(t) denotes the value of the wavefun
tion ' at time t. The Dira
 formalism solves this equation formally as follows: forea
h energy E in the spe
trum Sp(H) of the Hamiltonian, there exists a ket jEi that is aneigenve
tor of H, HjEi = EjEi ; E 2 Sp(H) : (4.1.2)These eigenkets form a 
omplete basis system that expands any wave fun
tion ' as' = Z dE jEihEj'i � Z dE '(E)jEi : (4.1.3)The time dependent solution of Eq. (4.1.1) is obtained by Fourier-transforming the timeindependent solution (4.1.3), '(t) = Z dE e�iEt=~ '(E) : (4.1.4)If the spe
trum of the Hamiltonian has a 
ontinuous part, and if the energy E belongsto this 
ontinuous part of the spe
trum, then the 
orresponding eigenket jEi that solvesEq. (4.1.2) is not square integrable, i.e., jEi is not an element of the Hilbert spa
e.It is the purpose of this 
hapter to show that the Rigged Hilbert Spa
e is the mathe-mati
al framework that supports the above formal manipulations. We will show that theexpansion (4.1.3) is not valid for every element of the Hilbert spa
e H, but only for those 'that belong to the spa
e of wave fun
tions � � H. We will also show that the kets jEi 
anbe understood mathemati
ally as 
ontinuous antilinear fun
tionals over the spa
e of wavefun
tions �, i.e., jEi 2 ��.



140 4 A Rigged Hilbert Spa
e of the Square Barrier PotentialA

ording to the RHS mathemati
s, equation (4.1.2) means thathH'jEi = Eh'jEi ; 8' 2 � : (4.1.5)The a
tion of H 
an be extended to the kets jEi in �� as follows:h'jH�jEi = hH'jEi ; 8' 2 � : (4.1.6)Be
ause H is 
ontinuous on �, the operator H� is a uniquely de�ned extension of H. Usingthe de�nition (4.1.6), we rewrite Eq. (4.1.5) ash'jH�jEi = Eh'jEi ; 8' 2 � : (4.1.7)Omitting the arbitrary ' in this equation leads toH�jEi = EjEi ; (4.1.8)whi
h is the same as Eq. (4.1.2). (Note that in Eq. (4.1.8) we have denoted the a
tion ofthe Hamiltonian on the ket jEi by H� and not just by H. We shall use this notation inorder to stress that the Hamiltonian is a
ting on ve
tors that lie outside the Hilbert spa
e.)The statement of the Nu
lear Spe
tral Theorem [5℄ only assures the existen
e of thegeneralized eigenve
tors jEi, but it does not say how to 
onstru
t them or how to 
onstru
tthe spa
e �, whi
h is assumed to be given beforehand. In this 
hapter, we provide anexample of a Hamiltonian with 
ontinuous spe
trum where all the quantities are expli
itly
onstru
ted. As mentioned above, this example is the three-dimensional square barrierpotential. We shall use the Sturm-Liouville theory (Weyl theory) [30℄ to �nd the RHS ofthis potential.By applying the Sturm-Liouville theory to the S
hr�odinger equation of the square barrierpotential, we will obtain a domainD(H) on whi
h the Hamiltonian is self-adjoint. The Greenfun
tions, the spe
trum, and the unitary transformation that diagonalizes our Hamiltonianwill be also 
omputed. The diagonalization of the Hamiltonian will allow us to obtain theenergy (spe
tral) representation and the dire
t integral de
omposition of the Hilbert spa
eindu
ed by our Hamiltonian. We will see why this dire
t integral de
omposition is notenough for the purposes of Quantum Me
hani
s and why the RHS is ne
essary. Next, wewill 
onstru
t the spa
e �. The RHS � � H � �� (4.1.9)of the square barrier potential will follow. Dira
 kets will be a

ommodated as elements of��, and the S
hwartz delta fun
tional will appear in the energy (spe
tral) representation ofthe triplet (4.1.9). The Nu
lear Spe
tral Theorem will be proved, and it will be shown thatthis theorem is just a restatement of the (heuristi
) Dira
 basis ve
tor expansion (4.1.3).



4.2 Sturm-Liouville Theory Applied to the Square Barrier Potential 1414.2 Sturm-Liouville Theory Applied to the Square Bar-rier Potential4.2.1 S
hr�odinger Equation in the Position RepresentationIn order to 
al
ulate the set of real generalized eigenvalues of the square barrier Hamil-tonian (the physi
al spe
trum) and their 
orresponding generalized eigenve
tors, we solveequation (4.1.8) in the position representation,h~xjH�jEi = Eh~xjEi : (4.2.1)The expression of the Hamiltonian in the position representation ish~xjH�jEi = ��~22m �+ V (~x)� h~xjEi ; (4.2.2)where � is the three-dimensional Lapla
ian andV (~x) = V (r) = 8<: 0 0 < r < aV0 a < r < b0 b < r <1 (4.2.3)is the square barrier potential. Writing Eqs. (4.2.1) and (4.2.2) in spheri
al 
oordinatesand restri
ting ourselves to the 
ase of zero angular momentum, we obtain the radial time-independent S
hr�odinger equation,�� ~22m d2dr2 + V (r)��(r;E) = E�(r;E) : (4.2.4)Thus our Hamiltonian in the radial representation is given by the di�erential operatorh � � ~22m d2dr2 + V (r) : (4.2.5)Throughout this 
hapter, the symbol h will be used to denote the formal di�erential operator(4.2.5).The Sturm-Liouville theory studies the di�erential operatorddx(p(x) ddx) + q(x) ; (4.2.6)where p(x) and q(x) are fun
tions of the real variable x, x running over an interval ofthe real axis. In our example, x will be the radial 
oordinate r running over the interval[0;1), p(x) the 
onstant �~2=2m and q(x) the square barrier potential (4.2.3). In this 
ase,the Sturm-Liouville di�erential operator (4.2.6) 
oin
ides with the S
hr�odinger di�erentialoperator (4.2.5) and therefore we are allowed to apply the Sturm-Liouville theory to ourproblem.



142 4 A Rigged Hilbert Spa
e of the Square Barrier PotentialMathemati
ally, all the information about the di�erential operator h provided by theSturm-Liouville theory (resolvent, spe
trum, spe
tral representation,...) is obtained fromthe generalized eigenvalue equationh�(r; E) = �� ~22m d2dr2 + V (r)��(r; E) = E�(r; E) ; E 2 C ; (4.2.7)with various boundary 
onditions. As mentioned in the introdu
tion, the \monoenergeti
"eigensolutions of (4.2.7) are not in general square integrable, i.e., they are not in the Hilbertspa
e. Those \monoenergeti
" eigensolutions will be asso
iated to antilinear fun
tionalsFE 2 �� by FE(') � Z 10 dr '(r)�(r;E) : (4.2.8)These fun
tionals are generalized eigenve
tors of the Hamiltonian H,H�FE = EFE ; (4.2.9)or more pre
isely, h'jH�jFEi = hH'jFEi = Eh'jFEi ; 8' 2 � : (4.2.10)From a physi
al point of view, Eq. (4.2.7) is the time-independent S
hr�odinger equation.Di�erent boundary 
onditions imposed upon it yield either Dira
 kets, Lippmann-S
hwingerkets or Gamow kets.4.2.2 Self-Adjoint ExtensionOur �rst obje
tive will be to de�ne a linear operator on a Hilbert spa
e 
orresponding tothe formal di�erential operator h and investigate its self-adjoint extensions. Among allthe possibilities, we shall 
hoose the self-adjoint extension that �ts spheri
ally symmetri
potentials. Later se
tions will deal with the spe
tral properties of this self-adjoint extensionand with the RHS indu
ed by it.The Hilbert spa
e that is in the RHS of the square barrier potential is realized by thespa
e L2([0;1); dr) of square integrable fun
tions f(r) de�ned on the interval [0;1). In thisse
tion, we �nd a subdomain D(H) of this Hilbert spa
e on whi
h the di�erential operatorh is self-adjoint. This domain must be a proper dense linear subspa
e of L2([0;1); dr). Thea
tion of h must be well-de�ned on D(H), and this a
tion must remain in L2([0;1); dr).We need also a boundary 
ondition that assures the self-adjointness of the Hamiltonian.Among all the possible boundary 
onditions that provide a self-adjoint extension (see Ap-pendix 4.4.1), we 
hoose f(0) = 0. These requirements 
an be written asf(r) 2 L2([0;1); dr) ; (4.2.11a)(hf)(r) 2 L2([0;1); dr) ; (4.2.11b)f(r) 2 AC2[0;1) ; (4.2.11
)f(0) = 0 ; (4.2.11d)
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e of fun
tions whose derivative is absolutely 
ontinuous(
f. Appendix 4.4.1). Condition (4.2.11a) just means that the wave fun
tions are square nor-malizable. Condition (4.2.11b) assures that the a
tion of h on any f(r) is square integrable.Condition (4.2.11
) is the weakest 
ondition suÆ
ient for the se
ond derivative of f(r) tobe well-de�ned. In our example, this 
ondition implies that f(r) and f 0(r) are 
ontinuousat r = a and at r = b. Equation (4.2.11d) sele
ts, among all the possible possible boundary
onditions that provide a domain on whi
h the di�erential operator h is self-adjoint (seeAppendix 4.4.1), the self-adjoint extension needed in physi
s.The reason why we 
hoose (4.2.11d) is the following: in physi
s [1, 54, 72, 73℄, the setof boundary 
onditions imposed on the S
hr�odinger equation (4.2.7) always in
ludes�(0;E) = 0 ; (4.2.12a)�(r;E); and �0(r;E) are 
ontinuous at r = a and at r = b : (4.2.12b)Condition (4.2.12b) is implied by (4.2.11
), so we just need to re
over (4.2.12a). This is whywe impose (4.2.11d).The set of 
onditions (4.2.11) leads to the domainD(H) = ff(r) j f(r); hf(r) 2 L2([0;1); dr); f(r) 2 AC2[0;1); f(0) = 0g : (4.2.13)In 
hoosing (4.2.13) as the domain of our formal di�erential operator h, we de�ne a linearoperator H by(Hf)(r) := hf(r) = �� ~22m d2dr2 + V (r)� f(r) ; f(r) 2 D(H) : (4.2.14)4.2.3 Resolvent and Green Fun
tionsThe Green fun
tion is the kernel of integration needed to write the resolvent of H as anintegral operator, (E �H)�1 f(r) = Z 10 G(r; s;E)f(s) ds : (4.2.15)In Dira
 notation this equation readshrj(E �H)�1jfi = Z 10 hrj(E �H)�1jsihsjfi ds ; (4.2.16)and therefore G(r; s;E) = hrj(E �H)�1jsi : (4.2.17)The so-
alled outgoing and in
oming Green fun
tions are de�ned byG�(r; s;E) = lim�!0+G(r; s;E � i�) : (4.2.18)The pro
edure to 
ompute the Green fun
tion of our operator (4.2.14) is explained in [30℄(see also [74℄). For the sake of 
ompleteness, we in
lude in Appendix 4.4.2 the statement
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e of the Square Barrier Potentialof the theorem that is used to 
al
ulate G(r; s;E). The expression of the Green fun
tionwill be given in terms of eigenfun
tions of the di�erential operator h subje
t to di�erentboundary 
onditions (
f. Theorem 1 in Appendix 4.4.2).We shall 
onsider three regions of the 
omplex plane and 
ompute the Green fun
tionfor ea
h region separately. In all our 
al
ulations, we will use the following bran
h of thesquare root fun
tion:p� : fE 2 C j � � < arg(E) � �g 7�! fE 2 C j � �=2 < arg(E) � �=2g : (4.2.19)Region <(E) < 0, =(E) 6= 0For <(E) < 0, =(E) 6= 0, the Green fun
tion (see Theorem 1 in Appendix 4.4.2) is givenby G(r; s;E) = 8><>: � 2m=~2p�2m=~2 E e�(r;E) e�(s;E)2 eJ3(E) r < s� 2m=~2p�2m=~2 E e�(s;E) e�(r;E)2 eJ3(E) r > s <(E) < 0 ; =(E) 6= 0 : (4.2.20)The eigenfun
tion e�(r;E) satis�es the S
hr�odinger equation (4.2.7) and the boundary 
on-ditions e�(0;E) = 0 ; (4.2.21a)e�(r;E) 2 AC2([0;1)) ; (4.2.21b)e�(r;E) is square integrable at 0 : (4.2.21
)The boundary 
onditions (4.2.21) 
an be written ase�(0;E) = 0 ; (4.2.22a)e�(a� 0;E) = e�(a+ 0;E) ; (4.2.22b)e�0(a� 0;E) = e�0(a + 0;E) ; (4.2.22
)e�(b� 0;E) = e�(b + 0;E) ; (4.2.22d)e�0(b� 0;E) = e�0(b + 0;E) ; (4.2.22e)e�(r;E) is square integrable at 0 ; (4.2.22f)and lead toe�(r;E) = 8>><>>: eq� 2m~2 Er � e�q� 2m~2 Er 0 < r < aeJ1(E)eq� 2m~2 (E�V0)r + eJ2(E)e�q� 2m~2 (E�V0)r a < r < beJ3(E)eq� 2m~2 Er + eJ4(E)e�q� 2m~2 Er b < r <1 : (4.2.23)The fun
tions eJ1� eJ4 are su
h that e�(r;E) satis�es the boundary 
onditions (4.2.22), andtheir expressions are given in Eq. (4.4.12) of Appendix 4.4.2.
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tion e�(r;E) satis�es the S
hr�odinger equation (4.2.7) and the boundary
onditions e�(r;E) 2 AC2([0;1)) ; (4.2.24a)e�(r;E) is square integrable at 1 : (4.2.24b)The boundary 
onditions (4.2.24) 
an be written ase�(a� 0;E) = e�(a+ 0;E) ; (4.2.25a)e�0(a� 0;E) = e�0(a + 0;E) ; (4.2.25b)e�(b� 0;E) = e�(b + 0;E) ; (4.2.25
)e�0(b� 0;E) = e�0(b + 0;E) ; (4.2.25d)e�(r;E) is square integrable at 1 ; (4.2.25e)and lead toe�(r;E) = 8>><>>: eA1(E)eq� 2m~2 Er + eA2(E)e�q� 2m~2 Er 0 < r < aeA3(E)eq� 2m~2 (E�V0)r + eA4(E)e�q� 2m~2 (E�V0)r a < r < be�q� 2m~2 Er b < r <1 : (4.2.26)The fun
tions eA1� eA4 are su
h that e�(r;E) satis�es the boundary 
onditions (4.2.25), andtheir expressions are given in Eq. (4.4.13) of Appendix 4.4.2.Region <(E) > 0, =(E) > 0When <(E) > 0, =(E) > 0, the expression of the Green fun
tion isG(r; s;E) = 8><>: 2m=~2p2m=~2 E �(r;E)�+(s;E)2iJ4(E) r < s2m=~2p2m=~2 E �(s;E)�+(r;E)2iJ4(E) r > s <(E) > 0; =(E) > 0 : (4.2.27)The eigenfun
tion �(r;E) satis�es the S
hr�odinger equation (4.2.7) and the boundary 
on-ditions (4.2.21),�(r;E) = 8>>><>>>: sin(q2m~2 Er) 0 < r < aJ1(E)eiq 2m~2 (E�V0)r + J2(E)e�iq2m~2 (E�V0)r a < r < bJ3(E)eiq 2m~2 Er + J4(E)e�iq 2m~2 Er b < r <1 : (4.2.28)The fun
tions J1 � J4 are determined by the boundary 
onditions (4.2.22), and their ex-pressions are listed in Eq. (4.4.16) of Appendix 4.4.2.
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e of the Square Barrier PotentialThe eigenfun
tion �+(r;E) satis�es the S
hr�odinger equation (4.2.7) and the boundary
onditions (4.2.24),�+(r;E) = 8>><>>: A+1 (E)eiq 2m~2 Er +A+2 (E)e�iq 2m~2 Er 0 < r < aA+3 (E)eiq 2m~2 (E�V0)r +A+4 (E)e�iq 2m~2 (E�V0)r a < r < beiq 2m~2 Er b < r <1 : (4.2.29)The fun
tions A+1 � A+4 are determined by the boundary 
onditions (4.2.25), and theirexpressions are listed in Eq. (4.4.17) of Appendix 4.4.2.Region <(E) > 0, =(E) < 0In the region <(E) > 0, =(E) < 0, the Green fun
tion readsG(r; s;E) = 8><>: � 2m=~2p2m=~2 E �(r;E)��(s;E)2iJ3(E) r < s� 2m=~2p2m=~2 E �(s;E)��(r;E)2iJ3(E) r > s <(E) > 0; =(E) < 0 : (4.2.30)The eigenfun
tion �(r;E) is given by (4.2.28). The eigenfun
tion ��(r;E) satis�es theS
hr�odinger equation (4.2.7) and the boundary 
onditions (4.2.24),��(r;E) = 8>><>>: A�1 (E)eiq 2m~2 Er +A�2 (E)e�iq 2m~2 Er 0 < r < aA�3 (E)eiq 2m~2 (E�V0)r +A�4 (E)e�iq 2m~2 (E�V0)r a < r < be�iq 2m~2 Er b < r <1 : (4.2.31)The fun
tions A�1 � A�4 are su
h that ��(r;E) and its derivative are 
ontinuous at r = aand at r = b. Their expressions are listed in Eq. (4.4.19) of Appendix 4.4.2.4.2.4 Diagonalization of H and Eigenfun
tion ExpansionIn the present se
tion, we diagonalize our Hamiltonian H and 
onstru
t the expansion ofthe wave fun
tions in terms of the eigenfun
tions of the di�erential operator h. In orderto do so, we will 
ompute the spe
trum of H and then 
onstru
t a unitary operator Uthat transforms from the position representation into the energy representation. We willsee that the spe
trum of H is the positive real line [0;1). In the energy representation, Hwill a
t as the multipli
ation operator, the Hilbert spa
e will be realized by L2([0;1); dE)and the domain of the Hamiltonian will be realized by the maximal domain on whi
h themultipli
ation operator is well-de�ned. On our way, we shall take advantage of some resultsof the Sturm-Liouville theory that are proved in [30℄. For the sake of 
ompleteness, wein
lude in Appendix 4.4.3 the statements of the theorems that are used in this se
tion.
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trum of HWe �rst 
ompute the spe
trum Sp(H) of the operator H by applying Theorem 4 of Ap-pendix 4.4.3 (see also [30℄). Sin
e H is self-adjoint, its spe
trum is real. This spe
trumis the subset of the real line on whi
h the Green fun
tion fails to be analyti
. This non-analyti
ity of G(r; s;E) will be built into the fun
tions ��ij(E) that appear in Theorem 4 ofAppendix 4.4.3.From the expression of the Green fun
tion 
omputed above, it is 
lear that the subsets(�1; 0) and (0;1) should be studied separately. We will denote either of these subsets by�. Subset � = (�1; 0)We �rst take � from Theorem 4 of Appendix 4.4.3 to be (�1; 0). We 
hoose a basisfor the spa
e of solutions of the equation h� = E� that is 
ontinuous on (0;1) � � andanalyti
ally dependent on E as�1(r;E) = 8>><>>: eB1(E)eq� 2m~2 Er + eB2(E)e�q� 2m~2 Er 0 < r < aeB3(E)eq� 2m~2 (E�V0)r + eB4(E)e�q� 2m~2 (E�V0)r a < r < beq� 2m~2 Er b < r <1 ; (4.2.32a)�2(r;E) = e�(r;E) : (4.2.32b)The fun
tions eB1� eB4 are su
h that �1(r;E) and its derivative are 
ontinuous at r = a andat r = b. Their expressions are listed in Eq. (4.4.29) of Appendix 4.4.3.Obviously, e�(r;E) = eJ3(E)�1(r;E) + eJ4(E)�2(r;E) ; (4.2.33)whi
h along with Eq. (4.2.20) leads toG(r; s;E) = � 2m=~2p�2m=~2E 12 "�1(r;E) + eJ4(E)eJ3(E) �2(r;E)#�2(s;E) ;r < s ; <(E) < 0 ;=(E) 6= 0 : (4.2.34)Sin
e �2(s;E) = �2(s;E) ; (4.2.35)we 
an write Eq. (4.2.34) asG(r; s;E) = � 2m=~2p�2m=~2 E 12 "�1(r;E)�2(s;E) + eJ4(E)eJ3(E) �2(r;E)�2(s;E)# ;r < s ; <(E) < 0 ;=(E) 6= 0 : (4.2.36)



148 4 A Rigged Hilbert Spa
e of the Square Barrier PotentialOn the other hand, by Theorem 4 in Appendix 4.4.3 we haveG(r; s;E) = 2Xi;j=1 ��ij(E)�i(r;E)�j(s;E) r < s : (4.2.37)By 
omparing Eqs. (4.2.36) and (4.2.37) we see that��ij(E) = 0� 0 � 2m=~2p�2m=~2 E 120 � 2m=~2p�2m=~2 E 12 eJ4(E)eJ3(E) 1A ; <(E) < 0 ; =(E) 6= 0 : (4.2.38)The fun
tions ��ij(E) are analyti
 in a neighborhood of � = (�1; 0). Therefore, the interval(�1; 0) is in the resolvent set Re(H) of the operator H.Subset � = (0;1)Now we study the 
ase � = (0;1). In order to be able to apply Theorem 4 of Ap-pendix 4.4.3, we 
hoose the following basis for the spa
e of solutions of h� = E� that is
ontinuous on (0;1)� � and analyti
ally dependent on E:�1(r;E) = �(r;E) ; (4.2.39a)�2(r;E) = 8>>><>>>: 
os(q2m~2 Er) 0 < r < aC1(E)eiq 2m~2 (E�V0)r + C2(E)e�iq 2m~2 (E�V0)r a < r < bC3(E)eiq 2m~2 Er + C4(E)e�iq 2m~2 Er b < r <1 : (4.2.39b)The fun
tions C1 � C4, whose expressions are given in Eq. (4.4.30) of Appendix 4.4.3, aresu
h that �2 and its derivative are 
ontinuous at r = a and at r = b.Eqs. (4.2.29), (4.2.31) and (4.2.39) lead to�+(r;E) = �C4(E)W (E)�1(r;E) + J4(E)W (E)�2(r;E) (4.2.40)and to ��(r;E) = C3(E)W (E)�1(r;E)� J3(E)W (E)�2(r;E) ; (4.2.41)where W (E) = J4(E)C3(E)� J3(E)C4(E) : (4.2.42)By substituting Eq. (4.2.40) into Eq. (4.2.27) we get toG(r; s;E) = 2m=~2p2m=~2E 12iJ4(E) ��C4(E)W (E)�1(r;E) + J4(E)W (E)�2(r;E)��1(s;E) ;<(E) > 0;=(E) > 0 ; r > s : (4.2.43)



4.2 Sturm-Liouville Theory Applied to the Square Barrier Potential 149By substituting Eq. (4.2.41) into Eq. (4.2.30) we get toG(r; s;E) = � 2m=~2p2m=~2E 12iJ3(E) � C3(E)W (E)�1(r;E)� J3(E)W (E)�2(r;E)��1(s;E) ;<(E) > 0;=(E) < 0 ; r > s ; (4.2.44)Sin
e �1(s;E) = �1(s;E) ; (4.2.45)Eq. (4.2.43) leads toG(r; s;E) = 2m=~2p2m=~2E 12iJ4(E) ��C4(E)W (E)�1(r;E)�1(s;E) + J4(E)W (E)�2(r;E)�1(s;E)�<(E) > 0;=(E) > 0 ; r > s ; (4.2.46)and Eq. (4.2.44) leads toG(r; s;E) = � 2m=~2p2m=~2E 12iJ3(E) � C3(E)W (E)�1(r;E)�1(s;E)� J3(E)W (E)�2(r;E)�1(s;E)�<(E) > 0;=(E) < 0 ; r > s ; (4.2.47)The expression of the resolvent in terms of the basis �1; �2 
an be written as (see Theorem 4in Appendix 4.4.3) G(r; s;E) = 2Xi;j=1 �+ij(E)�i(r;E)�j(s;E) r > s : (4.2.48)By 
omparing (4.2.48) to (4.2.46) we get to�+ij(E) = 0� 2m=~2p2m=~2 E 12i �C4(E)J4(E)W (E) 02m=~2p2m=~2 E 12i 1W (E) 0 1A ; <(E) > 0 ; =(E) > 0 ; (4.2.49)By 
omparing (4.2.48) to (4.2.47) we get to�+ij(E) = 0� � 2m=~2p2m=~2 E 12i C3(E)J3(E)W (E) 02m=~2p2m=~2 E 12i 1W (E) 0 1A ; <(E) > 0 ; =(E) < 0 ; (4.2.50)From Eqs. (4.2.49) and (4.2.50) we 
an see that the measures �12, �21 and �22 in Theorem 4of Appendix 4.4.3 are zero and that the measure �11 is given by�11((E1; E2)) = limÆ!0 lim�!0+ 12�i Z E2�ÆE1+Æ ��+11(E � i�)� �+11(E + i�)� dE= Z E2E1 14� 2m=~2p2m=~2E 1J3(E)J4(E) dE ; (4.2.51)



150 4 A Rigged Hilbert Spa
e of the Square Barrier Potentialwhi
h leads to �(E) � �11(E) = 14� 2m=~2p2m=~2E 1jJ4(E)j2 ; E 2 (0;1) : (4.2.52)The fun
tion �+11(E) has a bran
h 
ut along (0;1), and therefore (0;1) is in
luded inSp(H). Sin
e Sp(H) is a 
losed set, Sp(H) = [0;1). Thus the resolvent set of H isRe(H) = C � [0;1).Diagonalization and Eigenfun
tion ExpansionWe are now in a position to diagonalize the Hamiltonian. By Theorem 2 of Appendix 4.4.3,there is a unitary map eU de�ned byeU : L2([0;1); dr) 7�! L2((0;1); �(E)dE)f(r) 7�! ef(E) = (eUf)(E) = Z 10 drf(r)�(r;E) ; (4.2.53)that brings D(H) onto the spa
eD( eE) = f ef(E) 2 L2((0;1); �(E)dE) j Z 10 dE E2j ef(E)j2�(E) <1g : (4.2.54)Eqs. (4.2.53) and (4.2.54) provide a �-diagonalization of H. If we seek a Æ-diagonalization,i.e., if we seek eigenfun
tions that are Æ-normalized, then the measure �(E) must be absorbedby the eigenfun
tions and by the wave fun
tions.1 This is why we de�ne�(r;E) :=p�(E)�(r;E) ; (4.2.55)whi
h is the eigensolution of the di�erential operator h that is Æ-normalized, andbf(E) :=p�(E) ef(E) ; ef(E) 2 L2((0;1); �(E)dE) ; (4.2.56)and 
onstru
t the unitary operatorbU : L2((0;1)); �(E)dE) 7�! L2((0;1); dE)ef 7�! bf(E) = bU ef(E) :=p�(E) ef(E) : (4.2.57)The operator that Æ-diagonalizes our Hamiltonian is U := bU eU ,U : L2([0;1)); dr) 7�! L2((0;1); dE)f 7�! Uf := bf : (4.2.58)1The meaning of the Æ-normalization of the eigenfun
tions will be explained in Se
tion 4.2.9.



4.2 Sturm-Liouville Theory Applied to the Square Barrier Potential 151The a
tion of U 
an be written as an integral operator,bf(E) = (Uf)(E) = Z 10 drf(r)�(r;E) ; f(r) 2 L2([0;1); dr) : (4.2.59)The image of D(H) under the a
tion of U isD( bE) := UD(H) = f bf(E) 2 L2((0;1); dE) j Z 10 E2j bf(E)j2dE <1g : (4.2.60)Therefore, we have 
onstru
ted a unitary operatorU : D(H) � L2([0;1); dr) 7�! D( bE) � L2((0;1); dE)f 7�! bf = Uf (4.2.61)that transforms from the position representation into the energy representation. The op-erator U diagonalizes our Hamiltonian in the sense that bE � UHU�1 is the multipli
ationoperator, bE : D( bE) � L2((0;1); dE) 7�! L2((0;1); dE)bf 7�! ( bE bf)(E) := E bf(E) : (4.2.62)The inverse operator of U is given by (see Theorem 3 of Appendix 4.4.3)f(r) = (U�1 bf)(r) = Z 10 dE bf(E)�(r; E) ; bf(E) 2 L2((0;1); dE) : (4.2.63)The operator U�1 transforms from the energy representation into the position representa-tion.The expressions (4.2.59) and (4.2.63) provide the eigenfun
tion expansion of any squareintegrable fun
tion in terms of the eigensolutions �(r;E) of h.The unitary operator U 
an be looked at as a sort of generalized Fourier transform: theFourier transform 
onne
ts the position and the momentum representations. U 
onne
ts theposition and the energy representations. The role played by the plane waves e�ipx (whi
h aregeneralized eigenfun
tions of the operator �id=dx) is here played by the �(r;E) (whi
h aregeneralized eigenfun
tions of the di�erential operator h). Therefore �(r;E) � hrjEi, whi
his the Æ-normalized eigensolutions of the S
hr�odinger equation, 
an be viewed as \transitionelements" between the r- and the E-representations.The label f of the fun
tions in the position representation is di�erent from the label bfof the fun
tions in the energy representation be
ause they have di�erent fun
tional depen-den
es. The same applies to the Hamiltonian H, the domains, et
. This is not the standardpra
ti
e in the physi
s literature, where di�erent representations are usually identi�ed andlabeled by the same symbol (see, for instan
e, [72, 54, 73, 15℄).We remark that the operator U that diagonalizes H is not unique. In fa
t, di�erenteigenkets, i.e., di�erent boundary 
onditions imposed upon (4.2.7), lead to di�erent opera-tors U .



152 4 A Rigged Hilbert Spa
e of the Square Barrier Potential4.2.5 The Need of the RHSThe Sturm-Liouville theory only provides a domain D(H) on whi
h the Hamiltonian H isself-adjoint and a unitary operator U that diagonalizes H. This unitary operator indu
es adire
t integral de
omposition of the Hilbert spa
e (see [4, 5℄),H 7�! UH � bH = � ZSp(H)H(E)dEf 7�! Uf � f bf(E)g; bf(E) 2 H(E) ; (4.2.64)where H is realized by L2([0;1); dr), and bH is realized by L2([0;1); dE). The Hilbertspa
e H(E) asso
iated to ea
h energy eigenvalue of Sp(H) is realized by the Hilbert spa
eof 
omplex numbers C . On bH, the operator H a
ts as the multipli
ation operator,Hf 7�! UHf � fE bf(E)g ; f 2 D(H) : (4.2.65)The s
alar produ
t on bH 
an be written as� bf; bg� bH = ZSp(H) � bf(E); bg(E)�E dE ; (4.2.66)where the s
alar produ
t ( � ; � )E on H(E) is the usual s
alar produ
t on C ,� bf(E); bg(E)�E = bf(E) bg(E) : (4.2.67)As we shall explain below, the dire
t integral de
omposition does not shelter some of thebasi
 requirements needed in Quantum Me
hani
s. These requirements 
an be sheltered bythe RHS.One of the most important prin
iples of QuantumMe
hani
s is that the quantity (';H')should �t the experimental expe
tation value of the observable H in the state '. However,(';H') is not de�ned for every element in H, but only for those square normalizable wavefun
tions that are also in D(H). Therefore, not every square normalizable fun
tion 
anrepresent a \physi
al wave fun
tion," but only those that are (at least) in D(H). Anotherfundamental assumption of quantum physi
s is that the quantitydisp'H = (';H2')� (';H')2 (4.2.68)represents the dispersion of the observable H in the state ', and that�'H �qdisp'H (4.2.69)represents the un
ertainty of the observable H in the state '. Sin
e (4.2.68) and (4.2.69)are only de�ned when ' is an element of D(H2) � D(H), not every element of D(H) 
anbe assigned to a \physi
al wave fun
tion," but only those fun
tions that are (at least) in



4.2 Sturm-Liouville Theory Applied to the Square Barrier Potential 153D(H2). Therefore, we would like to �nd a subdomain � in
luded in D(H) on whi
h theexpe
tation values (';Hn') ; n = 0; 1; 2; : : : ; ' 2 � (4.2.70)are well-de�ned.Another important requirement of Quantum Me
hani
s is that algebrai
 operations su
has the sum and multipli
ation of two operators are well-de�ned. In the HS formalism,these algebrai
 operations are not always well-de�ned be
ause the domains on whi
h theseoperators are self-adjoint do not remain stable under their a
tions in general. In fa
t,mu
h of the trouble of the HS formalism 
omes from domain questions. In our 
ase, thedomain D(H) in (4.2.13) does not remain stable under H. We therefore would like to �nda subdomain � in
luded in D(H) that remains stable under the a
tion of H and all of itspowers, Hn : � 7�! � ; n = 0; 1; 2; : : : (4.2.71)One 
an see that if Eq. (4.2.71) holds, then the expe
tation values (4.2.70) are well-de�nedfor ea
h ' in �, i.e., if the domain � remains stable under the a
tion of H, then theexpe
tation values of H in any state ' 2 � are well-de�ned.In Quantum Me
hani
s, it is always assumed that for ea
h E 2 Sp(H) there is a Dira
ket jEi su
h that H�jEi = EjEi (4.2.72)and su
h that the Dira
 basis ve
tor expansion (4.1.3) holds. Equation (4.2.72) has nosolution in the Hilbert spa
e when E belongs to the 
ontinuous part of the spe
trum of theHamiltonian. In fa
t, Eq. (4.2.72) has to be related to the equationh~xjH�jEi = Eh~xjEi ; (4.2.73)whi
h in the radial representation readsh�(r;E) = E�(r;E) ; (4.2.74)where h is the di�erential operator (4.2.5) and �(r;E) is the delta-normalized eigenfun
tion(4.2.55). Sin
e �(r;E) � hrjEi lies outside L2([0;1); dr), i.e.,Z 10 dr j�(r;E)j2 =1 ; (4.2.75)the 
orresponding eigenket jEi, whi
h is de�ned byjEi : � 7�! C' 7�! h'jEi := Z 10 '(r)�(r;E)dr ; (4.2.76)should also lie outside the Hilbert spa
e. A
tually, jEi is an element of ��.In summary, what our mathemati
al framework should provide us with is:



154 4 A Rigged Hilbert Spa
e of the Square Barrier Potential1. a dense invariant domain on whi
h all the powers of H and all the expe
tation values(4.2.70) are well-de�ned,2. smooth enough wave fun
tions so that Eq. (4.2.72) holds,3. Dira
 basis ve
tor expansion must follow.In the dire
t integral de
omposition formalism, there is not enough room for either of thesethree requirements. This is why we introdu
e the RHS.4.2.6 Constru
tion of the Rigged Hilbert Spa
eThe �rst step is to make all the powers of the Hamiltonian well-de�ned. In order to do so,we 
onstru
t the maximal invariant subspa
e D of the operator H,D := 1\n=0D(Hn) : (4.2.77)The spa
e D is the largest subspa
e of D(H) that remains stable under the a
tion of theHamiltonian H and all of its powers. It is easy to 
he
k thatD = f' 2 L2([0;1); dr) j hn'(r) 2 L2([0;1); dr); hn'(0) = 0; '(n)(a) = '(n)(b) = 0;n = 0; 1; 2; : : : ; '(r) 2 C1([0;1))g : (4.2.78)The 
onditions '(n)(a) = '(n)(b) = 0 in (4.2.78) 
ome from taking the dis
ontinuities of thepotential V (r) at r = a and at r = b into 
onsideration (see [10℄).The se
ond step is to �nd a subspa
e � on whi
h the eigenkets jEi of H are well-de�nedas antilinear fun
tionals. For ea
h E 2 Sp(H), we asso
iate a ket jEi to the generalizedeigenfun
tion �(r;E) throughjEi : � 7�! C' 7�! h'jEi := Z 10 '(r)�(r;E)dr = (U')(E) : (4.2.79)As a
tual 
omputations show, the ket jEi in (4.2.79) is a generalized eigenfun
tional of Hif � is in
luded in the maximal invariant subspa
e of H,� � D : (4.2.80)Due to the non-square integrability of the eigenfun
tion �(r;E), we need to impose furtherrestri
tions on the elements of D in order to make the eigenfun
tional jEi in Eq. (4.2.79)
ontinuous, Z 10 dr j(r + 1)n(h+ 1)m'(r)j2 <1; n;m = 0; 1; 2; : : : (4.2.81)



4.2 Sturm-Liouville Theory Applied to the Square Barrier Potential 155The imposition of 
onditions (4.2.81) upon the spa
e D leads to the spa
e of test fun
tionsof the square barrier potential,� = f' 2 D j Z 10 dr j(r + 1)n(h+ 1)m'(r)j2 <1; n;m = 0; 1; 2; : : :g : (4.2.82)On �, we de�ne the family of normsk'kn;m :=sZ 10 dr j(r + 1)n(h + 1)m'(r)j2 ; n;m = 0; 1; 2; : : : (4.2.83)The quantities (4.2.83) ful�ll the 
onditions to be a norm (
f. Proposition 1 of Appendix 4.4.4)and 
an be used to de�ne a 
ountably normed topology �� on � (see [5℄),'� ����!�!1 ' i� k'� � 'kn;m��!�!1 0 ; n;m = 0; 1; 2; : : : (4.2.84)One 
an see that the spa
e � is stable under the a
tion of H and that H is ��-
ontinuous(
f. Proposition 2 of Appendix 4.4.4).On
e we have 
onstru
ted the spa
e �, we 
an 
onstru
t its topologi
al dual �� as thespa
e of ��-
ontinuous antilinear fun
tionals on � (see [5℄) and therewith the RHS of thesquare barrier potential (for l = 0)� � L2([0;1); dr) � �� : (4.2.85)The ket jEi in Eq. (4.2.79) is a well-de�ned antilinear fun
tional on �, i.e., jEi belongsto �� (
f. Proposition 3 of Appendix 4.4.4). The ket jEi is a generalized eigenve
tor of theHamiltonian H (
f. Proposition 3 of Appendix 4.4.4),H�jEi = EjEi ; (4.2.86)i.e., h'jH�jEi = hH'jEi = Eh'jEi ; 8' 2 � : (4.2.87)On the spa
e �, all the expe
tation values of the Hamiltonian and all the algebrai
operations involving H are well-de�ned, and the generalized eigenvalue equation (4.2.87)holds. As we shall see in the next se
tion, the fun
tions ' of � 
an be expanded by a Dira
basis ve
tor expansion.4.2.7 Dira
 Basis Ve
tor ExpansionWe are now in a position to derive the Dira
 basis ve
tor expansion. This derivation 
onsistsof the restri
tion of the Weyl-Kodaira expansions (4.2.59) and (4.2.63) to the spa
e �. Ifwe denote hrj'i � '(r) and hEjri � �(r;E), and if we de�ne the a
tion of the left ket hEjon ' 2 � as hEj'i := b'(E), then Eq. (4.2.59) be
omeshEj'i = Z 10 dr hEjri hrj'i ; ' 2 � : (4.2.88)



156 4 A Rigged Hilbert Spa
e of the Square Barrier PotentialIf we denote hrjEi � �(r;E), then Eq. (4.2.63) be
omeshrj'i = Z 10 dE hrjEi hEj'i ; ' 2 � : (4.2.89)This equation is the Dira
 basis ve
tor expansion of the square barrier potential. In fa
t,when we formally write (4.1.3) in the position representation, we get to (4.2.89).In Eq. (4.2.89), the wave fun
tion hrj'i is spanned in a \Fourier-type" expansion by theeigenfun
tions hrjEi. In this expansion, ea
h eigenfun
tion hrjEi is weighted by hEj'i =b'(E), whi
h is the value of the wave fun
tion in the energy representation at the pointE. Thus any fun
tion '(r) = hrj'i of � 
an be written as a linear superposition of themonoenergeti
 eigenfun
tions �(r;E) = hrjEi.Although the Weyl-Kodaira expansions (4.2.59) and (4.2.63) are valid for every elementof the Hilbert spa
e, the Dira
 basis ve
tor expansions (4.2.88) and (4.2.89) are only validfor fun
tions ' 2 � be
ause only those fun
tions ful�ll bothb'(E) = h'jEi (4.2.90)and h'jH�jEi = hH'jEi = Eh'jEi : (4.2.91)Another way to rephrase the Dira
 basis ve
tor expansion is the Nu
lear Spe
tral(Gelfand-Maurin) Theorem. Instead of using the general statement of [5℄, we prove this theo-rem using the ma
hinery of the Sturm-Liouville theory (see Proposition 4 of Appendix 4.4.5).The Nu
lear Spe
tral Theorem allows us to write the s
alar produ
t of any two fun
tions';  of � in terms of the a
tion of the kets jEi on ';  :(';  ) = Z 10 dE h'jEihEj i ; 8';  2 � : (4.2.92)It also allows us to write the matrix elements of the Hamiltonian and all of its powersbetween two elements ';  of � in terms of the a
tion of the kets jEi on ';  :(';Hn ) = Z 10 dE Enh'jEihEj i ; 8';  2 � ; n = 1; 2; : : : (4.2.93)4.2.8 Energy Representation of the RHSIn this se
tion, we 
onstru
t the energy representation of the RHS. Sin
e the unitary operatorU transforms from the position representation into the energy representation, the a
tion ofU on the RHS provides the energy representation of the RHS.We have already shown that in the energy representation the Hamiltonian H a
ts as themultipli
ation operator bE. The energy representation of the spa
e � is de�ned asb� := U� : (4.2.94)



4.2 Sturm-Liouville Theory Applied to the Square Barrier Potential 157It is very easy to see that b� is a linear subspa
e of L2([0;1); dE). In oder to endow b� witha topology �b�, we 
arry the topology on � into b�,�b� := U�� : (4.2.95)With this topology, the spa
e b� is a linear topologi
al spa
e. If we denote the dual spa
eof b� by b��, then we have U��� = (U�)� = b�� : (4.2.96)If we denote j bEi � U�jEi, then we 
an prove that j bEi is the antilinear S
hwartz deltafun
tional, i.e., j bEi is the antilinear fun
tional that asso
iates to ea
h fun
tion b' the 
omplex
onjugate of its value at the point E (see Proposition 5 of Appendix 4.4.6),j bEi : b� 7�! Cb' 7�! hb'j bEi := b'(E) : (4.2.97)Therefore, the S
hwartz delta fun
tional appears in the (spe
tral) energy representationof the RHS asso
iated to the Hamiltonian. If we write the a
tion of the S
hwartz deltafun
tional as an integral operator, then the Dira
 Æ-fun
tion appears in the integrand ofthat integral operator.It is very helpful to show the di�erent realizations of the RHS through the followingdiagram:H; '(r) � � L2([0;1); dr) � �� jEi position repr:# U # U # U�bE; b'(E) b� � L2([0;1); dE) � b�� j bEi energy repr: (4.2.98)On the top line of the diagram (4.2.98), we have the RHS, the Hamiltonian, the wavefun
tions and the Dira
 kets in the position representation. On the bottom line, we havetheir energy representation 
ounterparts.4.2.9 Meaning of the Æ-normalization of the Eigenfun
tionsIn this se
tion, we show that the Æ-normalization of the eigenfun
tions is related to themeasure d�(E) that is used to 
ompute the s
alar produ
t of the wave fun
tions in theenergy representation, (';  ) = Z 10 '(E) (E)d�(E) : (4.2.99)We will see that if the measure in (4.2.99) is the Lebesgue measure dE, then the eigen-fun
tions are Æ-normalized, and that if the measure is �(E)dE, then the eigenfun
tions are�-normalized.



158 4 A Rigged Hilbert Spa
e of the Square Barrier PotentialFor the sake of simpli
ity, in this se
tion we label the wave fun
tions in the position andin the energy representation with the same symbol. With this notation, Eq. (4.2.89) leadsto '(r) = Z 10 dE '(E)�(r;E) ; (4.2.100a) (r) = Z 10 dE  (E)�(r;E) : (4.2.100b)Sin
e '(r);  (r) 2 L2([0;1); dr), their s
alar produ
t is well-de�ned,(';  ) = Z 10 dr '(r) (r) : (4.2.101)Plugging (4.2.100) into (4.2.101), we obtain(';  ) = Z 10 dE Z 10 dE 0 '(E) (E 0) Z 10 dr �(r;E)�(r;E 0) : (4.2.102)If we use the Lebesgue measure dE, then the s
alar produ
t (4.2.99) 
an be written as(';  ) = Z 10 dE '(E) (E) : (4.2.103)Comparison of (4.2.102) and (4.2.103) leads toZ 10 dr �(r;E)�(r;E 0) = Æ(E � E 0) ; (4.2.104)i.e., the eigenfun
tions �(r;E) are Æ-normalized.We now 
onsider the 
ase in whi
h the eigenfun
tions are �-normalized. If we use themeasure d�(E) = �(E)dE, then the s
alar produ
t of ' and  is given by(';  ) = Z 10 '�(E) �(E)�(E) dE ; (4.2.105)where '�(E) := '(E)=p�(E) and  �(E) :=  (E)=p�(E). If we de�ne ��(r;E) :=�(r;E)=p�(E), then Eq. (4.2.100) leads to'(r) = Z 10 '�(E)��(r;E)�(E) dE ; (4.2.106a) (r) = Z 10  �(E)��(r;E)�(E) dE : (4.2.106b)Plugging Eq. (4.2.106) into (4.2.101), we obtain(';  ) = Z 10 dE Z 10 dE 0 '�(E) �(E 0)�(E)�(E 0) Z 10 dr ��(r;E)��(r;E 0) : (4.2.107)Comparison of (4.2.107) and (4.2.105) leads toZ 10 dr ��(r;E)��(r;E 0) = 1�(E)Æ(E � E 0) ; (4.2.108)i.e., the eigenfun
tions ��(r;E) are �-normalized.



4.3 Con
lusion to Chapter 4 1594.3 Con
lusion to Chapter 4In this 
hapter, we have 
onstru
ted the Rigged Hilbert Spa
e of the square barrier Hamil-tonian � � L2([0;1); dr) � �� (4.3.1)and its energy representation b� � L2([0;1); dE) � b�� : (4.3.2)The spe
trum of the Hamiltonian H is the positive real semiaxis. For ea
h value E of thespe
trum of H, we have 
onstru
ted a Dira
 ket jEi that is a generalized eigenfun
tional ofH whose 
orresponding generalized eigenvalue is E. In the energy representation, jEi a
ts asthe antilinear S
hwartz delta fun
tional. On the spa
e �, all algebrai
 operations involvingthe HamiltonianH are well-de�ned. In parti
ular, the expe
tation values of the Hamiltonianin any element of � are well-de�ned. Any element of � 
an be expanded in terms of theeigenkets jEi by a Dira
 basis ve
tor expansion. The elements of � are represented by well-behaved fun
tions in 
ontrast to the elements of the Hilbert spa
e whi
h are represented bysets of equivalent fun
tions that 
an vary arbitrarily on any set of zero Lebesgue measure.Therefore, it seems natural to 
on
lude that a physi
ally a

eptable wave fun
tion is notany element of the Hilbert spa
e, but rather an element of the subspa
e �.In our quest for the RHS of the square barrier potential, we have found a systemati
method to 
onstru
t the RHS of a large 
lass of spheri
ally symmetri
 potentials:1. Expression of the formal di�erential operator.2. Hilbert spa
eH of square integrable fun
tions on whi
h the formal di�erential operatora
ts.3. A domain D(H) of the Hilbert spa
e on whi
h the formal di�erential operator isself-adjoint.4. Green fun
tions (resolvent) of this self-adjoint operator.5. Diagonalization of the self-adjoint operator, eigenfun
tion expansion of the elements ofH in terms of the eigensolutions of the formal di�erential operator, and dire
t integralde
omposition of H indu
ed by the self-adjoint operator.6. Subspa
e � of D(H) on whi
h all the expe
tation values of H are well-de�ned and onwhi
h the Dira
 kets a
t as antilinear fun
tionals.7. Rigged Hilbert spa
e � � H � ��.



160 4 A Rigged Hilbert Spa
e of the Square Barrier Potential4.4 Appendi
es to Chapter 44.4.1 Appendix 1: Self-Adjoint ExtensionIn this appendix, we list the possible self-adjoint extensions asso
iated to the di�erentialoperator h. We �rst need �rst some de�nitions (
f. [30℄).De�nition 1 By AC2([0;1)) we denote the spa
e of all fun
tions f whi
h have a
ontinuous derivative in [0;1), and for whi
h f 0 is not only 
ontinuous but also absolutely
ontinuous over ea
h 
ompa
t subinterval of [0;1). Thus f (2) exists almost everywhere,and is integrable over any 
ompa
t subinterval of [0;1). At 0 f 0 is 
ontinuous from theright.The spa
e AC2([0;1)) is the largest spa
e of fun
tions on whi
h the di�erential operatorh 
an be de�ned. In the 
ase of the square barrier potential (4.2.3), if f(r) belongs toAC2([0;1)), then f(r) and f 0(r) are 
ontinuous at r = a and at r = b.De�nition 2 We de�ne the spa
esH2h([0;1)) := ff 2 AC2([0;1)) j f; hf 2 L2([0;1); dr)g (4.4.1)H2([0;1)) := ff 2 AC2([0;1) j f; f (2) 2 L2([0;1); dr)g (4.4.2)H20([0;1)) := ff 2 H2([0;1)) j f vanishes outside some
ompa
t subset of (0;1)g : (4.4.3)Using these spa
es, we 
an de�ne the ne
essary operators to 
al
ulate the self-adjointextensions asso
iated to h.De�nition 3 If h is the formal di�erential operator (4.2.5), we de�ne the operatorsH0 and H1 on L2([0;1); dr) by the formulasD(H0) = H20([0;1)); H0f := hf; f 2 D(H0) : (4.4.4)D(H1) = H2h([0;1)); H1f := hf; f 2 D(H1) : (4.4.5)The operators H0 and H1 are sometimes 
alled the minimal and the maximal operatorsasso
iated to the di�erential operator h, respe
tively. The domain D(H1) is the largestdomain of the Hilbert spa
e L2([0;1); dr) on whi
h the a
tion of the di�erential operatorh 
an be de�ned and remains inside L2([0;1); dr). Further, Hy0 = H1.The self-adjoint extensions of H0 are given by the restri
tions of the operator H1 todomains determined by the 
onditions (see [30℄, page 1306)f(0) + � f 0(0) = 0 ; �1 < � � 1 : (4.4.6)



4.4 Appendi
es to Chapter 4 161These boundary 
onditions lead to the domainsD�(H) = ff 2 D(H1) j f(0) + � f 0(0) = 0g ; �1 < � � 1 : (4.4.7)On these domains, the formal di�erential operator h is self-adjoint. The boundary 
onditionthat �ts spheri
ally symmetri
 potentials is f(0) = 0, i.e., � = 0. This 
ondition sele
ts ourdomain (4.2.13), D(H) = D�=0(H) = ff 2 D(H1) j f(0) = 0g : (4.4.8)4.4.2 Appendix 2: Resolvent and Green Fun
tionThe following theorem provides the pro
edure to 
ompute the Green fun
tion of the Hamil-tonian H (
f. Theorem XIII.3.16 of Ref. [30℄):Theorem 1 Let H be the self-adjoint operator (4.2.14) derived from the real formaldi�erential operator (4.2.5) by the imposition of the boundary 
ondition (4.2.11d). Let=E 6= 0. Then there is exa
tly one solution �(r;E) of (h � E)� = 0 square-integrableat 0 and satisfying the boundary 
ondition (4.2.11d), and exa
tly one solution �(r;E) of(h�E)� = 0 square-integrable at in�nity. The resolvent (E �H)�1 is an integral operatorwhose kernel G(r; s;E) is given byG(r; s;E) = 8<: 2m~2 �(r;E)�(s;E)W (�;�) r < s2m~2 �(s;E)�(r;E)W (�;�) r > s ; (4.4.9)where W (�;�) is the Wronskian of � and �W (�;�) = ��0 � �0� : (4.4.10)If we de�ne ek :=r�2m~2 E ; (4.4.11a)eQ :=r�2m~2 (E � V0) ; (4.4.11b)then the fun
tions eJ (E) of Eq. (4.2.23) are given byeJ1(E) = 12e� eQa " 1 + ekeQ! eeka + �1 + ekeQ! e�eka# ; (4.4.12a)eJ2(E) = 12e eQa " 1� ekeQ! eeka + �1� ekeQ! e�eka# ; (4.4.12b)



162 4 A Rigged Hilbert Spa
e of the Square Barrier PotentialeJ3(E) = 12e�ekb " 1 + eQek ! e eQb eJ1(E) + 1� eQek ! e� eQb eJ2(E)# ; (4.4.12
)eJ4(E) = 12eekb " 1� eQek ! e eQb eJ1(E) + 1 + eQek ! e� eQb eJ2(E)# ; (4.4.12d)and the fun
tions eA(E) of Eq. (4.2.26) byeA3(E) = 12e� eQb 1� ekeQ! e�ekb; (4.4.13a)eA4(E) = 12e eQb 1 + ekeQ! e�ekb; (4.4.13b)eA1(E) = 12e�eka " 1 + eQek ! e eQa eA3(E) + 1� eQek ! e� eQa eA4(E)# ; (4.4.13
)eA2(E) = 12eeka " 1� eQek ! e eQa eA3(E) + 1 + eQek ! e�p�e�a eA4(E)# : (4.4.13d)The expression for the Wronskian of e� and e�� isW (e�; e��) = �2ek eJ3(E) : (4.4.14)If we de�ne k :=r2m~2 E ; (4.4.15a)Q :=r2m~2 (E � V0) ; (4.4.15b)then the fun
tions J (E) of Eq. (4.2.28) are given byJ1(E) = 12e�iQa�sin(ka) + kiQ 
os(ka)� ; (4.4.16a)J2(E) = 12eiQa�sin(ka)� kiQ 
os(ka)� ; (4.4.16b)J3(E) = 12e�ikb ��1 + Qk � eiQbJ1(E) + �1� Qk � e�iQbJ2(E)� ; (4.4.16
)J4(E) = 12eikb ��1� Qk � eiQbJ1(E) + �1 + Qk � e�iQbJ2(E)� ; (4.4.16d)and the fun
tions A+(E) of Eq. (4.2.29) byA+3 (E) = 12e�iQb�1 + kQ� eikb; (4.4.17a)



4.4 Appendi
es to Chapter 4 163A+4 (E) = 12eiQb�1� kQ� eikb; (4.4.17b)A+1 (E) = 12e�ika ��1 + Qk � eiQaA+3 (E) + �1� Qk � e�iQaA+4 (E)� ; (4.4.17
)A+2 (E) = 12eika ��1� Qk � eiQaA+3 (E) + �1 + Qk � e�iQaA+4 (E)� : (4.4.17d)The Wronskian of � and �+ is W (�;�+) = 2ikJ4(E) : (4.4.18)The fun
tions A�(E) of Eq. (4.2.31) are given byA�3 (E) = 12e�iQb�1� kQ� e�ikb; (4.4.19a)A�4 (E) = 12eiQb�1 + kQ� e�ikb; (4.4.19b)A�1 (E) = 12e�ika ��1 + Qk � eiQaA�3 (E) + �1� Qk � e�iQaA�4 (E)� ; (4.4.19
)A�2 (E) = 12eika ��1� Qk � eiQaA�3 (E) + �1 + Qk � e�iQaA�4 (E)� : (4.4.19d)The Wronskian of � and �� is W (�;��) = �2ikJ3(E) : (4.4.20)4.4.3 Appendix 3: Diagonalization and Eigenfun
tion ExpansionThe theorem that provides the operator U that diagonalizes H is (
f. Theorem XIII.5.13 ofRef. [30℄)Theorem 2 (Weyl-Kodaira) Let h be the formally self-adjoint di�erential operator(4.2.5) de�ned on the interval [0;1). Let H be the self-adjoint operator (4.2.14). Let � bean open interval of the real axis, and suppose that there is given a set �1, �2 of fun
tions,de�ned and 
ontinuous on (0;1) � �, su
h that for ea
h �xed E in �, �1(�;E), �2(�;E)forms a basis for the spa
e of solutions of h� = E�. Then there exists a positive 2 � 2matrix measure f�ijg de�ned on �, su
h that1. the limit [(Uf)i(E) = lim
!0 limd!1 �Z d
 f(r)�i(r;E)dr� (4.4.21)exists in the topology of L2(�; f�ijg) for ea
h f in L2([0;1); dr) and de�nes an iso-metri
 isomorphism U of E(�)L2([0;1); dr) onto L2(�; f�ijg);



164 4 A Rigged Hilbert Spa
e of the Square Barrier Potential2. for ea
h Borel fun
tion G de�ned on the real line and vanishing outside �,UD(G(H)) = f[fi℄ 2 L2(�; f�ijg) j [Gfi℄ 2 L2(�; f�ijg)g (4.4.22)and (UG(H)f)i(E) = G(E)(Uf)i(E); i = 1; 2; E 2 �; f 2 D(G(H)) : (4.4.23)The theorem that provides the inverse of the operator U is (
f. Theorem XIII.5.14 ofRef. [30℄)Theorem 3 (Weyl-Kodaira) Let H, �, f�ijg, et
., be as in Theorem 2. Let E0 and E1be the end points of �. Then1. the inverse of the isometri
 isomorphism U of E(�)L2([0;1); dr) onto L2(�; f�ijg) isgiven by the formula(U�1F )(r) = lim�0!E0 lim�1!E1 Z �1�0  2Xi;j=1Fi(E)�j(r;E)�ij(dE)! (4.4.24)where F = [F1; F2℄ 2 L2(�; f�ijg), the limit existing in the topology of L2([0;1); dr);2. if G is a bounded Borel fun
tion vanishing outside a Borel set e whose 
losure is
ompa
t and 
ontained in �, then G(H) has the representation(G(H)f)(r) = Z 10 f(s)K(H; r; s)ds ; (4.4.25)where K(H; r; s) = 2Xi;j=1ZeG(E)�i(s;E)�j(r;E)�ij(dE) : (4.4.26)The spe
tral measures are provided by the following theorem (
f. Theorem XIII.5.18 ofRef. [30℄):Theorem 4 (Tit
hmarsh-Kodaira) Let � be an open interval of the real axis and Obe an open set in the 
omplex plane 
ontaining �. Let �1, �2 be a set of fun
tions whi
hform a basis for the solutions of the equation h� = E�, E 2 O, and whi
h are 
ontinuous on(0;1)�O and analyti
ally dependent on E for E in O. Suppose that the kernel G(r; s;E)for the resolvent (E �H)�1 has a representationG(r; s;E) = 8><>: P2i;j=1 ��ij(E)�i(r;E)�j(s;E) r < sP2i;j=1 �+ij(E)�i(r;E)�j(s;E) r > s ; (4.4.27)



4.4 Appendi
es to Chapter 4 165for all E in Re(H)\O, and that f�ijg is a positive matrix measure on � asso
iated with Has in Theorem 2. Then the fun
tions ��ij are analyti
 in Re(H)\O, and given any boundedopen interval (E1; E2) � �, we have for 1 � i; j � 2,�ij((E1; E2)) = limÆ!0 lim�!0+ 12�i R E2�ÆE1+Æ [��ij(E � i�)� ��ij(E + i�)℄dE= limÆ!0 lim�!0+ 12�i R E2�ÆE1+Æ [�+ij(E � i�)� �+ij(E + i�)℄dE : (4.4.28)
The fun
tions eB(E) of Eq. (4.2.32a) are given byeB3(E) = 12e� eQb 1 + ekeQ! eekb; (4.4.29a)eB4(E) = 12e eQb 1� ekeQ! eekb; (4.4.29b)eB1(E) = 12e�eka " 1 + eQek ! e eQa eB3(E) + 1� eQek ! e� eQa eB4(E)# ; (4.4.29
)eB2(E) = 12eeka " 1� eQek ! e eQa eB3(E) + 1 + eQek ! e� eQa eB4(E)# : (4.4.29d)The fun
tions C(E) of Eq. (4.2.39b) are given byC1(E) = 12e�iQa�
os(ka)� kiQ sin(ka)� ; (4.4.30a)C2(E) = 12eiQa�
os(ka) + kiQ sin(ka)� ; (4.4.30b)C3(E) = 12e�ikb ��1 + Qk � eiQbC1(E) + �1� Qk � e�iQbC2(E)� ; (4.4.30
)C4(E) = 12eikb ��1� Qk � eiQbC1(E) + �1 + Qk � e�iQbC2(E)� : (4.4.30d)4.4.4 Appendix 4: Constru
tion of the RHSProposition 1 The quantitiesk'kn;m :=sZ 10 dr j(r + 1)n(h+ 1)m'(r)j2; n;m = 0; 1; 2; : : : ; ' 2 � ; (4.4.31)are norms.



166 4 A Rigged Hilbert Spa
e of the Square Barrier PotentialProof It is very easy to show that the quantities (4.4.31) ful�ll the 
onditions to be anorm, k'+  kn;m � k'kn;m + k kn;m ; (4.4.32a)k�'kn;m = j�j k'kn;m ; (4.4.32b)k'kn;m � 0 ; (4.4.32
)If k'kn;m = 0; then ' = 0 : (4.4.32d)The only 
ondition that is somewhat diÆ
ult to prove is (4.4.32d): if k'kn;m = 0, then(1 + r)n(h+ 1)m'(r) = 0 ; (4.4.33)whi
h yields (h + 1)m'(r) = 0 : (4.4.34)If m = 0, then Eq. (4.4.34) implies '(r) = 0. If m = 1, then Eq. (4.4.34) implies that �1 isan eigenvalue of H whose 
orresponding eigenve
tor is '. Sin
e �1 is not an eigenvalue ofH, ' must be the zero ve
tor. If m > 1, the proof is similar.Proposition 2 The spa
e � is stable under the a
tion of H, and H is ��-
ontinuous.Proof In order to see that H is ��-
ontinuous, we just have to realize thatkH'kn;m = k(H + I)'� 'kn;m� k(H + I)'kn;m + k'kn;m= k'kn;m+1 + k'kn;m : (4.4.35)We now prove that � is stable under the a
tion of H. Let ' 2 �. To say that ' 2 � isequivalent to say that ' 2 D and that the norms k'kn;m are �nite for every n;m = 0; 1; 2; : : :Sin
e H' is also in D, and sin
e the norms kH'kn;m are also �nite (see Eq. (4.4.35)), theve
tor H' is also in �.Proposition 3 The fun
tionjEi : � 7�! C' 7�! h'jEi := Z 10 '(r)�(r;E)dr = (U')(E) : (4.4.36)is an antilinear fun
tional on � that is a generalized eigenve
tor of (the restri
tion to � of)H. Proof From the de�nition (4.4.36), it is pretty easy to see that jEi is an antilinearfun
tional. In order to show that jEi is 
ontinuous, we de�neM(E) := supr2[0;1) j�(r;E)j : (4.4.37)
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es to Chapter 4 167Sin
e jh'jEij = jU'(E)j= ����Z 10 dr '(r)�(r;E)����� Z 10 dr j'(r)jj�(r;E)j� M(E) Z 10 dr j'(r)j= M(E) Z 10 dr 11 + r (1 + r)j'(r)j� M(E)�Z 10 dr 1(1 + r)2�1=2�Z 10 dr j(1 + r)'(r)j2�1=2= M(E)�Z 10 dr 1(1 + r)2�1=2 k'k1;0= M(E)k'k1;0 ; (4.4.38)the fun
tional jEi is 
ontinuous when � is endowed with the �� topology.In order to prove that jEi is a generalized eigenve
tor ofH, we make use of the 
onditions(4.2.78) and (4.2.81) satis�ed the elements of �,h'jH�jEi = hH'jEi= Z 10 dr �� ~22m d2dr2 + V (r)�'(r)�(r;E)= � ~22m "d'(r)dr �(r;E)#10 + ~22m �'(r)d�(r;E)dr �10+ Z 10 dr '(r)�� ~22m d2dr2 + V (r)��(r;E)= Eh'jEi : (4.4.39)Similarly, one 
an also prove thath'j(H�)njEi = Enh'jEi : (4.4.40)4.4.5 Appendix 5: Dira
 Basis Ve
tor ExpansionProposition 4 (Nu
lear Spe
tral Theorem) Let� � L2([0;1); dr) � �� (4.4.41)be the RHS of the square barrier Hamiltonian H su
h that � remains invariant under Hand H is a ��-
ontinuous operator on �. Then, for ea
h E in the spe
trum of H there is a
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e of the Square Barrier Potentialgeneralized eigenve
tor jEi su
h that H�jEi = EjEi (4.4.42)and su
h that (';  ) = ZSp(H) dE h'jEihEj i ; 8';  2 � ; (4.4.43)and (';Hn ) = ZSp(H) dE Enh'jEihEj i ; 8';  2 � ; n = 1; 2; : : : (4.4.44)Proof Let ' and  be in �. Sin
e U is unitary,(';  ) = (U'; U ) = (b'; b ) : (4.4.45)The wave fun
tions b' and b are in parti
ular elements of L2([0;1); dE). Therefore theirs
alar produ
t is well-de�ned, (b'; b ) = ZSp(H) dE b'(E)b (E) : (4.4.46)Sin
e ' and  belong to �, the a
tion of ea
h eigenket jEi on them is well-de�ned,h'jEi = b'(E) ; (4.4.47a)hEj i = b (E) : (4.4.47b)Plugging Eq. (4.4.47) into Eq. (4.4.46) and Eq. (4.4.46) into Eq. (4.4.45), we get to Eq. (4.4.43).The proof of (4.4.44) is similar:(';Hn ) = (U'; UHnU�1U )= (b�; bEn b )= ZSp(H) dE b'(E)( bEn b )(E)= ZSp(H) dE Enb'(E) b (E)= ZSp(H) dE Enh'jEihEj i : (4.4.48)4.4.6 Appendix 6: Energy Representation of the RHSProposition 5 The energy representation j bEi of the eigenket jEi is the antilinear S
hwartzdelta fun
tional.



4.4 Appendi
es to Chapter 4 169Proof Sin
e hb'jU�jEi = hU�1 b'jEi= h'jEi= Z 10 '(r)�(r;E)dr= b'(E) ; (4.4.49)the fun
tional U�jEi = j bEi is the antilinear S
hwartz delta fun
tional.





Chapter 5S
attering o� the Square BarrierPotentialIn this 
hapter, we turn to the des
ription of the Lippmann-S
hwinger equation within theRHS formalism. The Lippmann-S
hwinger eigenfun
tions will be 
omputed �rst. We shallde�ne the Lippmann-S
hwinger eigenkets in terms of these eigenfun
tions and see that theya
t on di�erent spa
es of wave fun
tions. The Lippmann-S
hwinger kets will be used asbasis ve
tors to expand the wave fun
tions. The M�ller operators and the S-matrix will beexpli
itly 
onstru
ted.
It is so hard to be good!Thales of Miletus
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5.1 Introdu
tion 1735.1 Introdu
tionIn the previous 
hapter, we 
onstru
ted a RHS of the square barrier potential. The RHS wasmeant to in
orporate 
ertain boundary 
onditions imposed upon the S
hr�odinger equation:S
hr�odinger equation+boundary 
onditions �! � � H � ��.The Hilbert spa
e H was needed to in
orporate the requirement that the wave fun
tions besquare integrable. The spa
e �� was needed to in
orporate the Dira
 kets asso
iated to theeigenfun
tions of the time independent S
hr�odinger equation subje
t to 
ertain boundary
onditions. The spa
e � was needed to in
orporate the wave fun
tions on whi
h the Dira
kets a
t as 
ontinuous antilinear fun
tionals. The spa
e � was identi�ed with the spa
e ofphysi
ally preparable wave fun
tions, be
ause in � all of the algebrai
 operations and all ofthe expe
tation values are well de�ned.In this 
hapter, we 
onsider the problem of s
attering o� the square barrier potential.Loosely speaking, we send a beam of prepared initial in-states 'in towards the square barrierpotential. After the 
ollision takes pla
e, the in-state 'in be
omes 'out. We then measurethe probability to �nd a �nal out-state  out. The amplitude of this probability is given bythe following s
alar produ
t: ( out; 'out) = ( out; S'in) ; (5.1.1)where S is the S-matrix. The 
anoni
al understanding is that the initial in-states 'in andthe �nal out-states  out are asymptoti
 forms of the so-
alled in-state ve
tor '+ and out-state ve
tor  � in the remote past and in the distant future, respe
tively. In terms of these,the probability amplitude (5.1.1) 
an be written as( �; '+) : (5.1.2)The asymptoti
 states 'in and  out are related to the \exa
t" states '+ and  � by theso-
alled M�ller operators: 
+'in = '+ ; (5.1.3a)
� out =  � : (5.1.3b)Along with the (total) HamiltonianH, it is 
ustomary to 
onsider another \free" Hamil-tonian H0, whi
h is assumed to di�er from H by the (square barrier) potential V ,H = H0 + V : (5.1.4)The potential V represents the intera
tion between the 
omponents of the initial preparedstates, for instan
e, the intera
tion between the in-going beam and the target. The 
anoni
al



174 5 S
attering o� the Square Barrier Potentialunderstanding is that the initial in-state 'in and the �nal out-state  out evolve under thein
uen
e of the free Hamiltonian H0, whereas the in-state '+ and the out-state  � evolveunder the in
uen
e of the (total) Hamiltonian H.The dynami
s of a s
attering system is therefore governed by the S
hr�odinger equationsubje
t to 
ertain boundary 
onditions. These boundary 
onditions spe
ify what is \in"and what is \out."The Lippmann-S
hwinger equation for the in- and out-kets jE�i has the s
atteringboundary 
onditions built into it. As we shall see, the Lippmann-S
hwinger equation tellsus what is \in" and what is \out" by spe
ifying 
ertain analyti
al properties of its solutions.The analyti
al properties satis�ed by the in-ket jE+i (or, equivalently, by the wave fun
tionh'+jE+i) are di�erent to those satis�ed by the out-ket jE�i (or, equivalently, by the wavefun
tion h �jE�i). In in
orporating these two di�erent types of boundary 
onditions intoa RHS framework, we will end up 
onstru
ting two di�erent RHSs:�� � H � ��� : (5.1.5)On our way, we will also 
onstru
t the M�ller operators and the S-matrix, and we willexpress the matrix element (5.1.2) in terms of the in- and out-Lippmann-S
hwinger kets:( �; '+) = Z 10 dE h �jE�iS(E)h+Ej'+i : (5.1.6)This expression will be used to derive the 
omplex basis ve
tor expansion in Chapter 6.5.2 Lippmann-S
hwinger Equation5.2.1 Lippmann-S
hwinger KetsOne of the fundamental equations of s
attering theory is the Lippmann-S
hwinger equation,1jE�i = jEi+ 1E �H0 � i�V jE�i : (5.2.1)This equation is also written asjE�i = jEi+ 1E �H � i�V jEi : (5.2.2)In Eqs. (5.2.1) and (5.2.2), the kets jE�i represent generalized eigenve
tor of the totalHamiltonian H, H�jE�i = EjE�i ; (5.2.3)whereas jEi represents a generalized eigenve
tor of the free Hamiltonian H0,H�0 jEi = EjEi : (5.2.4)1In this 
hapter, the symbol jEi will denote the generalized eigenket of the free Hamiltonian that appearsin the Lippmann-S
hwinger equation (5.2.1), and not an eigenket of the total Hamiltonian as in Chapter 4.



5.2 Lippmann-S
hwinger Equation 1755.2.2 Radial Representation of the Lippmann-S
hwinger Equa-tionSin
e our square barrier potential is spheri
ally symmetri
, we shall work in the radialrepresentation. In this representation and for l = 0, H0 a
ts as the formal di�erentialoperator h0, H0f(r) = h0f(r) = � ~22m d2dr2f(r) ; (5.2.5)V a
ts as multipli
ation by the square barrier potential V (r),V (r) = 8<: 0 0 < r < aV0 a < r < b0 b < r <1 ; (5.2.6)and H a
ts as the formal di�erential operator h,Hf(r) = hf(r) = �� ~22m d2dr2 + V (r)� f(r) : (5.2.7)In the radial representation, Eqs. (5.2.1) and (5.2.2) be
omehrjE�i = hrjEi+ hrj 1E �H0 � i�V jE�i ; (5.2.8a)hrjE�i = hrjEi+ hrj 1E �H � i�V jEi : (5.2.8b)In Eq. (5.2.8), the quantities hrjEi are eigenfun
tions of the formal di�erential operator h0,h0hrjEi = � ~22m d2dr2 hrjEi = EhrjEi ; (5.2.9)whereas the quantities hrjE�i are eigenfun
tions of the formal di�erential operator h satis-fying proper boundary 
onditions (that we will spe
ify later),hhrjE�i = �� ~22m d2dr2 + V (r)� hrjE�i = EhrjE�i : (5.2.10)In the absen
e of potential, the Lippmann-S
hwinger eigenfun
tions tend to the free Hamil-tonian eigenfun
tions, limV0!0hrjE�i = hrjEi : (5.2.11)The generalized eigenve
tors jEi of H0 and the eigenfun
tions hrjEi of h0 are related byh'jEi = Z 10 dr h'jrihrjEi : (5.2.12)
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attering o� the Square Barrier PotentialThe generalized eigenve
tors jE�i of H and the eigenfun
tions hrjE�i of h are related byh'+jE+i = lim�!0Z 10 dr h'+jrihrj(E + i�)+i ; '+ 2 �� ; (5.2.13a)h �jE�i = lim�!0Z 10 dr h �jrihrj(E � i�)�i ;  � 2 �+ : (5.2.13b)The wave fun
tions '+ are usually 
alled in-states, whereas the the wave fun
tions  � are
alled out-states. However, we shall 
all the  � observables (or out-observables), be
ausethey are determined by the registration apparatus. In order to grasp the meaning of this ter-minology, let us 
onsider the matrix element ( �; '+). This s
alar produ
t is the amplitudeof the probability to observe the out-state  � in the in-state '+. Sin
e  � is determined bythe property we want to measure, it stands to reason that we 
all it observable and denoteit by a spe
i�
 symbol.The a
tion of the Lippmann-S
hwinger kets is de�ned as the limits in (5.2.13). We arenow going to elaborate on that de�nition.The di�eren
e between the in-states and the observables is re
e
ted not only in thenotation, but also in the fa
t that they belong to di�erent subspa
es of the Hilbert spa
e.The reason for this is the following:2 the boundary 
onditions built into the Lippmann-S
hwinger equation for the in-ket jE+i (or, equivalently, for the eigenfun
tion hrjE+i) aredi�erent to the boundary 
onditions for the ket jE�i (or, equivalently, for the eigenfun
tionhrjE�i). Sin
e the boundary 
onditions determine the spa
e of test fun
tions on whi
h thekets a
t, the in-ket jE+i a
ts on a spa
e ��, and the out-ket jE�i a
ts on a spa
e �+,whi
h is di�erent to ��.The di�eren
e in the boundary 
onditions for the in- an out-kets is built into the �i� ofEq. (5.2.1). The meaning of the �i� is that we are approa
hing the 
ut (i.e., the spe
trumof H) either from above (+i�) or from below (�i�). Therefore, the a
tion of the Lippmann-S
hwinger kets jE�i should be viewed as the limit of the a
tion of 
ertain kets j(E � i�)�ithat have meaning when � 6= 0, j(E � i�)�i��!�!0 jE�i : (5.2.14)If we want this limit pro
ess to be well-de�ned, the following integrals should be well-de�ned: h'+j(E + i�)+i = Z 10 dr h'+jrihrj(E + i�)+i ; '+ 2 �� ; (5.2.15a)h �j(E � i�)�i = Z 10 dr h �jrihrj(E � i�)�i ;  � 2 �+ : (5.2.15b)Thus the a
tion of the Lippmann-S
hwinger kets, that has to be viewed as the limit of thea
tion of the kets (5.2.15) when � tends to zero, would be de�ned byh'+jE+i = lim�!0h'+j(E + i�)+i ; '+ 2 �� ; (5.2.16a)h �jE�i = lim�!0h �j(E � i�)�i ;  � 2 �+ : (5.2.16b)2For a mathemati
al approa
h to this question in terms of RHSs of Hardy fun
tions see Ref. [31℄.



5.2 Lippmann-S
hwinger Equation 177In addition, we would like our spa
es �� to be stable under the a
tion of the Hamiltonian.This is why we should also impose the following 
onditions:(E + i�)nh'+j(E + i�)+i = Z 10 dr hHn'+jrihrj(E + i�)+i ; '+ 2 �� ; (5.2.17a)(E � i�)nh �j(E � i�)�i = Z 10 dr hHn �jrihrj(E � i�)�i ;  � 2 �+ ; (5.2.17b)for every n = 0; 1; 2; : : : In the position representation, the 
onditions (5.2.17) should leadto restri
tions in the asymptoti
 behavior of the wave fun
tions '+(r) and  �(r). In theenergy representation, the 
onditions (5.2.17) should lead to analyti
al properties of thewave fun
tions b'+(E) and b �(E).The pre
ise 
onne
tion between the 
onditions satis�ed by '+(r) ( �(r)) and thosesatis�ed by b'+(E) (b �(E)) is still an open problem. Our guess is that b'+(E) will be thelimit value of a Hardy 
lass fun
tion from below, and that b �(E) will be the limit value of aHardy 
lass fun
tion from above (
f. Appendix 5.5.2 for the de�nition and general propertiesof Hardy 
lass fun
tions).5.2.3 Solution of the Radial Lippmann-S
hwinger EquationInstead of solving the integral equations (5.2.8), we solve the equivalent di�erential equationshhrjE�i = �� ~22m d2dr2 + V (r)� hrjE�i = EhrjE�i (5.2.18)subje
t to the boundary 
onditions that are built into the integral equations (5.2.8). Theseboundary 
onditions areh0jE�i = 0 ; (5.2.19a)hrjE�i is 
ontinuous at r = a and at r = b ; (5.2.19b)ddr hrjE�i is 
ontinuous at r = a and at r = b ; (5.2.19
)limV0!0hrjE�i = hrjEi ; (5.2.19d)hrjE+i � e�ikr � S(E)eikr as r !1 ; (5.2.19e)hrjE�i � eikr � S�(E)e�ikr as r !1 ; (5.2.19f)where k =r2m~2 E (5.2.20)and S(E) is the S-matrix in the energy representation.It is well-known (
f. [72, 73℄) that the in- and out-eigenfun
tions are given by��(r;E) = �(r;E)J�(E) ; (5.2.21)



178 5 S
attering o� the Square Barrier Potentialwhere �(r;E) is the eigenfun
tion (4.2.28),�(r;E) = 8>>><>>>: sin(q2m~2 Er) 0 < r < aJ1(E)eiq 2m~2 (E�V0)r + J2(E)e�iq 2m~2 (E�V0)r a < r < bJ3(E)eiq 2m~2 Er + J4(E)e�iq 2m~2 Er b < r <1 ; (5.2.22)and J�(E) are the Jost fun
tions, J+(E) = �2iJ4(E) ; (5.2.23a)J�(E) = 2iJ3(E) : (5.2.23b)In terms of the Jost fun
tions, the S-matrix is given byS(E) = J�(E)J+(E) : (5.2.24)From Eq. (5.2.21) it follows that the in- and out-eigenfun
tions are proportional to ea
hother, �+(r;E) = S(E)��(r;E) : (5.2.25)It is worthwhile noting that the boundary 
ondition that singles out the in- and out-Lippmann-S
hwinger eigenfun
tions is their asymptoti
 behavior at in�nity as fun
tionsof r (see Eqs. (5.2.19e) and (5.2.19f)). That asymptoti
 behavior is transfered into theenergy representation as a 
ertain analyti
al property of the eigenfun
tion ��(r;E) as afun
tion of E. Sin
e the boundary 
onditions satis�ed by the elements of the spa
e oftest fun
tions are related to the boundary 
onditions satis�ed by the eigenfun
tions of theS
hr�odinger equation, it seems reasonable to expe
t that the boundary 
onditions thatsingle out the '+(r) and the  �(r) are related to their asymptoti
 behavior, and thatthis asymptoti
 behavior is transfered into the energy representation as a 
ondition on theanalyti
al properties of the wave fun
tions b'+(E) and b �(E).5.2.4 Dire
t Integral De
omposition Asso
iated to the In-StatesOn
e we have obtained the in-Lippmann-S
hwinger eigenfun
tion, we 
an 
onstru
t thedire
t integral de
omposition indu
ed by it. In order to do so, we follow the pro
edure ofSe
tion 4.2.4.The domainD(H) on whi
h the formal di�erential operator h is self-adjoint was obtainedin Se
tion 4.2.2,D(H) = ff(r) j f(r); hf(r) 2 L2([0;1); dr); f(r) 2 AC2[0;1); f(0) = 0g : (5.2.26)As we saw in Se
tion 4.2.2, this domain indu
es a self-adjoint operator H,(Hf)(r) := hf(r) = �� ~22m d2dr2 + V (r)� f(r) ; f(r) 2 D(H) : (5.2.27)



5.2 Lippmann-S
hwinger Equation 179The spe
trum of H is [0;1) (
f. Se
tion 4.2.4).It is worthwhile noting that the spa
e �� asso
iated to the in-Lippmann-S
hwingereigenfun
tion �+(r;E) will be a subspa
e of D(H). In fa
t, it will be a subspa
e of themaximal invariant subspa
e of H. However, the spa
e �� will be di�erent to the spa
e �of Chapter 4, be
ause the boundary 
onditions ful�lled by the elements of �� are di�erentto the boundary 
onditions ful�lled by the elements of �.The Green fun
tion of H was 
omputed in Se
tion 4.2.3 for di�erent regions of the
omplex plane. Sin
e we want to expand the wave fun
tions in terms of the eigenfun
tion�+(r;E), we write the Green fun
tion in terms of �+(r;E). From Eqs.(4.2.27) and (5.2.21),we 
an see thatG(r; s;E) = 8><>: � 2m=~2p2m=~2 E �+(r;E)�+(s;E) r < s� 2m=~2p2m=~2 E �+(s;E)�+(r;E) r > s <(E) > 0; =(E) > 0 : (5.2.28)From Eqs. (4.2.30) and (5.2.21), we 
an see thatG(r; s;E) = 8><>: � 2m=~2p2m=~2 E ��(r;E)��(s;E) r < s� 2m=~2p2m=~2 E ��(s;E)��(r;E) r > s <(E) > 0; =(E) < 0 : (5.2.29)We are now in a position to 
ompute the generalized Fourier transform U+ indu
ed bythe Lippmann-S
hwinger eigenfun
tion �+(r;E). In order to be able to apply Theorem 4of Se
tion 4.4.3, we 
hoose the following basis for the spa
e of solutions of h� = E� that is
ontinuous on (0;1)� � and analyti
ally dependent on E:�1(r;E) = �+(r;E) ; (5.2.30a)�2(r;E) = 8>>><>>>: 
os(q2m~2 Er) 0 < r < aC1(E)eiq2m~2 (E�V0)r + C2(E)e�iq 2m~2 (E�V0)r a < r < bC3(E)eiq2m~2 Er + C4(E)e�iq 2m~2 Er b < r <1 : (5.2.30b)The fun
tions C1 � C4 are given by Eq. (4.4.30) of Appendix 4.4.3.Eqs. (4.2.29), (4.2.31) and (5.2.30) lead to�+(r;E) = 2iJ4(E)C4(E)W (E) �1(r;E) + J4(E)W (E)�2(r;E) (5.2.31)and to ��(r;E) = �2iJ4(E)C3(E)W (E) �1(r;E)� J3(E)W (E)�2(r;E) ; (5.2.32)where W (E) = J4(E)C3(E)� J3(E)C4(E) : (5.2.33)



180 5 S
attering o� the Square Barrier PotentialBy substituting Eq. (5.2.31) into Eq. (5.2.28) we get toG(r; s;E) = � 2m=~2p2m=~2E �2iJ4(E)C4(E)W (E) �1(r;E) + J4(E)W (E)�2(r;E)��1(s;E) ;<(E) > 0;=(E) > 0 ; r > s : (5.2.34)By substituting Eq. (5.2.32) into Eq. (5.2.29) we get toG(r; s;E) = 2m=~2p2m=~2E J4(E)J3(E) ��2iJ4(E)C3(E)W (E) �1(r;E)� J3(E)W (E)�2(r;E)��1(s;E) ;<(E) > 0;=(E) < 0 ; r > s ; (5.2.35)where we have used the fa
t that��(r;E) = �J4(E)J3(E)�+(r;E) : (5.2.36)Sin
e �1(s;E) = �J4(E)J3(E)�1(s;E) ; (5.2.37)Eq. (5.2.34) leads toG(r; s;E) = 2m=~2p2m=~2E 1W (E) h2iJ3(E)C4(E)�1(r;E)�1(s;E) + J3(E)�2(r;E)�1(s;E)i<(E) > 0;=(E) > 0 ; r > s ; (5.2.38)and Eq. (5.2.35) leads toG(r; s;E) = 2m=~2p2m=~2E 1W (E) h2iJ4(E)C3(E)�1(r;E)�1(s;E) + J3(E)�2(r;E)�1(s;E)i<(E) > 0;=(E) < 0 ; r > s : (5.2.39)The expression of the resolvent in terms of the basis �1; �2 
an be written as (see Theorem 4in Appendix 4.4.3) G(r; s;E) = 2Xi;j=1 �+ij(E)�i(r;E)�j(s;E) ; r > s : (5.2.40)By 
omparing (5.2.40) to (5.2.38) we get to�+ij(E) = 0� 2m=~2p2m=~2 E 2iJ3(E)C4(E)W (E) 02m=~2p2m=~2 E J3(E)W (E) 0 1A ; <(E) > 0 ; =(E) > 0 : (5.2.41)



5.2 Lippmann-S
hwinger Equation 181By 
omparing (5.2.40) to (5.2.39) we get to�+ij(E) = 0� 2m=~2p2m=~2 E 2iJ4(E)C3(E)W (E) 02m=~2p2m=~2 E J3(E)W (E) 0 1A ; <(E) > 0 ; =(E) < 0 : (5.2.42)From Eqs. (5.2.41) and (5.2.42) we 
an see that the measures �12, �21 and �22 in Theorem 4of Appendix 4.4.3 are zero and that the measure �11 is given by�11((E1; E2)) = limÆ!0 lim�!0+ 12�i Z E2�ÆE1+Æ ��+11(E � i�)� �+11(E + i�)� dE= Z E2E1 1� 2m=~2p2m=~2E dE ; (5.2.43)whi
h leads to �+(E) � �11(E) = 1� 2m=~2p2m=~2E ; E 2 (0;1) : (5.2.44)By Theorem 2 of Appendix 4.4.3, there is a unitary map eU+ de�ned byeU+ : L2([0;1); dr) 7�! L2((0;1); �+(E)dE)f(r) 7�! ef(E) = (eU+f)(E) = Z 10 drf(r)�+(r;E) ; (5.2.45)that brings D(H) onto the spa
eD( eE) = f ef(E) 2 L2((0;1); �+(E)dE) j Z 10 dE E2j ef(E)j2�+(E) <1g : (5.2.46)Eqs. (5.2.45) and (5.2.46) provide a �+-diagonalization of H. If we seek a Æ-diagonalization,then the measure �+(E) must be absorbed by the eigenfun
tions�+(r;E) :=p�+(E)�+(r;E) ; (5.2.47)and by the wave fun
tionsbf(E) :=p�+(E) ef(E) ; ef(E) 2 L2((0;1); �+(E)dE) : (5.2.48)The fun
tion �+(r;E) is the eigensolution of the Lippmann-S
hwinger equation (5.2.8) thatis Æ-normalized. Using Eq. (5.2.48) we 
an 
onstru
t the unitary operatorbU+ : L2((0;1)); �+(E)dE) 7�! L2((0;1); dE)ef 7�! bf(E) = (bU+ ef)(E) :=p�+(E) ef(E) : (5.2.49)The operator that Æ-diagonalizes our Hamiltonian is U+ := bU+ eU+,U+ : L2([0;1)); dr) 7�! L2((0;1); dE)f 7�! U+f := bf : (5.2.50)



182 5 S
attering o� the Square Barrier PotentialThe a
tion of U+ 
an be written as an integral operator,bf(E) = (U+f)(E) = Z 10 drf(r)�+(r;E) ; f(r) 2 L2([0;1); dr) : (5.2.51)The image of D(H) under the a
tion of U+ isD( bE) := U+D(H) = f bf(E) 2 L2((0;1); dE) j Z 10 E2j bf(E)j2dE <1g : (5.2.52)Therefore, we have 
onstru
ted a unitary operatorU+ : D(H) � L2([0;1); dr) 7�! D( bE) � L2((0;1); dE)f 7�! bf = U+f (5.2.53)that transforms from the position representation into the energy representation. The oper-ator U+ diagonalizes H, i.e., bE � U+HU�1+ is the multipli
ation operator,bE : D( bE) � L2((0;1); dE) 7�! L2((0;1); dE)bf 7�! bE bf(E) := E bf(E) : (5.2.54)The inverse operator of U+ is given by (see Theorem 3 of Appendix 4.4.3)f(r) = U�1+ bf(r) = Z 10 dE bf(E)�+(r; E) ; bf(E) 2 L2((0;1); dE) : (5.2.55)The operator U�1+ transforms from the energy representation into the position representa-tion.The expressions (5.2.51) and (5.2.55) provide the eigenfun
tion expansion of any wavefun
tion in terms of the Æ-normalized eigensolutions �+(r;E) of the Lippmann-S
hwingerequation.The unitary operator U+ 
an be also looked at as a sort of generalized Fourier transformthat 
onne
ts the position and the energy representations. The eigenfun
tions �+(r;E) 
anbe viewed as \transition elements" between the r- and the E-representations.Thus we have 
onstru
ted the dire
t integral de
omposition of the Hilbert spa
e asso
i-ated to the eigenfun
tion �+(r;E) of the Lippmann-S
hwinger equation,H 7�! U+H � bH = � ZSp(H)H(E)dEf 7�! U+f � f bf(E)g; f 2 D(H) ; bf(E) 2 H(E) : (5.2.56)In Eq. (5.2.56), the Hilbert spa
es H, bH and H(E) are the same as in Eq. (4.2.64).
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hwinger Equation 1835.2.5 Dire
t Integral De
omposition Asso
iated to the Observ-ablesIn this se
tion, we 
ompute the unitary operator U� indu
ed by the Lippmann-S
hwingereigenfun
tion ��(r;E). Sin
e the 
omputations are very similar to the 
omputations per-formed in Se
tion 5.2.4 for the in-states, we will restri
t the explanations to the minimumand just write down the results.The fun
tions�1(r;E) = ��(r;E) ; (5.2.57a)�2(r;E) = 8>>><>>>: 
os(q2m~2 Er) 0 < r < aC1(E)eiq2m~2 (E�V0)r + C2(E)e�iq 2m~2 (E�V0)r a < r < bC3(E)eiq2m~2 Er + C4(E)e�iq 2m~2 Er b < r <1 : (5.2.57b)form a basis for the spa
e of solutions of h� = E� that is 
ontinuous on (0;1)�� and ana-lyti
ally dependent on E. Therefore, we are allowed to apply Theorem 4 of Appendix 4.4.3.Eqs. (4.2.29), (4.2.31) and (5.2.57) lead to�+(r;E) = �2iJ3(E)C4(E)W (E) �1(r;E) + J4(E)W (E)�2(r;E) (5.2.58)and to ��(r;E) = 2iJ3(E)C3(E)W (E) �1(r;E)� J3(E)W (E)�2(r;E) ; (5.2.59)where W (E) = J4(E)C3(E)� J3(E)C4(E) : (5.2.60)By substituting Eq. (5.2.58) into Eq. (5.2.28) we get toG(r; s;E) = 2m=~2p2m=~2E J3(E)J4(E) ��2iJ3(E)C4(E)W (E) �1(r;E) + J4(E)W (E)�2(r;E)��1(s;E) ;<(E) > 0;=(E) > 0 ; r > s : (5.2.61)By substituting Eq. (5.2.59) into Eq. (5.2.29) we get toG(r; s;E) = � 2m=~2p2m=~2E �2iJ3(E)C3(E)W (E) �1(r;E)� J3(E)W (E)�2(r;E)��1(s;E) ;<(E) > 0;=(E) < 0 ; r > s : (5.2.62)Sin
e �1(s;E) = �J3(E)J4(E)�1(s;E) ; (5.2.63)



184 5 S
attering o� the Square Barrier PotentialEq. (5.2.61) leads toG(r; s;E) = 2m=~2p2m=~2E 1W (E) h2iJ3(E)C4(E)�1(r;E)�1(s;E)� J4(E)�2(r;E)�1(s;E)i<(E) > 0;=(E) > 0 ; r > s ; (5.2.64)and Eq. (5.2.62) leads toG(r; s;E) = 2m=~2p2m=~2E 1W (E) h2iJ4(E)C3(E)�1(r;E)�1(s;E)� J4(E)�2(r;E)�1(s;E)i<(E) > 0;=(E) < 0 ; r > s : (5.2.65)The expression of the resolvent in terms of the basis �1; �2 
an be written as (see Theorem 4in Appendix 4.4.3) G(r; s;E) = 2Xi;j=1 �+ij(E)�i(r;E)�j(s;E) ; r > s : (5.2.66)By 
omparing (5.2.66) to (5.2.64) we get to�+ij(E) = 0� 2m=~2p2m=~2 E 2iJ3(E)C4(E)W (E) 0� 2m=~2p2m=~2 E J4(E)W (E) 0 1A ; <(E) > 0 ; =(E) > 0 : (5.2.67)By 
omparing (5.2.66) to (5.2.65) we get to�+ij(E) = 0� 2m=~2p2m=~2 E 2iJ4(E)C3(E)W (E) 0� 2m=~2p2m=~2 E J4(E)W (E) 0 1A ; <(E) > 0 ; =(E) < 0 : (5.2.68)From Eqs. (5.2.67) and (5.2.68) we 
an see that the measures �12, �21 and �22 in Theorem 4of Appendix 4.4.3 are zero and that the measure �11 is given by�11((E1; E2)) = limÆ!0 lim�!0+ 12�i Z E2�ÆE1+Æ ��+11(E � i�)� �+11(E + i�)� dE= Z E2E1 1� 2m=~2p2m=~2E dE ; (5.2.69)whi
h leads to ��(E) � �11(E) = 1� 2m=~2p2m=~2E ; E 2 (0;1) : (5.2.70)In order to Æ-normalize, we de�ne��(r;E) :=p��(E)��(r;E) ; (5.2.71)



5.3 Constru
tion of the Lippmann-S
hwinger Kets and Dira
 Basis Ve
tor Expansion 185whi
h is the eigensolution of the Lippmann-S
hwinger equation (5.2.8) that is Æ-normalized,and bf(E) :=p��(E) ef(E) ; ef(E) 2 L2((0;1); �(E)dE) : (5.2.72)The unitary operator that Æ-diagonalizes the Hamiltonian is,bf(E) = (U�f)(E) = Z 10 drf(r)��(r;E) ; f(r) 2 L2([0;1); dr) : (5.2.73)The inverse operator of U� is given by (see Theorem 3 of Appendix 4.4.3)f(r) = (U�1� bf)(r) = Z 10 dE bf(E)��(r; E) ; bf(E) 2 L2((0;1); dE) : (5.2.74)Therefore, we have 
onstru
ted a unitary operatorU� : D(H) � L2([0;1); dr) 7�! D( bE) � L2((0;1); dE)f 7�! bf = U�f (5.2.75)that transforms from the position representation into the energy representation. The oper-ator U� diagonalizes H. The operator U�1� transforms from the energy representation intothe position representation.The expressions (5.2.73) and (5.2.74) provide the eigenfun
tion expansion of any wavefun
tion in terms of the Æ-normalized eigensolutions ��(r;E) and the dire
t integral de
om-position of H asso
iated to the observables.5.3 Constru
tion of the Lippmann-S
hwinger Kets andDira
 Basis Ve
tor ExpansionIn this se
tion, we sket
h the 
onstru
tion of the spa
es �� on whi
h the Lippmann-S
hwinger kets a
t as antilinear fun
tionals.In order to asso
iate a ket jE+i to the eigenfun
tion hrjE+i, we de�nejE+i : �� 7�! C'+ 7�! h'+jE+i := lim�!0Z 10 dr h'+jrihrj(E + i�)+i : (5.3.1)As mentioned above, the a
tion of the Lippmann-S
hwinger ket jE+i should be viewed asthe limit of the a
tion of some ket j(E + i�)+i when � tends to zero. This is why we de�nethe a
tion of jE+i on '+ as the limit of the integral in Eq. (5.3.1), and not just asZ 10 dr h'+jrihrjE+i : (5.3.2)The fun
tions '+ 2 �� on whi
h the a
tion of the in-ket of Eq. (5.3.1) is well de�ned satisfy(at least) the following 
onditions:



186 5 S
attering o� the Square Barrier Potentiali.) They belong to the maximal invariant subspa
e of H.ii.) They are su
h that the limit in Eq. (5.3.1) makes sense.iii.) They satisfy (5.2.17a) for every n = 0; 1; 2; : : :By means of the unitary operator U+, whi
h was 
onstru
ted in Se
tion 5.2.4, we 
anobtain the energy representation of the spa
e ��,U+�� = b��jR+ : (5.3.3)We have denoted the energy representation of the spa
e �� by b��jR+ (rather than by b��),be
ause its elements are boundary values on the positive real line of fun
tions that havemeaning for 
omplex energies. As we said above, those fun
tions b'+(E) seem to be realizedby analyti
 fun
tions from below. For the sake of de�niteness, we shall assume thatb��jR+ = S \ H2�jR+ ; (5.3.4)where S is the S
hwartz spa
e and H2� is the spa
e of Hardy fun
tions from below (
f. Ap-pendix 5.5.2).Under the assumptions made on the elements of the spa
e ��, one 
an prove thatjE+i is a well de�ned antilinear fun
tional and that jE+i is a generalized eigenve
tor of theHamiltonianH (the proof is almost identi
al to the proof of Proposition 3 of Appendix 4.4.4),H�jE+i = EjE+i ; (5.3.5)i.e., h'+jH�jE+i = hH'+jE+i = Eh'+jE+i ; 8'+ 2 �� : (5.3.6)The in-ket jE+i 
an be used to expand the in-states '+ 2 �� in a Dira
 basis ve
torexpansion. This expansion is the restri
tion of the eigenfun
tion expansions (5.2.51) and(5.2.55) to the spa
e ��,h+Ej'+i = Z 10 dr h+Ejrihrj'+i ; '+ 2 �� ; (5.3.7a)hrj'+i = Z 10 dE hrjE+ih+Ej'+i ; '+ 2 �� : (5.3.7b)Similarly, the out-ket jE�i asso
iated to the eigenfun
tion hrjE�i is de�ned byjE�i : �+ 7�! C � 7�! h �jE�i := lim�!0 Z 10 dr h �jrihrj(E � i�)�i : (5.3.8)The fun
tions  � 2 �+ satisfy (at least) the following 
onditions:i.) They belong to the maximal invariant subspa
e of H.



5.3 Constru
tion of the Lippmann-S
hwinger Kets and Dira
 Basis Ve
tor Expansion 187ii.) They are su
h that the limit in Eq. (5.3.8) makes sense.iii.) They satisfy (5.2.17b) for every n = 0; 1; 2; : : :By means of the unitary operator U�, whi
h was 
onstru
ted in Se
tion 5.2.5, we 
anobtain the energy representation of the spa
e �+,U��+ = b�+jR+ : (5.3.9)For the sake of de�niteness, we shall assume thatb�+jR+ = S \ H2+jR+ ; (5.3.10)where H2+ is the spa
e of Hardy fun
tions from above (
f. Appendix 5.5.2).The out-ket is also a generalized eigenve
tor of H,h �jH�jE�i = hH �jE�i = Eh �jE�i ; 8 � 2 �+ : (5.3.11)The Dira
 basis ve
tor expansion indu
ed by the out-ket readsh�Ej �i = Z 10 dr h�Ejrihrj �i ;  � 2 �+ ; (5.3.12a)hrj �i = Z 10 dE hrjE�ih�Ej �i ;  � 2 �+ : (5.3.12b)The M�ller operators 
� 
an be expressed in terms of the operators U� (
f. Se
tions 5.2.4and 5.2.5) and U0 (
f. Appendix 5.5.1) as (
f. [75℄)
� = U y�U0 : (5.3.13)Obviously, 
� are unitary operators in the Hilbert spa
e L2([0;1); dr). The M�ller opera-tors 
an be used to 
onstru
t the spa
e �in of asymptoti
 in-states 'in and the spa
e �outof asymptoti
 out-observables  out, � inout = 
y��� : (5.3.14)A ve
tor 'in belongs to �in if h+Ej'+i = hEj'ini ; (5.3.15)where '+ = 
+'in. A ve
tor  out belongs to �out ifh�Ej �i = hEj outi ; (5.3.16)where  � = 
� out. From the last two equations it follows that
��jEi = jE�i : (5.3.17)



188 5 S
attering o� the Square Barrier PotentialThe following diagram summarizes the results 
on
erning the states:H0; 'in(r) �in � L2([0;1); dr) � ��in jEi position repr:# 
+ # 
+ # 
�+H; '+(r) �� � L2([0;1); dr) � ��� jE+i position repr:# U+ # U+ # U�+bE; b'+(E) b��jR+ � L2([0;1); dE) � (b��jR+)� j bE+i energy repr:(5.3.18)The results 
on
erning the observables are summarized by the following diagram:H0;  out(r) �out � L2([0;1); dr) � ��out jEi position repr:# 
� # 
� # 
��H;  �(r) �+ � L2([0;1); dr) � ��+ jE�i position repr:# U� # U� # U��bE; b �(E) b�+jR+ � L2([0;1); dE) � (b�+jR+)� j bE�i energy repr:(5.3.19)5.4 S-matrix and M�ller OperatorsOur next goal is to 
onstru
t the S-matrix and to 
ompute the expression of the S-matrixelement in terms of the Lippmann-S
hwinger kets (see Eq. (5.4.11) below).As we said in Se
tion 5.1, the S-matrix element( out; 'out) = ( out; S'in) = ( �; '+) (5.4.1)is to represent the probability to dete
t the property des
ribed by  out (or, equivalently,by  �) in the prepared ingoing beam 
hara
terized by 'in (or, equivalently, by '+). Theexpression of the S-matrix operator in terms of the M�ller operators readS = 
y�
+ : (5.4.2)The operator S is a unitary operator in the Hilbert spa
e L2([0;1); dr). In the energyrepresentation, the operator (5.4.2) a
ts as the operator multipli
ation by the fun
tionS(E) = J�(E)=J+(E). To be more pre
ise, if we de�ne the operator bS asbS : L2([0;1); dE) 7�! L2([0;1); dE)bf 7�! (bS bf)(E) = S(E) bf(E) ; (5.4.3)then it 
an proved that bS = U0SU�10 : (5.4.4)



5.4 S-matrix and M�ller Operators 189In order to prove Eq. (5.4.4), we �rst prove that(U�g)(E) = S(E)(U+g)(E) ; 8g 2 L2([0;1); dr) : (5.4.5)Sin
e �+(r;E) = S(E)��(r;E) ; (5.4.6)and sin
e S(E) = 1S(E) ; E > 0 ; (5.4.7)we 
on
lude that ��(r;E) = S(E)�+(r;E) : (5.4.8)By substituting Eq. (5.4.8) into the integral expression (5.2.73) of the operator U� weget to (U�g)(E) = Z 10 dr g(r)S(E)�+(r;E) : (5.4.9)Comparison of (5.4.9) to the integral expression (5.2.51) of U+ leads to (5.4.5).Now, (U0SU�10 ) bf = (U0
y�
+U�10 ) bf= (U0U�10 U�U y+U0U�10 ) bf= (U�U y+) bf= bS bf ; (5.4.10)where we have applied Eq. (5.4.5) to g = U y+ bf in the next to the last step.As we said in Se
tion 5.1, the S-matrix element 
an be written in terms of the Lippmann-S
hwinger eigenkets as ( �; '+) = Z 10 dE h �jE�iS(E)h+Ej'+i : (5.4.11)The proof of Eq. (5.4.11) is as follows: Let  � 2 �+ and '+ 2 ��. Sin
e  � and'+ belong, in parti
ular, to the Hilbert spa
e L2([0;1); dr), we 
an let the unitaryoperator U� a
t on both of them,( �; '+) = (U� �; U�'+) : (5.4.12)The ve
tors U� � and U�'+ belong to L2([0;1); dE). Therefore,(U� �; U�'+) = Z 10 dE (U� �)(E)(U�'+)(E) : (5.4.13)From Eq. (5.4.5) it follows that(U�'+)(E) = S(E)(U+'+)(E) : (5.4.14)



190 5 S
attering o� the Square Barrier PotentialThus, (U� �; U�'+) = Z 10 dE (U� �)(E)S(E)(U+'+)(E) : (5.4.15)Sin
e  � 2 �+, we are allowed to write(U� �)(E) = h �jE�i : (5.4.16)Sin
e '+ 2 ��, we are allowed to write(U+'+)(E) = h+Ej'+i : (5.4.17)Substitution of (5.4.16) and (5.4.17) into (5.4.15) leads to (5.4.11).A similar argument to that used to prove Eq. (5.4.11) 
an be used to prove that( out; S'in) = Z 10 dE h outjEiS(E)hEj'ini : (5.4.18)Many formal identities follow from Eqs. (5.4.11) and (5.4.18). For instan
e,hEjSjE 0i = h�EjE 0+i = S(E)Æ(E � E 0) ; (5.4.19)Z 10 dr hEjrihrjE 0i = Z 10 dr h�EjrihrjE 0�i = Æ(E � E 0) ; (5.4.20)and Z 10 dr h�EjrihrjE 0+i = S(E)Æ(E � E 0) : (5.4.21)The \proof" of these identities follows the pattern of Se
tion 4.2.9.5.5 Appendi
es to Chapter 55.5.1 Appendix 7: Free HamiltonianIn this appendix, we 
ompute the RHS asso
iated to the free Hamiltonian. We will followthe method used in Chapter 4 for the total Hamiltonian.Self-Adjoint ExtensionThe �rst step is to de�ne a linear operator on a Hilbert spa
e 
orresponding to the formaldi�erential operator h0 � � ~22m d2dr2 : (5.5.1)The Hilbert spa
e that is in the RHS of the free Hamiltonian is realized by the spa
eL2([0;1); dr) of square integrable fun
tions f(r) de�ned on the interval [0;1). The same



5.5 Appendi
es to Chapter 5 191pro
edure that was used to �nd the domain of the total Hamiltonian 
an be applied to thefree Hamiltonian,D(H0) = ff(r) j f(r); h0f(r) 2 L2([0;1); dr); f(r) 2 AC2[0;1); f(0) = 0g : (5.5.2)On D(H0) the formal di�erential operator h0 is self-adjoint. In 
hoosing (5.5.2) as thedomain of our formal di�erential operator h0, we de�ne a linear operator H0 byH0f(r) := h0f(r) = � ~22m d2dr2f(r) ; f(r) 2 D(H0) : (5.5.3)Resolvent and Green Fun
tionsThe expression of the free Green fun
tion G0(r; s;E) is be given in terms of eigenfun
tionsof the di�erential operator h0 subje
t to 
ertain boundary 
onditions (
f. Theorem 1 inSe
tion 4.4.2). Region <(E) < 0, =(E) 6= 0For <(E) < 0, =(E) 6= 0, the free Green fun
tion (see Theorem 1 in Se
tion 4.4.2) isgiven byG0(r; s;E) = 8><>: � 2m=~2p�2m=~2 E e�0(r;E) e�0(s;E)2 r < s� 2m=~2p�2m=~2 E e�0(s;E) e�0(r;E)2 r > s <(E) < 0 ; =(E) 6= 0 : (5.5.4)The eigenfun
tion e�0(r;E) satis�es the equationh0e�0(r;E) = Ee�0(r;E) (5.5.5)and the boundary 
onditions (4.2.21),e�0(r;E) = eq� 2m~2 Er � e�q� 2m~2 Er ; 0 < r <1 : (5.5.6)The eigenfun
tion e�0(r;E) satis�es the equation (5.5.5) and the boundary 
onditions (4.2.24),e�0(r;E) = e�q� 2m~2 Er ; 0 < r <1 : (5.5.7)Region <(E) > 0, =(E) > 0When <(E) > 0, =(E) > 0, the expression of the free Green fun
tion isG0(r; s;E) = 8><>: � 2m=~2p2m=~2 E �0(r;E)�0+(s;E) r < s� 2m=~2p2m=~2 E �0(s;E)�0+(r;E) r > s <(E) > 0; =(E) > 0 : (5.5.8)



192 5 S
attering o� the Square Barrier PotentialThe eigenfun
tion �0(r;E) satis�es the S
hr�odinger equation (5.5.5) and the boundary 
on-ditions (4.2.21), �0(r;E) = sin(r2m~2 Er) ; 0 < r <1 : (5.5.9)The eigenfun
tion �0+(r;E) satis�es the equation (5.5.5) subje
t to the boundary 
onditions(4.2.24), �0+(r;E) = eiq 2m~2 Er ; 0 < r <1 : (5.5.10)Region <(E) > 0, =(E) < 0In the region <(E) > 0, =(E) < 0, the free Green fun
tion readsG0(r; s;E) = 8><>: � 2m=~2p2m=~2 E �0(r;E)�0�(s;E) r < s� 2m=~2p2m=~2 E �0(s;E)�0�(r;E) r > s <(E) > 0; =(E) < 0 : (5.5.11)The eigenfun
tion �0(r;E) is given by (5.5.9). The eigenfun
tion �0�(r;E) satis�es theequation (5.5.5) and the boundary 
onditions (4.2.24),�0�(r;E) = e�iq 2m~2 Er ; 0 < r <1 : (5.5.12)Spe
trum of H0We 
ompute the spe
trum Sp(H0) of the operator H0 by applying the method used inSe
tion 4.2.4 to 
ompute the spe
trum of H.Subset � = (�1; 0)We �rst take � from Theorem 4 of Se
tion 4.4.3 to be (�1; 0). We 
hoose a basis forthe spa
e of solutions of the equation h0� = E� ase�1(r;E) = eq� 2m~2 Er ; (5.5.13a)e�2(r;E) = e�0(r;E) : (5.5.13b)Obviously, e�0(r;E) = e�1(r;E)� e�2(r;E) ; (5.5.14)whi
h along with Eq. (5.5.4) leads toG0(r; s;E) = � 2m=~2p�2m=~2 E 12 [e�1(r;E)� e�2(r;E)℄ e�2(s;E) ; r < s ; <(E) < 0 ;=(E) 6= 0 :(5.5.15)



5.5 Appendi
es to Chapter 5 193Sin
e e�2(s;E) = e�2(s;E) ; (5.5.16)we 
an write Eq. (5.5.15) asG0(r; s;E) = � 2m=~2p�2m=~2E 12 he�1(r;E)e�2(s;E)� e�2(r;E)e�2(s;E)i ;r < s ; <(E) < 0 ;=(E) 6= 0 : (5.5.17)On the other hand, by Theorem 4 in Se
tion 4.4.3 we haveG0(r; s;E) = 2Xi;j=1 ��ij(E)e�i(r;E)e�j(s;E) r < s : (5.5.18)By 
omparing Eqs. (5.5.17) and (5.5.18) we see that��ij(E) = 0� 0 � 2m=~2p�2m=~2 E 120 2m=~2p�2m=~2 E 12 1A ; <(E) < 0 ; =(E) 6= 0 : (5.5.19)The fun
tions ��ij(E) are analyti
 in a neighborhood of � = (�1; 0). Therefore, the interval(�1; 0) is in the resolvent set Re(H0) of the operator H0.Subset � = (0;1)In this 
ase, we 
hoose the following basis for the spa
e of solutions of h0� = E�:�1(r;E) = �0(r;E) ; (5.5.20a)�2(r;E) = 
os(r2m~2 Er) : (5.5.20b)Eqs. (5.5.10), (5.5.12) and (5.5.20) lead to�0+(r;E) = i�1(r;E) + �2(r;E) (5.5.21)and to �0�(r;E) = �i�1(r;E) + �2(r;E) : (5.5.22)By substituting Eq. (5.5.21) into Eq. (5.5.8) we get toG0(r; s;E) = � 2m=~2p2m=~2E �1(s;E) [i�1(r;E) + �2(r;E)℄ ; r > s ; <(E) > 0;=(E) > 0 :(5.5.23)



194 5 S
attering o� the Square Barrier PotentialBy substituting Eq. (5.5.22) into Eq. (5.5.11) we get toG0(r; s;E) = � 2m=~2p2m=~2E �1(s;E) [�i�1(r;E) + �2(r;E)℄ ; r > s ; <(E) > 0;=(E) < 0 :(5.5.24)Sin
e �1(s;E) = �1(s;E) ; (5.5.25)Eq. (5.5.23) leads toG0(r; s;E) = � 2m=~2p2m=~2E hi�1(r;E)�1(s;E) + �2(r;E)�1(s;E)i ;<(E) > 0;=(E) > 0 ; r > s ; (5.5.26)and Eq. (5.5.24) leads toG0(r; s;E) = � 2m=~2p2m=~2E h�i�1(r;E)�1(s;E) + �2(r;E)�1(s;E)i<(E) > 0;=(E) < 0 ; r > s : (5.5.27)The expression of the resolvent in terms of the basis �1; �2 
an be written as (see Theorem 4in Se
tion 4.4.3) G0(r; s;E) = 2Xi;j=1 �+ij(E)�i(r;E)�j(s;E) ; r > s : (5.5.28)By 
omparing (5.5.28) to (5.5.26) we get to�+ij(E) =  � 2m=~2p2m=~2 E i � 2m=~2p2m=~2 E0 0 ! ; <(E) > 0 ; =(E) > 0 : (5.5.29)By 
omparing (5.5.28) to (5.5.27) we get to�+ij(E) =  2m=~2p2m=~2 E i � 2m=~2p2m=~2 E0 0 ! ; <(E) > 0 ; =(E) < 0 : (5.5.30)From Eqs. (5.5.29) and (5.5.30) we 
an see that the measures �12, �21 and �22 in Theorem 4of Se
tion 4.4.3 are zero and that the measure �11 is given by�11((E1; E2)) = limÆ!0 lim�!0+ 12�i Z E2�ÆE1+Æ ��+11(E � i�)� �+11(E + i�)� dE= Z E2E1 1� 2m=~2p2m=~2E dE ; (5.5.31)whi
h leads to �0(E) � �11(E) = 1� 2m=~2p2m=~2E ; E 2 (0;1) : (5.5.32)The fun
tion �+11(E) has a bran
h 
ut along (0;1), and therefore (0;1) is in
luded inSp(H0). Sin
e Sp(H0) is a 
losed set, Sp(H0) = [0;1).



5.5 Appendi
es to Chapter 5 195Diagonalization and Eigenfun
tion ExpansionIn the present se
tion, we diagonalize our Hamiltonian H0 and 
onstru
t the expansion ofthe wave fun
tions in terms of the eigenfun
tions of the di�erential operator h0.By Theorem 2 of Se
tion 4.4.3, there is a unitary map eU0 de�ned byeU0 : L2([0;1); dr) 7�! L2((0;1); �0(E)dE)f(r) 7�! ef(E) = eU0f(E) = Z 10 drf(r)�0(r;E) ; (5.5.33)that brings D(H0) onto the spa
eD( eE) = f ef(E) 2 L2((0;1); �0(E)dE) j Z 10 dE E2j ef(E)j2�0(E) <1g : (5.5.34)In order to Æ-normalize, we de�ne�0(r;E) :=p�0(E)�0(r;E) ; (5.5.35)whi
h is the eigensolution of the di�erential operator h0 that is Æ-normalized, andbf(E) :=p�0(E) ef(E) ; ef(E) 2 L2((0;1); �0(E)dE) ; (5.5.36)and 
onstru
t the unitary operatorbU0 : L2((0;1)); �0(E)dE) 7�! L2((0;1); dE)ef 7�! bf(E) = bU0 ef(E) :=p�0(E) ef(E) : (5.5.37)The operator that Æ-diagonalizes our Hamiltonian is U0 := bU0 eU0,U0 : L2([0;1)); dr) 7�! L2((0;1); dE)f 7�! U0f := bf : (5.5.38)The a
tion of U0 
an be written as an integral operator,bf(E) = U0f(E) = Z 10 drf(r)�0(r;E) ; f(r) 2 L2([0;1); dr) : (5.5.39)The image of D(H0) under the a
tion of U0 isD( bE) := UD(H0) = f bf(E) 2 L2((0;1); dE) j Z 10 E2j bf(E)j2dE <1g : (5.5.40)Therefore, we have 
onstru
ted a unitary operatorU0 : D(H) � L2([0;1); dr) 7�! D( bE) � L2((0;1); dE)f 7�! bf = U0f (5.5.41)



196 5 S
attering o� the Square Barrier Potentialthat transforms from the position representation into the energy representation. The opera-tor U0 diagonalizes the free Hamiltonian in the sense that bE � U0H0U�10 is the multipli
ationoperator. The inverse operator of U0 is given by (see Theorem 3 of Se
tion 4.4.3)f(r) = U�10 bf(r) = Z 10 dE bf(E)�0(r; E) ; bf(E) 2 L2((0;1); dE) : (5.5.42)The operator U�10 transforms from the energy representation into the position representa-tion.The expressions (5.5.39) and (5.5.42) provide the eigenfun
tion expansion of any squareintegrable fun
tion in terms of the eigensolutions �0(r;E) of h0. One 
an easily see thatlimV0!0U� = U0 : (5.5.43)Constru
tion of the RHS of the Free HamiltonianThe Sturm-Liouville theory only provides a domain D(H0) on whi
h the Hamiltonian H0 isself-adjoint and a unitary operator U0 that diagonalizes H0. This unitary operator indu
esa dire
t integral de
omposition of the Hilbert spa
e (see [4, 5℄),H 7�! U0H � bH = � ZSp(H0)H(E)dEf 7�! U0f � f bf(E)g; bf(E) 2 H(E) : (5.5.44)As we saw in Chapter 4, the dire
t integral de
omposition does not provide us with adense invariant domain �0 on whi
h all the powers of H0 and all the expe
tation values ofH0 are well-de�ned, and on whi
h the Dira
 kets a
t as antilinear fun
tionals. In order to
onstru
t �0, we �rst 
onstru
t the maximal invariant subspa
e D0 of H0,D0 := 1\n=0D(Hn0 ) : (5.5.45)It is easy to 
he
k thatD0 = f' 2 L2([0;1); dr) j hn0'(r) 2 L2([0;1); dr); hn0'(0) = 0; n = 0; 1; 2; : : : ;'(r) 2 C1([0;1))g : (5.5.46)The se
ond step is to �nd a subspa
e �0 on whi
h the eigenkets jEi ofH0 are well-de�nedas antilinear fun
tionals. That subspa
e is given by�0 = f' 2 D0 j Z 10 dr j(r + 1)n(h0 + 1)m'(r)j2 <1; n;m = 0; 1; 2; : : :g : (5.5.47)On �0, we de�ne the family of normsk'k0n;m :=sZ 10 dr j(r + 1)n(h0 + 1)m'(r)j2 ; n;m = 0; 1; 2; : : : (5.5.48)



5.5 Appendi
es to Chapter 5 197The quantities (5.5.48) ful�ll the 
onditions to be a norm (the proof is almost identi
al tothe proof of Proposition 1 of Se
tion 4.4.4) and 
an be used to de�ne a 
ountably normedtopology ��0 on �0 (see [5℄),'� ��0��!�!1 ' i� k'� � 'k0n;m��!�!1 0 ; n;m = 0; 1; 2; : : : (5.5.49)One 
an see that the spa
e �0 is stable under the a
tion of H0 and that H0 is ��0-
ontinuous(the proof is almost identi
al to the proof of Proposition 2 of Se
tion 4.4.4).On
e we have 
onstru
ted the spa
e �0, we 
an 
onstru
t its topologi
al dual ��0 as thespa
e of ��0-
ontinuous antilinear fun
tionals on �0 (see [5℄) and therewith the RHS of thefree Hamiltonian �0 � L2([0;1); dr) � ��0 : (5.5.50)For ea
h E 2 Sp(H0), we asso
iate a ket jEi to the generalized eigenfun
tion �0(r;E)through jEi : �0 7�! C' 7�! h'jEi := Z 10 '(r)�0(r;E)dr = (U0')(E) : (5.5.51)The ket jEi in Eq. (5.5.51) is a well-de�ned antilinear fun
tional on �0, i.e., jEi belongs to��0 (the proof is almost identi
al to the proof of Proposition 3 of Se
tion 4.4.4). The ketjEi is a generalized eigenve
tor of the free Hamiltonian H0 (the proof is almost identi
al tothe proof of Proposition 3 of Se
tion 4.4.4),H�0 jEi = EjEi ; (5.5.52)i.e., h'jH�0 jEi = hH0'jEi = Eh'jEi ; 8' 2 �0 : (5.5.53)Dira
 Basis Ve
tor Expansion for H0We are now in a position to derive the Dira
 basis ve
tor expansion for the free Hamilto-nian. This derivation 
onsists of the restri
tion of the Weyl-Kodaira expansions (5.5.39)and (5.5.42) to the spa
e �0. If we denote hrj'i � '(r) and hEjri � �0(r;E), and if wede�ne the a
tion of the left ket hEj on ' 2 �0 as hEj'i := b'(E), then Eq. (5.5.39) be
omeshEj'i = Z 10 dr hEjrihrj'i ; ' 2 �0 : (5.5.54)If we denote hrjEi � �0(r;E), then Eq. (5.5.42) be
omeshrj'i = Z 10 dE hrjEihEj'i ; ' 2 �0 : (5.5.55)This equation is the Dira
 basis ve
tor expansion of the wave fun
tion ' in terms of the freeeigenkets jEi. We 
an also prove the Nu
lear Spe
tral Theorem for the free Hamiltonian(the proof is almost identi
al to the proof of Proposition 4 of Se
tion 4.4.5),(';Hn0  ) = Z 10 dE Enh'jEihEj i ; 8';  2 �0 ; n = 1; 2; : : : (5.5.56)



198 5 S
attering o� the Square Barrier PotentialEnergy Representation of the RHS of H0We have already shown that in the energy representation the Hamiltonian H0 a
ts as themultipli
ation operator bE. The energy representation of the spa
e �0 is de�ned asb�0 := U0�0 : (5.5.57)Obviously b�0 is a linear subspa
e of L2([0;1); dE). In oder to endow b�0 with a topology�b�0 , we 
arry the topology on �0 into b�0,�b�0 := U0��0 : (5.5.58)With this topology, the spa
e b�0 is a linear topologi
al spa
e. If we denote the dual spa
eof b�0 by b��0 , then we have U�0 ��0 = (U0�0)� = b��0 : (5.5.59)If we denote j bEi � U�0 jEi, then we 
an prove that j bEi is the antilinear S
hwartz deltafun
tional, (the proof is almost identi
al to the proof of Proposition 5 of Se
tion 4.4.6),j bEi : b� 7�! Cb' 7�! hb'j bEi := b'(E) : (5.5.60)It is very helpful to show the di�erent realizations of the RHS through the followingdiagram:H0; '(r) �0 � L2([0;1); dr) � ��0 jEi position repr:# U0 # U0 # U�0bE; b'(E) b�0 � L2([0;1); dE) � b��0 j bEi energy repr: (5.5.61)We should stress that the spa
e �0 is neither �in nor �out|the boundary 
onditionssatis�ed by the elements of the spa
es �in;out are di�erent to the boundary 
onditionssatis�ed by the elements of �0.5.5.2 Appendix 8: Spa
es of Hardy Fun
tionsIn this Appendix, we list the de�nition and main properties of fun
tions of Hardy 
lass andreview the Bohm-Gadella 
onstru
tion of RHS of Hardy fun
tions.General Properties of Hardy Fun
tionsA Hardy fun
tion f(z) on the upper half of the 
omplex plane C + is a fun
tion satisfyingthe following 
onditions [76, 77, 78, 79℄:i.) It is an analyti
 fun
tion on the open upper half plane, i.e., on the set of 
omplexnumbers with positive imaginary part.



5.5 Appendi
es to Chapter 5 199ii.) For any value of y > 0, the integralZ 1�1 jf(x+ iy)j2 dx (5.5.62)
onverges.iii.) For all y > 0, these integrals are bounded by the same 
onstant K,supy>0 Z +1�1 jf(x+ iy)j2 dx < K : (5.5.63)The set of Hardy fun
tions on the upper half plane, often referred to as Hardy fun
tionsfrom above, is a ve
tor spa
e that we denote by H2+.Similarly, Hardy fun
tions on the lower half plane C � are analyti
 on the open lowerhalf plane, and for these fun
tions the 
onditions (ii) and (iii) hold with y < 0. We denotethe ve
tor spa
e of Hardy fun
tions from below by H2�.Boundary values for Hardy fun
tions are de�ned at almost all (with respe
t to theLebesgue measure) points of the real axis. For any Hardy fun
tion, these boundary valuesyield a square integrable fun
tion f(x), whi
h is uniquely de�ned on the real line, save fora set of zero Lebesgue measure,limy!0 f(x� iy) = f(x) ; f 2 H2� : (5.5.64)The square norm of f(x) is also bounded by K. Thus, a fun
tion inH2� uniquely determines(almost everywhere) a square integrable fun
tion on R.An important theorem, due to Tit
hmarsh [80℄, states that Hardy fun
tions 
an bere
overed by their boundary values on the real line. If f(x) is the fun
tion representing theboundary values of a Hardy fun
tion f(z) on C � , thenf(z) = � 12�i Z 1�1 f(x)x� z dx ; (5.5.65)where the signs (+) and (�) 
orrespond to Hardy fun
tions on the upper and lower halfplane, respe
tively.Another important theorem on Hardy fun
tions is that by Paley and Wiener [81, 76,77, 78, 79℄, whi
h determines whether a square integrable fun
tion is also a Hardy fun
tion.The theorem asserts that the Fourier transform F is bije
tion between H2�, the spa
e ofHardy fun
tions from below, and L2(R+) the spa
e of square integrable fun
tions de�nedon the positive real axis. The 
on
lusion holds also for H2+ and L2(R�). That is,FL2(R�) = H2+ ; (5.5.66a)FL2(R+) = H2� : (5.5.66b)There is another version of the same result that 
an be summarized as follows:FH2+ = L2(R+) ; (5.5.67a)FH2� = L2(R�) : (5.5.67b)



200 5 S
attering o� the Square Barrier PotentialSin
e the Fourier transform is an isometry on L2(R), we 
on
lude that H2+ and H2� are
losed subspa
es of L2(R), and hen
e Hilbert spa
es. Sin
e L2(R) = L2(R+) � L2(R�),where � stands for orthogonal dire
t sum, we haveL2(R) = H2+ �H2� : (5.5.68)A theorem due to van Winter [53℄ establishes that a Hardy fun
tion 
an be re
overedby its boundary values on the semi-axis R+ . Whether the re
overed fun
tion is an elementof H2+ or H2� is to be determined by means of the Mellin transform. Thus, if we 
all H2++the spa
e of boundary values on R+ of the fun
tions in H2+ and H2�+ the spa
e of boundaryvalues on R+ of the fun
tions in H2�, we have the following bije
tion:�H2+ = H2++ ; (5.5.69a)�H2� = H2�+ ; (5.5.69b)where the image of any f�(x) 2 H2� by � is a fun
tion whi
h is equal to f�(x) for x 2 R+and is not de�ned for negative values of x.The following are among the other interesting properties of Hardy fun
tions [80℄:i.) Let us de�ne the Hilbert transform for an L2(R) fun
tion f asHf(x) = 1� P Z 1�1 f(t)t� x dt ; (5.5.70)where P denotes the Cau
hy prin
ipal value. The Hilbert transform is linear and its imagealso lies in L2(R). A square integrable 
omplex fun
tion f(x), with real part u(x) andimaginary part v(x), belongs to H2� if and only ifHu = �v and Hv = �u : (5.5.71)In parti
ular, a Hardy fun
tion 
annot be either real or purely imaginary on the whole realline.ii.) From i.), we immediately see that f(x) 2 H2� if and only if its 
omplex 
onjugatef �(x) 2 H2�.iii.) Hardy fun
tions vanish at in�nity. More pre
isely, they behave for large values ofjzj as 1=pz (
f. [79℄).iv.) Some Hardy fun
tions on C � admit analyti
 
ontinuation beyond the real axis toC � . We may 
onsider the fun
tions f(x) 2 L2(R�) su
h that there is a positive number �with the property that e�jxjf(x) 2 L2(R�). Then, the Fourier transforms of these fun
tionsare Hardy fun
tions on C � , and they admit an analyti
 
ontinuation beyond the real axis toa strip of width �. This means that if e�jxjf(x) 2 L2(R�), its Fourier transform is analyti
on fz 2 C ; �� < Im z <1g and if e�jxjf(x) 2 L2(R+), its Fourier transform is analyti
on fz 2 C ; �1 < Im z < �g (
f. [82℄).v.) A fun
tion whi
h is simultaneously Hardy on both the upper and lower half planeswould be obviously entire, and, as a 
onsequen
e of above 
ondition iii), is also bounded.



5.5 Appendi
es to Chapter 5 201Hen
e, Liouville theorem asserts that su
h a fun
tion is 
onstant. A 
onstant fun
tion
annot be square integrable unless it is zero almost everywhere. However, there exist entirefun
tions that are also Hardy either on the upper or the lower half plane.vi.) It is now 
lear that the spa
es H2+ and H2� have a trivial interse
tion. However, thespa
es of fun
tions whi
h are restri
tions of Hardy fun
tions to the positive semiaxis R+have a nontrivial interse
tion. Moreover, the interse
tionH2++\H2�+ is dense in L2(R+) [83℄.Rigged Hilbert Spa
es of Hardy Fun
tionsWe now summarize the Bohm-Gadella 
onstru
tion to des
ribe resonan
es. This 
onstru
-tion is based on RHS of Hardy fun
tions.All fun
tions ful�lling the following 
onditions yield two rigged Hilbert spa
es [20℄:i.) They belong to the S
hwartz spa
e S.ii.) Their supports are in R� .We 
all these spa
es S�, respe
tively. Take their Fourier transforms. Sin
e the Fouriertransform of a S
hwartz fun
tion is again a S
hwartz fun
tion, the Fourier transforms of thefun
tions in S� have the following properties:a.) They belong to the S
hwartz spa
e.b.) They belong to H2�.
.) The spa
e of all these Fourier transforms FS� 
oin
ide with the interse
tion of Sand H2�, i.e., FS� = S \H2�.d.) Sin
e S� is dense in L2(R�), S \ H2� is dense in H2� with respe
t to the Hilbertspa
e topology inherited from L2(R).e.) Note however that the dire
t sum of spa
es S \H2+�S \H2� does not 
oin
ide withS, sin
e the Fourier transform of any of its fun
tions vanish at zero.f.) Sin
e S \ H2� are subspa
es of S, they inherit the topology of S. They have goodenough properties so that S \H2� � H2� � (S \ H2�)� (5.5.72)are well de�ned rigged Hilbert spa
es.We mentioned earlier in this Appendix that Hardy fun
tions are determined by theirvalues on the positive semiaxis plus a spe
i�
ation whi
h says if they are Hardy on the upperor the lower half planes. Thus, we have de�ned the spa
es �H2+ = H2++ and �H2� = H2�+.Now 
onsider: S \H2+��R+ = �+(S \ H2+) ; (5.5.73a)S \H2���R+ = ��(S \ H2�) : (5.5.73b)The spa
es S \H2���R+ are dense in L2(R+). Sin
e � is a bije
tion, we 
an transport thetopology from S \ H2� to S \H2���R+ by means of �. The transported topologies have thesame properties as the original ones and they are �ner than the Hilbert topology on L2(R+).In parti
ular, S \ H2���R+ are metrizable topologi
al ve
tor spa
es andS \ H2���R+ � L2(R+) � (S \ H2���R+)� (5.5.74)



202 5 S
attering o� the Square Barrier Potentialare RHS. The spa
es S \ H2+��R+ and S \ H2���R+ have a nontrivial interse
tion [84℄.We 
an de�ne the dual of the mapping � using the following formula:h�f�(x)j��F�i = hf�(x)jF�i ; 8f�(x) 2 S \ H2� ; 8F� 2 (S \H2�)� : (5.5.75)The mapping �� is a bije
tion. Moreover, the following property is ful�lled algebrai
allyand topologi
ally: ��(S \H2�)� � (S \ H2���R+)� = (�(S \ H2�))� ; (5.5.76)i.e., the topology on (S \H2���R+)� is transported from (S \ H2�)� by ��.It is important, however, that the mapping �� does not extend �. The 
ause lies in thenon unitarity of the latter.



Chapter 6The Gamow Ve
tors of the SquareBarrier Potential Resonan
esIn this 
hapter, we study the resonan
es of the square barrier potential. We �rst 
omputethe resonan
e energies as poles of the S-matrix. The integral equation of A. Mondrag�on etal. for the Gamow ve
tors will be translated into the RHS language. Next, we 
ompute theGamow eigenfun
tions in the position representation as the solutions of the time independentS
hr�odinger equation subje
t to the purely outgoing boundary 
ondition. The [0;1)-energyrepresentation of the Gamow eigenfun
tion will be related to the 
omplex delta fun
tion,and the (�1;1)-energy representation of the Gamow eigenfun
tion will be related to theBreit-Wigner amplitude. The semigroup time evolution of the Gamow ve
tors will also be
omputed. The Gamow ve
tors will be used as basis ve
tors. We shall see that the Gamowve
tors do not form a 
omplete basis|an additional set of kets needs to be added in orderto obtain a 
omplete basis. The time asymmetry of the purely outgoing boundary 
onditionwill be dis
losed. To �nish this 
hapter, we shall dis
uss the exponential de
ay law of theGamow ve
tors.
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It don't bring youWell I know it ain't been roses latelyBaby it's just been thornsAnd no matter what we doNothing seems to 
hangeLove has always been my shelterFor you it's been a stormBut for awhile I thoughtWe'd almost beat the rainNow there's a hole here in my po
ketWhere all my dreams have goneFalling out like so many ni
kelsand dimesAnd last of all youYou'd always been my good lu
k 
harmI should've known that lu
kIs a waste of timeCause it don't bring you love if you don't loveAnd it don't bring you time if you ain't got timeAnd it don't bring you strength baby if you ain't strongAnd it don't bring you kindness if you ain't kindNow there's a whole lot in life to be unsure ofBut there's one thing I 
an safely say I knowThat of all the things that �nally desert usPride is always the last thing to goBut it won't bring you love if you don't loveAnd it won't bring you time if you ain't got timeAnd it won't bring you strength baby if you ain't strongAnd it won't bring you kindness if you ain't kindAnd now I wish you only the roses without the thornsAnd I hope your dreams are always within rea
hAnd I wish you shelter baby from all your stormsThey s
ared you but they never seemed to tea
hThat I 
an't bring you love if you don't loveAnd I 
an't bring you time if you ain't got timeAnd I 
an't bring you strength baby if you ain't strongAnd I 
an't bring you kindness if you ain't kindAnd I 
an't bring you kindness if you ain't kindMary Chapin Carpenter, State of the Heart



6.1 Introdu
tion 2056.1 Introdu
tionMost elementary parti
les are only quasistable states de
aying through various intera
tionsand thus have �nite lifetimes of various orders of magnitude [36℄. Several theoreti
al s
hemeshave been proposed to des
ribe quasistable parti
les. The S-matrix and the Gamow ve
torsare two of the most widely used s
hemes.Experimentally, resonan
es often appear as peaks in the 
ross se
tion that resemble thewell-known Breit-Wigner distribution [50℄. The Breit-Wigner distribution has two 
hara
-teristi
 parameters: the energy ER at whi
h the peak rea
hes its maximum, and its width �Rat half-maximum. The inverse of �R is the lifetime of the de
aying state [33℄. The peak ofthe Breit-Wigner is related to a �rst-order pole of the S-matrix in the energy representationS(E) at the 
omplex number zR = ER � i�R=2. The shape of the theoreti
al expressionof the 
ross se
tion in terms of S(E) �ts the shape of the experimental 
ross se
tion in theneighborhood of ER. This is why the �rst-order pole of the S-matrix is often taken as thetheoreti
al de�nition of a resonan
e.Although a resonan
e has a �nite lifetime, it is otherwise assigned all the properties thatare also attributed to stable parti
les, su
h as angular momentum, 
harge, spin, parity andother parti
le labels. For example, a radioa
tive nu
leus has a �nite lifetime, but otherwiseit possesses all the properties of stable nu
lei. In fa
t, radioa
tive nu
lei are in
luded in theperiodi
 table of the elements together with the stable nu
lei. Therefore, it seems naturalto seek a theoreti
al des
ription that provides \parti
le status" to the quasistable states.The Gamow ve
tors provide this parti
le status. The des
ription of resonan
es by Gamowve
tors allows us to interpret resonan
es as autonomous experimentally de
aying physi
alsystems. This des
ription, impossible in the Hilbert spa
e, 
an be a

omplished within theRigged Hilbert Spa
e.The original energy eigenfun
tion with 
omplex eigenvalue ER � i�R=2 was introdu
edby Gamow [38℄. The quantities ER and �R are interpreted as the resonan
e energy and theresonan
e width of the de
aying state, respe
tively. However, Gamow's heuristi
 approa
h
annot be made rigorous in the Hilbert spa
e framework, be
ause self-adjoint operators ona Hilbert spa
e 
an only have real eigenvalues. An extended framework is therefore needed.As we shall see, the Rigged Hilbert Spa
e is the most natural framework to des
ribe Gamowve
tors.In this 
hapter, Gamow eigenkets will be obtained as solutions of a homogeneous integralequation of the Lippmann-S
hwinger type. In the radial position representation, this integralequation is equivalent to the time-independent S
hr�odinger equation subje
t to a purelyoutgoing boundary 
ondition. The resonan
e spe
trum is therefore singled out by the purelyoutgoing boundary 
ondition. As we shall see, this is the same resonan
e spe
trum as thatde�ned by the poles of the S-matrix. The Gamow eigenfun
tions will be asso
iated to 
ertaineigenfun
tionals, that we 
all Gamow kets. These Gamow kets are generalized eigenve
torsof the square barrier potential Hamiltonian with 
omplex eigenvalue ER � i�R=2.The energy representation of the Gamow ve
tors will be obtained. We shall see thatin the [0;1)-energy representation (i.e., in the representation asso
iated to the physi
alspe
trum), the Gamow ve
tor is represented by the 
omplex delta fun
tion, whereas in the
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tors of the Square Barrier Potential Resonan
es(�1;1)-energy representation (i.e., in the representation asso
iated to the support of theBreit-Wigner amplitude), the Gamow ve
tor is represented by the Breit-Wigner amplitude.We shall also obtain the time evolution of the Gamow ve
tors, whi
h is given by a semigroup.Therefore, the Gamow ve
tors have all of the properties that are demanded from aresonan
e state:1. They are eigenve
tors of the Hamiltonian with 
omplex eigenvalues.2. They 
orrespond to the Breit-Wigner amplitude in the energy representation.3. Their time evolution is given by a semigroup, and obeys the exponential de
ay law.The organization of this 
hapter is as follows. In Se
tion 6.2, we 
ompute the resonan
eenergies as poles of the S-matrix. In Se
tion 6.3, we introdu
e the integral equation thatis satis�ed by the Gamow ve
tors. Next, we 
ompute the Gamow eigenfun
tions in theposition representation as the solutions of the time independent S
hr�odinger equation with
omplex eigenvalues subje
t to a purely outgoing boundary 
ondition. These eigensolutionswill be asso
iated to 
ertain eigenfun
tionals (Gamow kets). The [0;1)-energy represen-tation of the Gamow eigenfun
tion will be related to the 
omplex delta fun
tion, and the(�1;1)-energy representation of the Gamow eigenfun
tion will be related to the Breit-Wigner amplitude. In Se
tion 6.4, the Gamow ve
tors will be used as basis ve
tors. Weshall see that the Gamow ve
tors do not form a 
omplete basis|an additional set of ketsneeds to be added in order to obtain a 
omplete basis. The time evolution of the Gamowve
tors is 
omputed in Se
tion 6.5. Se
tion 6.6 deals with the time asymmetry behind thepurely outgoing boundary 
ondition. Se
tion 6.7 studies the exponential de
ay law of theGamow ve
tors.6.2 S-matrix Resonan
esThe S-matrix in the energy representation is given by (see Se
tion 5.4)S(E) = J�(E)J+(E) ; E > 0 : (6.2.1)As it stands, this expression is valid only for positive energies. As we said in Se
tion 6.1,the S-matrix resonan
es are asso
iated to the poles of the analyti
 
ontinuation of S(E)into the whole 
omplex plane. Sin
e S(E) is not a single-valued fun
tion, it is 
onvenientto write the S-matrix as a fun
tion of the momentum k before we perform the analyti

ontinuation, S(k) = J�(k)J+(k) ; k > 0 : (6.2.2)Here the momentum k is given by k =r2m~2 E : (6.2.3)



6.2 S-matrix Resonan
es 207Eq. (6.2.3) provides a Riemann surfa
e in a natural way. The analyti
 
ontinuation of thenumerator and the denominator of S(k) yield two analyti
 fun
tions J�(k). Therefore, the
ontinuation of S(k) is analyti
 ex
ept at its poles. These are pre
isely the zeros of thedenominator of S(k) (see [85℄), J+(k) = 0 ; (6.2.4)where now k is 
omplex. From Eqs. (4.4.16d) and (5.2.23a) it follows that the equality(6.2.4) is equivalent to the following:(1� Qk )eiQ(b�a) �sin(ka) + kiQ 
os(ka)�+ (1 + Qk )e�iQ(b�a) �sin(ka)� kiQ 
os(ka)� = 0 :(6.2.5)The solutions of (6.2.5) are the (S-matrix) resonan
es of the square barrier potential. Equa-tion (6.2.5) has a denumerable in�nite number of 
omplex resonan
e energy solutions. Thesesolutions 
ome in pairs ER� i�R=2 (see Figure 6.2 of Appendix 6.9). The pole ER� i�R=2 isasso
iated with the de
aying part of the resonan
e, and it is lo
ated on the lower half-planeof the se
ond sheet of the two-sheeted Riemann surfa
e 
orresponding to the square rootmapping (see Figure 6.2a of Appendix 6.9). The pole ER + i�R=2 is asso
iated with thegrowing or formation part of the resonan
e, and it is lo
ated on the upper half-plane of these
ond sheet of the Riemann surfa
e (see Figure 6.2b of Appendix 6.9). In the momentumplane, this pair of energy poles 
orresponds to a pair of poles �Re(k)� iIm(k) in the lowerhalf of the k-plane that are mirror images of one another with respe
t to the imaginary axis(see Figure 6.1 of Appendix 6.9).The width of the resonan
es in
reases as the energy in
reases, and therefore their lifetime�R = ~=�R de
reases. The resonan
es whose energies are below the top of the barrier E = V0are 
lose to the real axis. As E keeps in
reasing the resonan
es move away from the realaxis towards in�nity. The square barrier potential poles never 
orrespond to a bound or avirtual state, i.e., they do not lie in the imaginary axis of the momentum plane. The squarebarrier potential poles are always simple (
f. [86℄ for an example of a barrier with doublepoles).In order to distinguish ea
h of the denumerable in�nite number of resonan
e poles, thede
aying resonan
e energies of the square barrier potential will be denoted byzn = En � i�n2 ; n = 1; 2; : : : ; (6.2.6)whereas the growing resonan
e energies will be denoted byz�n = En + i�n2 ; n = 1; 2; : : : (6.2.7)The 
orresponding momentum poles will be denoted respe
tively bykn = Re(kn)� i Im(kn) = pzn ; n = 1; 2; : : : ; (6.2.8)and by �k�n = �Re(kn)� i Im(kn) =pz�n ; n = 1; 2; : : : (6.2.9)
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tors of the Square Barrier Potential Resonan
es6.3 The Gamow Ve
torsGamow ve
tors are usually de�ned as eigensolutions of the S
hr�odinger equation subje
t toa purely outgoing boundary 
ondition (see Se
tion 6.3.2 below). Although we 
ould startthe study of Gamow ve
tors with that de�nition, we will follow instead the pro
edure usedfor the Lippmann-S
hwinger kets. We will de�ne a Gamow ve
tor as the solution of anintegral equation. This integral equation has that purely outgoing boundary 
ondition builtinto it. Needless to say, the solutions of that integral equation will be found by solving thetime independent S
hr�odinger equation subje
t to the purely outgoing boundary 
ondition.6.3.1 Lippmann-S
hwinger Equation of the Gamow Ve
torsThe Gamow ve
tors are solutions of an integral equation of the Lippmann-S
hwinger type.If zR = ER� i�R=2 denotes the 
omplex energy asso
iated to a resonan
e of energy ER andwidth �R, then the de
aying Gamow ve
tor jz�Ri ful�llsjz�Ri = 1zR �H0 + i0V jz�Ri : (6.3.1)This equation was introdu
ed (with a di�erent notation) by A. Mondrag�on et al. in Ref. [40℄.The +i0 in Eq. (6.3.1) means that we are working with the retarded free Green fun
tion,whi
h has a purely outgoing boundary 
ondition built into it. The retarded free Greenfun
tion is analyti
ally 
ontinued a
ross the 
ut into the lower half plane (of the se
ondsheet of the Riemann surfa
e), where the 
omplex number zR is lo
ated. Therefore, asA. Mondrag�on has pointed out, Eq. (6.3.1) should be written asjz�Ri = limE!zR 1E �H0 + i0V jEi : (6.3.2)The notation in this equation expresses better the fa
t that we �rst have to 
ompute theretarded free Green fun
tion (E �H0 + i0)�1 and then 
ontinue it a
ross the 
ut into thelower half plane.1 The minus sign in jz�Ri means that the de
aying Gamow ve
tor will bede�ned as an antilinear fun
tional over the  � 2 �+.As we said above, the integral equation (6.3.1) has a purely outgoing boundary 
onditionbuilt into it. To be more pre
ise, Eq. (6.3.1) in the position representation is equivalent tothe time independent S
hr�odinger equation subje
t to the 
ondition that far away from thepotential region the solution behave as a purely outgoing wave.As we saw in Se
tion 6.2, to ea
h de
aying pole zR = ER � i�R=2 of the S-matrix there
orresponds a growing pole z�R = ER + i�R=2. We now asso
iate a growing Gamow ve
tor1This also shows that a 
onsistent notation will always have 
ipping of signs like '+ 2 ��,  � 2 �+,et
. This 
ipping of signs 
omes from the fa
t that we perform analyti
 
ontinuations from the upper (lower)rim of the 
ut, whi
h is labeled by +i0 (�i0), into the lower (upper) half plane, whi
h is labeled by C�(C+ ).



6.3 The Gamow Ve
tors 209jz�R+i to the pole of the S-matrix at z�R. The integral equation satis�ed by jz�R+i shouldread jz�R+i = 1z�R �H0 � i0V jz�R+i = limE!z�R 1E �H0 � i0V jEi : (6.3.3)In 
ontrast to Eq. (6.3.1), Eq. (6.3.3) has a purely in
oming boundary 
ondition built intoit. That is, Eq. (6.3.3) in the position representation is equivalent to the time independentS
hr�odinger equation subje
t to the 
ondition that far away from the potential region thesolution behave as a purely in
oming wave.6.3.2 The Gamow Ve
tors in Position RepresentationIn this se
tion, we obtain the solutions of the integral equations (6.3.1) and (6.3.3). Inoder to do so, we will work in the radial position representation. In this representation wewill solve the S
hr�odinger equation under purely outgoing boundary 
onditions. We willsee that there is a one-to-one 
orresponden
e between the 
omplex poles of the analyti
ally
ontinued S-matrix and the 
omplex generalized eigenvalues obtained under purely outgoingboundary 
onditions.In the radial representation, Eqs. (6.3.1) and (6.3.3) readhrjz�Ri = hrj 1zR �H0 + i0V jz�Ri = limE!zRhrj 1E �H0 + i0V jEi ; (6.3.4a)hrjz�R+i = hrj 1z�R �H0 � i0V jz�R+i = limE!z�Rhrj 1E �H0 � i0V jEi : (6.3.4b)Instead of solving these integral equations, we solve the equivalent S
hr�odinger di�erentialequation �� ~22m d2dr2 + V (r)� hrjzRi = zRhrjzRi ; (6.3.5)subje
t to the boundary 
onditions built into them,h0jzRi = 0 (6.3.6a)hrjzRi is 
ontinuous at r = a and at r = b (6.3.6b)ddr hrjzRi is 
ontinuous at r = a and at r = b (6.3.6
)hrjzRi � eikRr as r !1 ; (6.3.6d)where kR =r2m~2 zR : (6.3.7)In Eqs. (6.3.5) and (6.3.6), we have used the same symbol hrjzRi to denote both hrjz�Riand hrjz�R+i. This will 
reate no 
onfusion, be
ause whenever zR = ER � i�R=2, thenhrjzRi will mean hrjz�Ri, and whenever zR = ER + i�R=2, then hrjzRi will mean hrjz�R+i.Condition (6.3.6d) is the purely outgoing boundary 
ondition. At �rst glan
e, it may look



210 6 Gamow Ve
tors of the Square Barrier Potential Resonan
eslike we have imposed also a purely outgoing boundary 
ondition upon the growing Gamoweigenfun
tions hrjz�R+i. However, sin
e kR is 
omplex, the fun
tion eikRr is not always anoutgoing wave. In fa
t, it is an outgoing wave only when Re(kR) is positive, i.e., when weare working with the de
aying Gamow ve
tor hrjz�Ri, and it is an in
oming wave only whenRe(kR) is negative, i.e., when we are working with the growing Gamow ve
tor hrjz�R+i. Thismeans that working with the momentum kR rather than with zR will allow us to obtain thede
aying and the growing Gamow ve
tors at the same time.The purely outgoing boundary 
ondition (6.3.6d) is often written aslimr!1 du(r; zR)dr � ikRu(r; zR) = 0 ; (6.3.8)where u(r; zR) = hrjzRi : (6.3.9)One 
an easily 
he
k that (6.3.8) is equivalent to (6.3.6d).If we impose the 
onditions (6.3.6a)-(6.3.6
) upon the general solution of Eq. (6.3.5), weobtain that, up to a normalization fa
tor, the solution has the form�(r; zR) � �(r; kR) = 8<: sin(kRr) 0 < r < aJ1(kR)eiQRr + J2(kR)e�iQRr a < r < bJ3(kR)eikRr + J4(kR)e�ikRr b < r <1 ; (6.3.10)where QR =rk2R � 2m~2 V0 =r2m~2 (zR � V0) : (6.3.11)The eigensolution (6.3.10), whi
h does not satisfy the purely outgoing boundary 
onditionyet, is equal to the analyti
 
ontinuation of the regular solution �(r;E) of Eq. (5.2.22). InEq. (6.3.10), there is no restri
tion on the values that zR 
an take, i.e., before imposingthe purely outgoing boundary 
ondition zR 
an be any 
omplex number. If we now impose(6.3.6d) upon the eigensolution (6.3.10), then the 
oeÆ
ient J4(kR) = i=2J+(kR) must bezero. Sin
e this 
ondition is the same as the 
ondition (6.2.4) for the 
omplex poles of theS-matrix, the set of generalized 
omplex eigenvalues zR must in
lude the set of S-matrixresonan
e poles. We now show that these two sets of solutions are the same.The boundary 
onditions (6.3.6) 
an be written in terms of the 
oeÆ
ients of (6.3.10)as J1eiQRa + J2e�iQRa = sin(kRa) (6.3.12a)iQR(J1eiQRa � J2e�iQRa) = kR 
os(kRa) (6.3.12b)J3eikRb = J1eiQRb + J2e�iQRb (6.3.12
)ikRJ3eikRb = iQR(J1eiQRb � J2e�iQRb) : (6.3.12d)Writing this set of linear equations as a matrix equation we obtain0BB� sin(kRa) 0 �eiQRa �e�iQRakR 
os(kRa) 0 �iQReiQRa iQRe�iQRa0 eikRb �eiQRb �e�iQRb0 ikReikRb �iQReiQRb iQRe�iQRb 1CCA0BB� 1J3J1J2 1CCA = 0BB� 0000 1CCA : (6.3.13)
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tors 211This is a homogeneous system of four equations with four unknowns. The system has anon-trivial solution i� the determinant of the 
oeÆ
ients is equal to zero,�������� sin(kRa) 0 �eiQRa �e�iQRakR 
os(kRa) 0 �iQReiQRa iQRe�iQRa0 eikRb �eiQRb �e�iQRb0 ikReikRb �iQReiQRb iQRe�iQRb �������� = 0 : (6.3.14)Straightforward 
omputations show that the 
ondition (6.3.14) is the same as the 
ondition(6.2.5). Thus the set of generalized eigenvalues of the time independent S
hr�odinger equationsubje
t to purely outgoing boundary 
onditions is the same as the set of S-matrix poles.As we mentioned earlier, the solutions of (6.2.5) 
ome in pairs of a growing and a de
ayingpole. We have denoted those poles by zn and z�n and their 
orresponding momenta by knand �k�n. The eigenfun
tion asso
iated to zn = En � i�n=2 is the de
aying Gamow ve
torin the position representation, whose radial part, up to a normalization fa
tor, isun(r; zn) � un(r; kn) = 8>><>>: 1J3(kn) sin(knr) 0 < r < aJ1(kn)J3(kn)eiQnr + J2(kn)J3(kn)e�iQnr a < r < beiknr b < r <1 : (6.3.15)The eigenfun
tion asso
iated to z�n = En+i�n=2 is the growing Gamow ve
tor in the positionrepresentation, whose radial part, up to a normalization fa
tor, isun(r; z�n) � un(r;�k�n) = 8>><>>: 1J3(�k�n) sin(�k�nr) 0 < r < aJ1(�k�n)J3(�k�n)e�iQ�nr + J2(�k�n)J3(�k�n)eiQ�nr a < r < be�ik�nr b < r <1 : (6.3.16)Form equations (6.3.10), (6.3.15) and (6.3.16) it follows that the Gamow eigenfun
tions areproportional to the analyti
 
ontinuation of the regular solution,un(r; kn) = 2iJ�(kn)�(r; kn) ; (6.3.17a)un(r;�k�n) = 2iJ�(�k�n)�(r;�k�n) : (6.3.17b)The Gamow ve
tor (6.3.15) is de�ned up to a normalization fa
tor. By normalizationwe mean the fun
tion Nn of zn by whi
h we 
an multiply the Gamow eigenfun
tion un(r; zn)to obtain another eigenfun
tion Nnun(r; zn) with the same eigenvalue zn and satisfying thesame boundary 
onditions (6.3.6). If no 
onfusion arises, we denote the normalized Gamowve
tor also by un(r; zn),un(r; zn) � un(r; kn) = 8>><>>: NnJ3(kn) sin(knr) 0 < r < aNnJ1(kn)J3(kn) eiQnr + NnJ2(kn)J3(kn) e�iQnr a < r < bNneiknr b < r <1 : (6.3.18)



212 6 Gamow Ve
tors of the Square Barrier Potential Resonan
esAfter this normalization Eq. (6.3.17a) be
omesun(r; zn) � un(r; kn) = 2iNnJ�(kn)�(r; kn) (6.3.19)There is an extensive literature on the normalization of Gamow ve
tors (
f. [40℄ and refer-en
es therein). We shall not treat this problem here, although we would like to mentionthat the normalization proposed by A. Mondrag�on et al. [40℄ seems to be the most suitable.The eigenfun
tions un(r; zn) of the di�erential operator h are obviously not square in-tegrable, i.e., they do not belong to the Hilbert spa
e L2([0;1); dr). In order to 
onstru
tan eigenket jz�n i of the Hamiltonian H asso
iated to the eigenfun
tion un(r; zn), we followthe pattern of Se
tion 5.3. The Gamow ket jz�n i asso
iated to the eigenfun
tion un(r; zn) isde�ned by jz�n i : �+ 7�! C � 7�! h �jz�n i := Z 10 dr  �(r)u(r; zn) : (6.3.20)Under the assumptions made upon the elements  � of�+, the fun
tion jz�n i is a well-de�nedantilinear fun
tional. It is easy to show that the fun
tion jz�n i is a generalized eigenve
torof H with 
omplex eigenvalue zn, H�jz�n i = znjz�n i ; (6.3.21)or more pre
isely, h �jH�jz�n i = znh �jz�n i ; 8 � 2 �+ : (6.3.22)In a similar vein, we 
an de�ne a ket jz�n+i asso
iated to the eigenfun
tion un(r; z�n),jz�n+i : �� 7�! C'+ 7�! h'+jz�n+i := Z 10 dr '+(r)u(r; z�n) ; (6.3.23)and prove that this is a well de�ned antilinear eigenfun
tional of the Hamiltonian H with
omplex eigenvalue z�n, h'+jH�jz�n+i = z�nh'+jz�n+i ; 8'+ 2 �� : (6.3.24)6.3.3 The Gamow Ve
tors in Energy RepresentationOn
e we have 
onstru
ted the Gamow ve
tor jz�n i in the position representation, it isstraightforward to 
ompute its energy representation. We shall obtain the Gamow ve
torin two di�erent energy representations. One of them is the standard energy representationasso
iated to the physi
al spe
trum, whi
h is [0;1) in our example. The other one is asso-
iated to the (�1;1) spe
trum. These two representations are related by the fun
tion � of
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tors 213Appendix 5.5.2. We shall show that in the [0;1)-energy representation the Gamow ve
tora
ts as the antilinear 
omplex delta fun
tional2 multiplied by a normalization fa
tor. In the(�1;1)-energy representation, the Gamow ve
tor 
an be asso
iated to the Breit-Wigneramplitude multiplied by a normalization fa
tor.First, we de�ne the antilinear 
omplex delta fun
tional jbz�n i,jbz�n i : b�+jR+ 7�! Cb � 7�! hb �jbz�n i := e �(zn) ; (6.3.25)where the fun
tion e �(z) is de�ned bye �(z) := b �(z) : (6.3.26)The fun
tion jbz�n i is a well de�ned antilinear fun
tional over the spa
e b�+jR+, sin
e theelements b � of b�+jR+ were taken to be in H2+.It 
an be shown that the [0;1)-energy representation of jz�n i is the antilinear 
omplexdelta fun
tional jbz�n i save for a normalization fa
tor An,U�� jz�n i = Anjbz�n i : (6.3.27)The proof of Eq. (6.3.27) is as follows: from Eqs. (5.2.21) and (6.3.19) we 
on
ludethat the Gamow eigenfun
tion u(r; kn) is proportional to the analyti
 
ontinuation ofthe Lippmann-S
hwinger eigenfun
tion ��(r; k),un(r; kn) = 2iNn��(r; kn) : (6.3.28)Then the Gamow eigenfun
tion is proportional to the analyti
 
ontinuation of theeigenfun
tion ��(r;E), un(r; zn) = An��(r; zn) : (6.3.29)From Eq. (6.3.29) and from the (assumed) properties of the elements  � 2 �+ (seeSe
tion 5.3) it follows thath b �jU�� jz�n i = h �jz�n i= Z 10 dr  �(r)un(r; zn)= An Z 10 dr  �(r)��(r; zn)= An b �(zn)= Anh b �jbz�n i ; 8b � 2 b�+jR+ ; (6.3.30)where in the last step we have used the de�nition (6.3.25). This proves Eq. (6.3.27).2For a great deal of information about the antilinear 
omplex delta fun
tional and its representations,the reader is referred to [87℄.



214 6 Gamow Ve
tors of the Square Barrier Potential Resonan
esIf we write the a
tion of jbz�n i as an integral operator, the kernel of integration is the
omplex delta fun
tion, h b �jbz�n i = Z 10 dE AnÆ(E � zn)b �(E) : (6.3.31)We are now going to study the relation between the 
omplex delta fun
tion and theBreit-Wigner amplitude. We shall show that��j 1E � zn�i = Anjbz�n i ; (6.3.32)where �� is the dual extension of the fun
tion �, and � is the fun
tion that takes any fun
tionof b�+ into its restri
tion to the positive real line (
f. Appendix 5.5.2). The fun
tional j 1E�zn�iof Eq. (6.3.32) is asso
iated to the Breit-Wigner amplitude byj 1E � zn�i : b�+ 7�! C��1 b � 7�! h��1 b �j 1E � zn�i := Z 1�1 dE �� 12�i AnE � zn� ��1 b �(E) ;(6.3.33)where An is the normalization fa
tor of Eq. (6.3.27). We shall 
all the fun
tional de�nedby Eq. (6.3.33) the Breit-Wigner fun
tional. By Tit
hmarsh theorem [80℄, the Breit-Wignerfun
tional is a well de�ned antilinear fun
tional.The key property that will be used to prove (6.3.32) is that the fun
tions b � of b�+jR+ areboundary values of Hardy fun
tions from above. In order to build the ground of that proof,we �rst show the relation between the [0;1)-energy representation and the (�1;1)-energyrepresentation:b � ; b�+jR+ � L2([0;1); dE) � (b�+jR+)� [0;1)�energy repr:" � " ����1 b � ; b�+ � H2+ � b��+ (�1;1)�energy repr:(6.3.34)where H2+ is the spa
e of Hardy fun
tions from above. It is worthwhile noting that althoughwe have denoted the fun
tions ��1 b � and b � by a di�erent symbol, they are indeed the samefun
tion. More pre
isely, they are di�erent \pie
es" of the same fun
tion. In parti
ular, thevalue of their analyti
 
ontinuation at a 
omplex number z is the same,��1 b �(z) = b �(z) : (6.3.35)Obviously, the fun
tions e � and ��1 e � enjoy an analogous property,��1 e �(z) = e �(z) : (6.3.36)The reason why we use a di�erent symbol for di�erent \pie
es" of the same fun
tion is thatthe the proof on the 
onne
tion between the Breit-Wigner amplitude and the 
omplex deltafun
tion be
omes more apparent:
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tors 215Let ��1 b � 2 b��+. Then ��1 e � = ��1 b � 2 H2�. By Tit
hmarsh theorem [80℄,��1 e �(zn) = � 12�i Z 1�1 dE 1E � zn ��1 e �(E) : (6.3.37)Multiplying this equation by An we obtainAn��1 e �(zn) = � 12�i Z 1�1 dE AnE � zR ��1 e �(E) : (6.3.38)From Eqs. (6.3.33) and (6.3.38) it follows thatAn��1 e �(zn) = h��1 b �j 1E � zn�i : (6.3.39)We now de�ne the a
tion of �� on j 1E�zn�i byh b �j��j 1E � zn�i := h��1 b �j 1E � zn�i : (6.3.40)Eqs. (6.3.39) and (6.3.40) lead toh b �j��j 1E � zn�i = An ��1 e �(zn) : (6.3.41)Taking advantage of Eq. (6.3.36) we 
an write (6.3.41) ash b �j��j 1E � zn�i = An e �(zn) ; 8 b � 2 b�+jR+ : (6.3.42)The right hand side of this equation equals the a
tion of the 
omplex delta fun
tionat b � multiplied by An,h b �j��j 1E � zn�i = An h b �jbz�n i ; 8 b � 2 b�+jR+ ; (6.3.43)whi
h proves (6.3.36).Therefore, the Gamow eigenfun
tion un(r; zn), the 
omplex delta fun
tion (multipliedby a normalization fa
tor) AnÆ(E � zn) and the Breit-Wigner amplitude (multiplied by anormalization fa
tor) iAn=2�(E � zn) 
orrespond to the same obje
t in di�erent represen-tations,un(r; zn)  ! AnÆ(E � zn) ; E 2 [0;1)  ! � 12�i AnE�zn ; E 2 (�1;1)posit. repr. [0;1)-energy repr. �(1;1)-energy repr.(6.3.44)



216 6 Gamow Ve
tors of the Square Barrier Potential Resonan
esWe summarize the results of this se
tion in the following diagram:H;  �(r) �+ � L2([0;1); dr) � ��+ hrjz�n i � un(r; zn)# U� # U� # U��bE; b �(E) b�+jR+ � L2([0;1); dE) � (b�+jR+)� h�Ejz�n i � AnÆ(E � zn)" � " ��bE; b �(E) b�+ � H2+ � b��+ h�Ejz�n i � � 12�i AnE�zn(6.3.45)In this diagram, we have denoted both b �(E) 2 b�+jR+ and ��1 b �(E) 2 b�+ by the samesymbol b �(E), sin
e no distin
tion is ne
essary any more. We stress that in the se
ond lineof (6.3.45) the energy is allowed to run over the physi
al spe
trum [0;1), whereas in thebottom line the energy is allowed to run over (�1;1).6.4 Complex Basis Ve
tor ExpansionThe Lippmann-S
hwinger kets are basis ve
tors that were used to expand a normalizablesmooth fun
tion '+ as in (5.3.7). The Gamow ve
tors are also basis ve
tors. The expansiongenerated by the Gamow ve
tors is 
alled the 
omplex basis ve
tor expansion. However, theGamow ve
tors do not form a 
omplete basis system. The 
omplex basis ve
tor expansionneeds an additional set of Dira
 kets 
orresponding to the energies that lie in the negativereal axis of the se
ond sheet of the Riemann surfa
e. This has been realized also by otherauthors [40, 43, 42℄, who have used the Green fun
tion to 
onstru
t the 
omplex basis ve
torexpansion.In this se
tion, we expand a normalizable wave fun
tion in terms of the Gamow ve
torsand a 
ontinuous set of Dira
 kets. The Gamow ve
tors 
ontain the resonan
e 
ontribution,whereas the 
ontribution of the additional set of Dira
 kets is interpreted as a ba
kground.The 
omplex basis ve
tor expansion is not valid for every normalizable wave fun
tion, i.e.,for every element of the Hilbert spa
e, but only for fun
tions '+ 2 ��. The te
hni
alitiesof that expansion 
an be found in [88℄.In a s
attering experiment, we measure the transition probability from a state (in-state)'+ into an observable (out-state)  �. In Se
tion 5.4, we wrote the amplitude of this prob-ability as � �; '+� = Z 10 h �jE�iS(E)hE+j'+idE : (6.4.1)The fun
tion S(E) is the energy representation of the S-matrix. This fun
tion 
an beanalyti
ally 
ontinued into a two-sheeted Riemann surfa
e, and the quantity S(E) in (6.4.1)represents the boundary value of this analyti
 fun
tion on the upper lip of the 
ut in theRiemann surfa
e. We now extra
t the resonan
e 
ontribution out of (6.4.1). This resonan
e
ontribution is 
arried by the Gamow ve
tors. In order to do so, we deform the 
ontour of



6.5 Semigroup Time Evolution of the Gamow Ve
tors 217integration into the lower half-plane of the se
ond sheet of the Riemann surfa
e, where thede
aying resonan
e poles are lo
ated (see Figure 6.3a of Appendix 6.9). Using the resultsthat appear in [88℄, we 
an write (6.4.1) as� �; '+� = Z �10 h �jE�iS(E)hE+j'+idE � 2�i 1Xn=0 rnh �jz�n ih+znj'+i ; (6.4.2)where rn denotes the residue of the S-matrix at zn. The integral in Eq. (6.4.2) is done onthe negative real semiaxis of the se
ond sheet of the Riemann surfa
e. The series in (6.4.2)
an be shown to be 
onvergent [88℄. Omitting  � in (6.4.2), we get the 
omplex basis ve
torexpansion for the states,'+ = Z �10 jE�iS(E)h+Ej'+idE � 2�i 1Xn=0 rnjz�n ih+znj'+i : (6.4.3)In Eq. (6.4.3), the in�nite sum 
ontains the resonan
es 
ontribution, while the integralis interpreted as the ba
kground 
ontribution. Needless to say, the Gamow ve
tors inEq. (6.4.3) are de�ned up to a normalization fa
tor.Similarly, we obtain the 
omplex basis ve
tor expansion for the observable  � [88℄, butnow we deform the 
ontour of integration into the upper half-plane of the se
ond sheet ofthe Riemann surfa
e, where the growing resonan
e poles are lo
ated (see Figure 6.3b) � = Z �10 jE+iS(E)hE�j �idE + 2�i 1Xn=0 r�njz�n+ih�z�nj �i : (6.4.4)In this equation, r�n denotes the residue of S-matrix at z�n. The integration in (6.4.4) isperformed on the negative real semiaxis of the se
ond sheet of the Riemann surfa
e. Theseries in (6.4.4) has been shown to be 
onvergent [88℄.6.5 Semigroup Time Evolution of the Gamow Ve
torsNow, we want to study the time evolution of the Gamow ve
tors. In order to do it, weneed to 
onsider the operator U(t) = e�iHt=~, whi
h governs the time evolution of the ve
torstates in Hilbert spa
e. The operator 
onjugate to U(t) is de�ned byh�jU�(t)jF i = hU y(t)�jF i ; (6.5.1)where � denotes '+ 2 �� or  � 2 �+ and F belongs to ��� or ��+, respe
tively. Eq. (6.5.1)will also be denoted as h�je�iH�t=~jF i = heiHt=~�jF i : (6.5.2)The 
onjugate operator U�(t) determines the time evolution of the elements in���, wheneverit 
an be de�ned.
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tors of the Square Barrier Potential Resonan
esWe have assumed that b�� = S \H2�. Under this assumption, the following statements
an be proved [20, 91℄:i.) For any t � 0, eiHt=~�+ � �+ and eiHt=~ is 
ontinuous on �+. For any t < 0, thereis a  � 2 �+ su
h that eiHt=~ � =2 �+.ii.) For any t � 0, eiHt=~�� � �� and eiHt=~ is 
ontinuous on ��. For any t > 0, thereis a '+ 2 �� su
h that eiHt=~'+ =2 ��.This leads to the following 
onsequen
es:i.) For any t � 0, one 
an de�ne the 
onjugate of U(t) = e�iHt=~, whi
h extends theevolution operator U(t) = e�iHt=~ to a 
ontinuous operator and de�nes the time evolutionon ��+. This 
annot be done for any t < 0. We denote this extension as U�+ (t) = e�iH�t=~+ .ii.) For any t � 0, one 
an de�ne the 
onjugate of U(t) = e�iHt=~, whi
h extends theevolution operator U(t) = e�iHt=~ to a 
ontinuous operator and de�nes the time evolutionon ���. This 
annot be done for any t > 0. We denote this extension as U�� (t) = e�iH�t=~� .It seems natural to 
onsider these extensions as the operators that determine the timeevolution of the obje
ts in the dual spa
es. We observe that this time evolution is notde�ned for all values of t. This has important 
onsequen
es for the time evolution of theGamow ve
tors.Consider the de
aying Gamow ve
tor jz�n i. From the above 
omments, it is not diÆ
ultto see [20℄ that the evolution operator U�+ (t) a
ts on jz�n i if and only if t � 0,U�+ (t)jz�n i = e�iEnt=~ e��nt=(2~)jz�n i ; only for t � 0 ; (6.5.3)or more pre
isely,h �jU�+ (t)jz�n i = e�iEnt=~ e��nt=(2~)h �jz�n i ; 8 � 2 �+ ; t � 0 only : (6.5.4)We see that the Gamow ve
tor de
ays exponentially. Thus it ful�lls the properties that aredemanded from the de
aying resonan
e states. Mu
h more signi�
ant is the property thatthe time evolution of the de
aying Gamow ve
tors o

urs for t > 0 only|the time evolutionof Gamow ve
tors is time asymmetri
.Consider now the Gamow ve
tor jz�+n i. The evolution operator U�� (t) a
ts on jz�+n i ifand only if t � 0, U�� (t)jz�+n i = e�iEnt=~ e�nt=(2~)jz�+n i ; only for t � 0 ; (6.5.5)or more pre
isely,h'+jU�� (t)jz�+n i = e�iEnt=~ e�nt=(2~)h'+jz�+n i ; 8'+ 2 �� ; t � 0 only : (6.5.6)Therefore, the symmetri
 group evolution of the Hilbert spa
e splits up into two semi-groups, expressing time asymmetry on a mi
ros
opi
 level.33For more on the des
ription of time asymmetry in Quantum Me
hani
s in terms of the propagators,the reader is referred to [32℄.



6.6 Time Asymmetry of the Purely Outgoing Boundary Condition 2196.6 Time Asymmetry of the Purely Outgoing Bound-ary ConditionThe semigroup time evolution of the Gamow ve
tors expresses the time asymmetry builtinto them. We will show here that the purely outgoing boundary 
ondition that singlesout the resonan
e energies has also a time asymmetry built into it. To be more pre
ise,we will show that the purely outgoing boundary 
ondition should read as purely outgoingonly for the de
aying part of a resonan
e and as purely in
oming for the growing part ofthe resonan
e. Be
ause the purely in
oming 
ondition is the time reversed of the purelyoutgoing one, the growing Gamow ve
tor 
an be viewed as the time reversed of the de
ayingGamow ve
tor [60℄ (see also next 
hapter).6.6.1 Outgoing Boundary Condition in PhaseFirst, we study the meaning of the purely outgoing boundary 
ondition when it is imposedon the de
aying part of the resonan
e. The 
omplex energy asso
iated to the de
ayingpart of a resonan
e is zn = En � i�n=2 (En;�n > 0) whi
h lies in the fourth quarter ofthe se
ond sheet of the Riemann surfa
e (see Figure 6.2a). Its 
orresponding momentumkn = Re(kn)� iIm(kn) (Re(kn), Im(kn) > 0) lies in the fourth quadrant of the momentumplane (see Figure 6.1). The de
aying Gamow ve
tor un(r; zn) of Eq. (6.3.15) was obtainedafter imposing the purely outgoing boundary 
ondition (6.3.6d) upon (6.3.10). If we had notimposed this 
ondition, we would had obtained a solution of the form (6.3.10), and every
omplex number would had been a generalized eigenvalue of the Hamiltonian. In the regionr > b, this solution would had been the sum of two linearly independent solutionsude
ayingin
oming(r; zn; t) = J4e�iknre�iznt=~= �J4e�Im(kn)r��nt=(2~)� e�iRe(kn)r�iEnt=~ ; r > b ; (6.6.1)whi
h we 
all in
oming de
aying Gamow ve
tor, andude
ayingoutgoing(r; zn; t) = J3eiknre�iznt=~= �J3eIm(kn)r��nt=(2~)� eiRe(kn)r�iEnt=~ ; r > b ; (6.6.2)whi
h we 
all outgoing de
aying Gamow ve
tor. These names 
ome from the standardinterpretation (see, for instan
e, [92℄) of plane waves with a 
omplex exponent: the expo-nential with purely imaginary exponent|the term that 
arries the phase|is interpreted asthe term that governs the propagation of the wave, and the exponential with real exponentis interpreted as the term that just 
hanges the amplitude of the wave on the surfa
es ofequal phase [92℄. We are going to interpret (6.6.1) and (6.6.2) in the same fashion. Theterms between bra
kets in (6.6.1) and (6.6.2) determine the amplitude of the waves. Thepropagation of ude
ayingoutgoing is governed by eiRe(kn)re�iEnt=~, and therefore ude
ayingoutgoing is an outgoingwave (in phase). Analogously, the propagation of ude
ayingin
oming is governed by e�iRe(kn)re�iEnt=~,and thus ude
ayingin
oming is an in
oming wave (in phase). Imposing the purely outgoing boundary
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es
ondition J4 = 0 is tantamount to forbidding ude
ayingin
oming. Thus for the de
aying part of theresonan
e the purely outgoing boundary 
ondition allows only purely outgoing waves (inphase).The meaning of the purely outgoing boundary 
ondition applied to the growing partof the resonan
e is the opposite. The growing energy eigenvalue z�n = En + i�n=2 lies inthe �rst quadrant of the se
ond sheet of the Riemann surfa
e (see Figure 6.2b), and itsmomentum �k�n = �Re(kn) � iIm(kn) lies in the third quadrant of the momentum plane(see Figure 6.1). The growing Gamow ve
tor un(r; z�n) of Eq. (6.3.16) was obtained afterimposing the 
ondition J4 = 0 on (6.3.10). If we had not imposed this 
ondition, in theregion r > b the solution would had been the sum of two linearly independent solutionsugrowingin
oming(r; z�n; t) = J3e�ik�nre�iz�nt=~= �J3eIm(kn)r+�nt=(2~)� e�iRe(kn)r�iEnt=~ ; r > b ; (6.6.3)that we 
all in
oming growing Gamow ve
tor, andugrowingoutgoing(r; z�n; t) = J4eik�nre�iz�nt=~= �J4e�Im(kn)r+�nt=(2~)� eiRe(kn)r�iEnt=~ ; r > b ; (6.6.4)that we 
all outgoing growing Gamow ve
tor. The names 
ome also after the standardinterpretation [92℄ of plane waves with a 
omplex exponent. Therefore, the purely outgoingboundary 
ondition J4 = 0, when applied to the growing part of a resonan
e, bans ugrowingoutgoingand allows only purely in
oming waves (in phase).6.6.2 Outgoing Boundary Condition in Probability DensityIn the previous se
tion, we showed how the time asymmetry built into the purely outgoingboundary 
ondition a�e
ted the phase of the Gamow ve
tors. In this se
tion, we show thesame time asymmetry but now 
onsidering the probability density of the Gamow ve
tors.For the de
aying part of the resonan
e, the probability densities (before imposing thepurely outgoing boundary 
ondition) are obtained by taking the absolute value square of(6.6.1) �de
ayingin
oming(r; zn; t) = jude
ayingin
oming(r; zn; t)j2 = jJ4j2e�2Im(kn)r��nt=~= jJ4j2e��n=~(t+r=vn) ; r > b ; (6.6.5)that we 
all in
oming de
aying probability density, and of (6.6.2)�de
ayingoutgoing(r; zn; t) = jude
ayingoutgoing(r; zn; t)j2 = jJ3j2e2Im(kn)r��nt=~= jJ3j2e��n=~(t�r=vn) ; r > b ; (6.6.6)that we 
all outgoing de
aying probability density (vn = �n=(2~Im(kn))). By imposing thepurely outgoing boundary 
ondition J4 = 0, we only allow (6.6.6) and forbid (6.6.5), whi
h



6.7 Exponential De
ay Law of the Gamow Ve
tors 221we interpret by saying that we have a purely outgoing probability density 
ondition for thede
aying part of the resonan
e.For the growing part of the resonan
e, the probability densities (before imposing J4 = 0)are the absolute value square of (6.6.3)�growingin
oming(r; z�n; t) = jugrowingin
oming(r; z�n; t)j2 = jJ3j2e2Im(kn)r+�nt=~= jJ3j2e�n=~(t+r=vn) ; r > b ; (6.6.7)that we 
all the in
oming growing probability density, and of (6.6.4)�growingoutgoing(r; z�n; t) = jugrowingoutgoing(r; z�n; t)j2 = jJ4j2e�2Im(kn)r+�nt=~= jJ4j2e�n=~(t�r=vn) ; r > b ; (6.6.8)that we 
all the outgoing growing probability density. For this growing part, the 
onditionJ4 = 0 leads to the 
on
lusion that in the growing stage of a resonan
e only waves withpurely in
oming probability density are allowed.In short, the purely outgoing boundary 
ondition (6.3.6d) must be read as purely outgoing(in phase or in probability density) only for the de
aying part of the resonan
e and as purelyin
oming (in phase or in probability density) for the growing part of the resonan
e.6.7 Exponential De
ay Law of the Gamow Ve
torsIf we are dealing with a s
attering system with resonan
es, the 
omplex basis ve
tor expan-sion allows us to isolate the 
ontribution of ea
h resonan
e. To illustrate this, we are goingto see how the exponential de
ay law holds if only the 
ontribution of a resonan
e is takeninto a

ount.We want to determine the probability P�r0(t) of dete
ting the de
aying state withina shell of width �r0 outside the potential region (r > b). This is the probability thatis measured by the 
ounting rate of a dete
tor pla
ed, for example, outside a radioa
tivenu
leus from whi
h an � parti
le is emitted. We assume that the dete
tor surrounds thenu
leus 
ompletely and that is at a distan
e r0 > b from the 
enter r = 0.Theoreti
ally, the probability P�r0(t) to observe an in-state '+ at time t within theinterval �r0 around the surfa
e r = r0 is given byP�r0(t) =Z d
Z�r0r2drjhr; �; �j'+(t)ij2 : (6.7.1)Experimentally, the probability of �nding the de
aying state parti
le around r0, that is,the 
ounting rate of the dete
tor, is not de�ned for all times t: a resonan
e must be �rstprepared before the system 
an de
ay. The time at whi
h the preparation of the resonan
eis �nished and at whi
h the de
ay starts 
an be 
hosen arbitrarily (we 
hoose it to be 0). Forexample, the � parti
le emitted by an �-unstable nu
leus travels at speed v = �R=(2~Im(k))and rea
hes the point r0 at the time t(r0) = r0=v. For times less than t(r0), the � parti
le
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esis not there yet, and therefore the 
ounting rate measured by a dete
tor pla
ed at r0 is zerofor times t < r0=v. Whatever would have been 
ounted by the dete
tor before the instantt(r0) at r0 
annot be 
onne
ted with the de
aying state. Thus the theoreti
al probabilityto dete
t a resonan
e at r0 should be zero for t < r0=v. This is an instan
e of the timeasymmetry built into a de
aying pro
ess.Experimentally as well, the de
ay of unstable systems usually follows the exponentiallaw (
f. Refs. [44, 45, 46, 47℄).The Hilbert spa
e 
annot a

ommodate either the time asymmetry of P�r0(t) [89℄ orthe exponential de
ay law [90℄. To a

ount for these two features, we should use the RiggedHilbert Spa
e. In the RHS formulation, the Gamow ve
tors have an asymmetri
 timeevolution given by a semigroup e�iH�t=~ (
f. Se
tion 6.5 above), whi
h a

ounts for the timeasymmetry of a resonant pro
ess. The behavior of the semigroup evolution is in 
ontrast tothe time-symmetri
 Hilbert spa
e time evolution, whi
h is given by a group.We are going to show that the exponential de
ay law holds if we 
onsider only theresonan
e (Gamow ve
tor) 
ontribution to the probability (6.7.1). In Se
tion 6.4, we usedthe Gamow ve
tors as basis ve
tors to expand the normalized in-state '+ in terms of theba
kground and the resonan
e 
ontribution (see Eq. (6.4.3)). In order to 
ompute the n-thresonan
e 
ontribution to the probability (6.7.1), we approximate '+ by the Gamow ve
torby negle
ting the ba
kground term and the 
ontribution of the rest of the resonan
es in(6.4.3), '+(r; �; �) '  Dn (r; �; �) = un(r; zn)r Y0;0(�; �) : (6.7.2)Thus the n-th resonan
e 
ontribution to the probability isP�r0(t) ' Z d
 Z�r0 r2drjhr; �; �j Dn (t)ij2 : (6.7.3)The time evolution of the n-th Gamow ve
tor is given by Dn (t) = e�iH�t=~ Dn = e�i(Ent�i�n=2)t=~ Dn ; (6.7.4)and therefore hr; �; �j Dn (t)i = e�i(En�i�n=2)t=~ un(r; zn)r Y0;0(�; �) : (6.7.5)Inserting (6.7.5) into (6.7.3) yieldsP�r0(t) ' je��n=(2~)tj2 Z�r0 drjun(r; zn)j2= e��nt=~ Z�r0 drj2iNnj2jei(Re(kn)�iIm(kn))rj2= e��nt=~j2Nnj2 Z r0+�r0r0 dre2Im(kn)r= e��nt=~j2Nnj2e2Im(kn)r0 e2Im(kn)�r0 � 12Im(kn)



6.8 Con
lusion to Chapter 6 223' e��nt=~j2Nnj2e2Im(kn)r0 �r0 ;= j2Nnj2�r0 e��n=~ (t�r0=vn) ; t > r0=vn ; (6.7.6)where we have used the approximation �r0 small in the next to the last step. Therefore,P�r0(t) ' j2Nnj2�r0e��n=~ (t�r0=vn) ; t > r0=vn : (6.7.7)Equation (6.7.7) represents the n-th resonan
e 
ontribution to the 
ounting rate measuredby a dete
tor pla
ed at r0. This 
ounting rate rea
hes its maximum at t = r0=vn, andde
reases exponentially as time goes on. Therefore, the n-th Gamow ve
tor (resonan
e)
ontribution to the probability P�r0(t) follows the exponential de
ay law.6.8 Con
lusion to Chapter 6In this 
hapter, we have 
onstru
ted the Gamow ve
tors of the square barrier potentialresonan
es, and studied their properties. We have de�ned a de
aying Gamow ve
tor jz�n ias the solution of the integral equation (6.3.1), whereas a growing Gamow ve
tor jz�+n i hasbeen de�ned as the solution of (6.3.3). We have seen that in the radial representation theGamow eigenfun
tion hrjz�n i satis�es the S
hr�odinger equation subje
t to a purely outgoingboundary 
ondition, whereas the growing Gamow eigenfun
tion hrjz�+n i satis�es a purelyin
oming boundary 
ondition. We have also seen that the purely outgoing boundary 
on-dition produ
es the same resonan
e spe
trum as the S-matrix spe
trum of Figure 6.2. The[0;1)-energy representation of the eigenfun
tion hrjz�n i has been shown to be the 
omplexdelta fun
tion multiplied by a normalization fa
tor AnÆ(E� zn). The (�1;1)-energy rep-resentation of the eigenfun
tion hrjz�n i has been shown to be the Breit-Wigner amplitudemultiplied by a normalization fa
tor �1=(2�i)An=(E � zn).The time evolution of the Gamow kets has been shown to be governed by a semigroup,expressing the time asymmetry built into a resonan
e.The Gamow ve
tors have been used as basis ve
tors in the 
omplex basis ve
tor ex-pansions (6.4.3) and (6.4.4). However, they do not form a 
omplete basis, and thereforea 
ontinuous set of Dira
 kets was added to 
omplete them. The expansions (6.4.3) and(6.4.4) extra
t the resonan
e 
ontribution out of the in- and out-states, respe
tively.We have un
overed the time asymmetry that arises from the purely outgoing boundary
ondition. We have seen that the purely outgoing boundary 
ondition should read as purelyoutgoing only for the de
aying part of the resonan
e, and as purely in
oming for the growingpart of the resonan
e.The exponential law has been shown to hold if the ba
kground term of the 
omplexbasis ve
tor expansion is negle
ted|only the resonan
e (Gamow ve
tor) 
ontribution tothe probability is taken into 
onsideration.



224 6 Gamow Ve
tors of the Square Barrier Potential Resonan
es6.9 Appendix 9: FiguresIn this Appendix, we show the graphi
s of the square barrier potential resonan
e poles, bothin the momentum and energy 
omplex planes. We also show the 
ontours that where usedto obtain the 
omplex basis ve
tor expansion.

  

Im k

Re k

Figure 6.1: The resonan
e momenta of the square barrier potential.
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Figure 6.2: The resonan
e energies of the square barrier potential.
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Figure 6.3: Deformation of the path of integration into the se
ond sheet of the energyRiemann surfa
e; (a) for the de
aying states and (b) for the growing states.



Chapter 7The Time Reversal Operator in theRigged Hilbert Spa
eIn this 
hapter, we study the behavior of resonan
es under the time reversal operation. Weshall study the standard time reversal operator and also a non-standard one, whi
h yieldsa doubling of the RHS.
VLADIMIR: We've nothing more to do here.ESTRAGON: Nor anywhere else.VLADIMIR: Ah Gogo, don't go like that.To-morrow everything will be better.ESTRAGON: How do you make that out?VLADIMIR: Did you not hear what the 
hild said?ESTRAGON: No.VLADIMIR: He said that Godot was sure to 
ometo-morrow. (Pause). What do you say to that?ESTAGRON: Then all we have to do is to wait here.Samuel Be
kett, Waiting for Godot
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7.1 Introdu
tion 2297.1 Introdu
tionIn the previous 
hapter, we have seen that the time evolution of the Gamow ve
tors is givenby a semigroup and therefore is time asymmetri
. We now want to dis
uss how this timeasymmetry behaves under the a
tion of the time reversal operator in the nonrelativisti
domain [59℄. We shall forget about our beloved square barrier potential and work with a\general" potential.We have seen in the previous two 
hapters that a s
attering pro
ess should be des
ribedby two RHSs. One RHS 
orresponds to the states '+,�� � Ha
 � ��� ; (7.1.1)whereas the other RHS 
orresponds to the observables  �,�+ � Ha
 � ��+ : (7.1.2)In both RHSs, the spa
e Ha
 represents the Hilbert spa
e of s
attering states of the totalHamiltonian H (\a
" stands for absolutely 
ontinuous). On Ha
, H has absolutely 
ontin-uous spe
trum only. We shall assume that this spe
trum 
oin
ides with the positive realline.Suppose the S-matrix has a pair of simple poles at zR = ER � i�R=2 and at z�R =ER + i�R=2, and denote their 
orresponding Gamow ve
tors as jz�Ri and jz�R+i. TheseGamow ve
tors have the following properties:i.) The Gamow ve
tors are fun
tionals,jz�Ri 2 ��+ ; (7.1.3a)jz�R+i 2 ��� : (7.1.3b)ii.) They are generalized eigenve
tors of the total Hamiltonian H,H�jz�Ri = zRjz�Ri ; (7.1.4a)H�jz�R+i = z�Rjz�R+i : (7.1.4b)iii.) The time evolution operator e�iHt 
an be 
ontinuously extended to ��+ for positivevalues of time and to ��� for negative values of time. The 
ontinuity of the extensions refersto the weak topology [93℄. In addition we have:e�iH�tjz�Ri = e�izRtjz�Ri = e�iERte��Rt=2jz�Ri ; for t > 0 ; (7.1.5a)e�iH�tjz�R+i = e�iz�Rtjz�R+i = e�iERte�Rt=2jz�R+i ; for t < 0 : (7.1.5b)The a
tion of e�iH�t on jz�Ri for t < 0 and on jz�R+i for t > 0 is, however, not de�ned. Thusthe Hilbert spa
e group evolution splits into two semigroups. This splitting is a 
onsequen
eof the 
hoi
e of �� and the properties of Hardy fun
tions. The 
hoi
e of Hardy fun
tions isrelated to a 
ausality 
ondition, and therefore the splitting is also related to 
ausality. The
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esplitting of the group of evolution into two semigroups shows the irreversible 
hara
ter of aresonan
e [52, 54, 55℄.In his study of the representations of the Poin
ar�e group extended by time reversal andparity, Wigner found four di�erent possibilities (
f. Table I of Appendix 7.4 and Refs. [61,62℄). The �rst possibility is the standard one, but the other three imply a doubling of thespa
e that supports the representation. J. F. Cari~nena and M. Santander 
onstru
ted theproje
tive representations of the Galilei group extended by time inversion and parity [63℄.They also found four possibilities for the 
ase with mass. As for the Poi
ar�e group, thestandard 
ase does not yield a doubling of the spa
e that supports the representation,while the other three do yield a doubling. Bohm [64℄ has studied the latter time reversal(�T = �I = �1) in the relativisti
 
ase, whi
h yields a doubling. One of our goals is to
onstru
t an analog to this doubling in the non-relativisti
 
ase for s-waves (j = 0).In the next se
tion, we dis
uss the e�e
t of the time reversal operator on Gamow ve
-tors in the standard 
ase. This standard 
ase is labeled by �T = �I = 1 (see Table I ofAppendix 7.4). In Se
tion 7.3, we study the the 
ase �T = �I = �1 (see Table I of Ap-pendix 7.4) and present the idea of time reversal doubling. In Appendix 7.4, we review somegeneral aspe
ts of the time reversal operation.7.2 The Standard Time Reversal Operator (�T = �I =1)In this se
tion, we present the e�e
t of the standard time reversal operation on s
atteringsystems having (simple pole) resonan
es. The notation we are using here does not di�eressentially from that in Ref. [59℄, although there is a 
ouple of di�eren
es:i.) The restri
tion to the positive real semiaxis of interse
tions of Hardy spa
es with theS
hwartz spa
e are denoted here by H2� \ S��R+ : (7.2.1)The plus sign stands for Hardy fun
tions on the upper half plane and the minus sign forHardy fun
tions on the lower half plane. S is the S
hwartz spa
e on the real line.ii.) The extension of the evolution operator e�iHt to the spa
e ��+ is denoted as U�+ (t)for t > 0, and the extension of e�iHt to ��� is denoted as U�� (t) for t < 0. These are the twosemigroups dis
ussed in the introdu
tion.For simpli
ity, we shall work with a spheri
ally symmetri
 potential and 
onsider parti
leswithout spin or any other possible degrees of freedom. We restri
t ourselves to zero valuesof the angular momentum, and denote the 
orresponding Hilbert spa
e by H0. If the systemdoes not have bound states, the spa
e H0 
oin
ide with Ha
.Let us re
all that the unitary operators U� diagonalize the total Hamiltonian H (or itsrestri
tion to its absolutely 
ontinuous spa
e Ha
, if H has bound states), in the sense thatthese operators give a unitary equivalen
e between H and the multipli
ation operator onL2(R+ ; dE). They are a produ
t of the inverses of the M�ller operators times the operatorU0 that diagonalizes the free Hamiltonian, U� = U0
y�.



7.2 The Standard Time Reversal Operator (�T = �I = 1) 231For s waves (j = 0), the standard 
hoi
e of the time reversal operation is �T = �I = 1 (seeTable I of Appendix 7.4). Therefore, in the energy representation the time reversal operatorAT a
ts as the 
omplex 
onjugation C. Sin
e the mapping C transforms any fun
tion of Einto its 
omplex 
onjugate, we haveC : H2� \ S��R+ 7�! H2� \ S��R+ : (7.2.2)Moreover, one 
an show that this map is 
ontinuous.Our next goal is to de�ne time reversal operators AT� on ��. These operators shouldbe equivalent to C and the equivalen
e should be given by U�. Their de�nition is:AT� := U y�C U� : (7.2.3)This de�nition makes the following diagram:H2� \ S��R+ C��! H2� \ S��R+U y� # # U y��� ��!AT� �� (7.2.4)These operators have the following properties:1. AT� are 
ontinuous antilinear mappings from �� onto ��.2. They 
an be extended to (
ontinuous) antiunitary mappings from Ha
 onto itself.3. Their adjoints are given byAyT� = hU y�C U�iy = U y�C U� = AT� ; (7.2.5)that is, they are adjoint to ea
h other.4. They are inverse to ea
h other,AT+AT� = U y+CU�U y�CU+ = I ; on �� ; (7.2.6)AT�AT+ = U y�CU+U y+CU� = I ; on �+ : (7.2.7)Consider now a densely de�ned 
ontinuous antilinear operator A onH with the followingproperty: there are two RHSs � � H � �� and 	 � H � 	� su
h that Ay maps
ontinuously � into 	. Then, A 
an be extended by 
ontinuity to �� using the followingformula: h jA�F i := hAy jF i = hF jAy i ; 8F 2 �� ; 8 2 	 : (7.2.8)Thus A� is a weak 
ontinuous antilinear mapping from �� into 	�. The proof of this goesexa
tly as the proof for the linear 
ase [93℄.
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eIt is straightforward to apply this de�nition to the time reversal operator, after makingthe identi�
ation � = ��, 	 = ��, A = AT�, and Ay = AT�. Thus, we have the following
ontinuous antilinear extensions: A�T� : ��� 7�! ��� : (7.2.9)These extensions are one-to-one, onto mappings with 
ontinuous inverses, and they indeedextend AT� as originally de�ned in (7.2.3).We now obtain the images of Lippmann-S
hwinger kets and of the Gamow ve
tors byA�T�. To this end, let us 
onsider two arbitrary ve
tors '� 2 ��.1 Their wave fun
tions inthe energy representation are given byb'�(E) = h�Ej'�i = (U�'�)(E) 2 H2� \ S��R+ : (7.2.10)Using the de�nition of AT� we obtainh'�jA�T�jE�i = h�EjAyT�'�i = C b'�(E) = b'�(E) = h'�jE�i ; (7.2.11)that is, A�T�jE�i = jE�i : (7.2.12)Take now the Gamow ve
tors jz�Ri and jz�R+i. Thenh'+jA�T+jz�Ri = h�zRjAyT+'+i = C b'+(zR) = b'+(zR) = h'+jz�+R i ; (7.2.13)that is, A�T+jz�Ri = jz�R+i : (7.2.14)Analogously A�T�jz�R+i = jz�Ri : (7.2.15)Next, we study the a
tion of the standard time reversal operator on the time evolutionsemigroups. We know that eiHt�+ � �+ if t > 0. Then,AT+eiHtAT�'+ = U y+CU�eiHtU y�CU+'+= U y+CeitECU+'+= U y+e�itEU+'+= ei(�t)H'+ ; '+ 2 �� ; t > 0 : (7.2.16)Analogously, if t < 0, we have that eiHt�� � ��. ThenAT�eiHtAT+'� = ei(�t)H'� ; '� 2 �+ ; t < 0 : (7.2.17)Therefore, AT+U y+(t)AT� = U y�(�t) ; t > 0 ; (7.2.18a)AT�U y�(t)AT+ = U y+(�t) ; t < 0 : (7.2.18b)1In this 
hapter, we shall denote the observables  � by '� in order not to repeat the formulas twi
e.



7.2 The Standard Time Reversal Operator (�T = �I = 1) 233We see that the operators AT� transform one semigroup into the other. The extension ofthese formulas to the dual spa
es yieldsA�T+U�+ (t)A�T� = U�� (�t) ; t > 0 ; (7.2.19a)A�T�U�� (t)A�T+ = U�+ (�t) ; t < 0 : (7.2.19b)One 
ould expe
t that the operators AT� are the same operator restri
ted to di�erentsubdomains. That is true. As a matter of fa
t, their extensions to Ha
 
oin
ide:The proof of this statement is rather simple. WriteA2T+ = U y+CU�U y+CU� : (7.2.20)Sin
e U� = U0
y�, one hasA2T+ = 
+U y0CU0
y�
+U y0CU0
y� : (7.2.21)The S operator is given by S = 
y�
+ ; (7.2.22)and its adjoint is given by Sy = 
y+
� : (7.2.23)Sin
e U0SU�10 = U0SU y0 = S(E) (= S(E + i0) ; E > 0) ; (7.2.24)we have that U0SyU y0 = (U0SU y0)y = S(E) : (7.2.25)Plugging Eqs. (7.2.22)-(7.2.25) into (7.2.21) we obtainA2T+ = 
+U y0CU0SU y0CU0
y�= 
+U y0CS(E)CU0
y�= 
+U y0S(E)U0
y�= 
+Sy
y�= 
+
y+
�
y�= I ; (7.2.26)where I is the identity on Ha
. The same is true for AT�. Therefore AT+ is aninvertible bounded operator su
h that AT+ = A�1T+ on Ha
. Sin
e A�1T+ and AT�
oin
ide on the dense subspa
e ��, they are equal on H0, and we have that AT� =A�1T+ = AT+.
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e7.3 The Time Reversal Doubling (�T = �I = �1)In this se
tion, we present the 
onstru
tion of the time reversal doubling. A

ording toWigner [61, 62℄, there are three other possible representations of the Poin
ar�e group extendedby time reversal and parity besides the (standard) one of the previous se
tion. All fourpossibilities are listed in Table I of Appendix 7.4.Let us 
onsider the following pair of RHSs:H2� \ S��R+ 
 C 2 � L2(R+)
 C 2 � �H2� \ S��R+�� 
 C 2 ; (7.3.1)where C 2 denotes the two-dimensional linear spa
e of 
olumn ve
tors whose entries are
omplex numbers. The elements of ea
h spa
e of the triplet (7.3.1) 
an be expressed astwo-dimensional ve
tors whose entries belong to the spa
e in the left hand side of the tensorprodu
t. In the 
ase �T = �I = �1, the time reversal operator in the energy representationis de�ned by (
f. Table I of Appendix 7.4)C := � 0 C�C 0 � ; (7.3.2)where C denotes the 
omplex 
onjugation. This operator is antilinear and 
ontinuous fromH2� \ S��R+ 
 C 2 onto H2� \ S��R+ 
 C 2 . By duality, it 
an be extended to a 
ontinuousantilinear mapping C� from �H2� \ S��R+�� 
 C 2 onto �H2� \ S��R+�� 
 C 2 .Ea
h spa
e H2� \ S��R+ 
 C 2 has two distinguished subspa
es,�+� = H2� \ S��R+ 
 � �0 � ; (7.3.3a)��� = H2� \ S��R+ 
 � 0� � ; (7.3.3b)where � and � are arbitrary 
omplex numbers. We have, therefore, two new RHSs that 
anbe written in the following form:��� � L2�(R+) � (���)� ; (7.3.4)where L2+(R+) = L2(R+)
 � �0 � ; (7.3.5a)L2�(R+) = L2(R+)
 � 0� � : (7.3.5b)The dual of the spa
es (7.3.3) 
an be written as(�+�)� = �H2� \ S��R+�� 
 � �0 � ; (7.3.6a)(���)� = �H2� \ S��R+�� 
 � 0� � : (7.3.6b)



7.3 The Time Reversal Doubling (�T = �I = �1) 235It is not diÆ
ult to show that C is a 
ontinuous antilinear bije
tion from ��� onto ���,C��� = ��� : (7.3.7)Thus C 
an be 
ontinuously extended to the dual spa
es,C�(���)� = (���)� : (7.3.8)As an operator on Ha
 
 C 2 , the square of C is proportional to the identity,C2 = �I= �TI ; (7.3.9)where I represents the identity on Ha
 
 C 2 .In order to 
larify the notation, we repla
e the supers
ript signs by r, with r = +;�.That is, we shall write �r�, and so on. This notation makes it 
lear that the signs above areindependent of the signs below.Let us de�ne the operators U� := U� 
 I ; (7.3.10)where I is the identity on C 2 . We 
an write these operators asU� = � U� 00 U� � ; (7.3.11)and their adjoints as Uy� = U�1� = � U y� 00 U y� � : (7.3.12)It is 
lear that U� maps Ha
 
 C 2 onto L2(R+)
 C 2 . Using those operators, we 
an de�nethe following spa
es: �r� := Uy��r� : (7.3.13)Clearly, the spa
es �r� are subspa
es of Ha
 
 C 2 . It is obvious that�r=+� = �� 
 � �0 � ; (7.3.14a)�r=�� = �� 
 � 0� � : (7.3.14b)The operators U� and their respe
tive inverses Uy� 
an be 
ontinuously extended to the dualspa
es.We are now in a position to introdu
e the time reversal operators for our �T = �I = �1
hoi
e. They 
an be de�ned as AT� := �Uy�CU� : (7.3.15)These two operators have similar properties to those satis�ed by AT�. We list here theseproperties without proofs, sin
e these proofs do not di�er mu
h from those for AT�:
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e1. AT� are 
ontinuous antilinear mappings from �r� onto ��r� , respe
tively. They 
anbe 
ontinuously extended to antilinear mappings between the respe
tive duals.2. They are adjoint to ea
h other, AyT� = AT� : (7.3.16)3. As operators on Ha
 
 C 2 , they are antiunitary. In addition, they are inverse to ea
hother, AT+AT� = I ; (7.3.17a)AT�AT+ = I : (7.3.17b)4. On the Hilbert spa
e Ha
 
 C 2 , we have thatA2T� = �I =) AT�AT+AT+ = �AT� =) AT+ = �AT� : (7.3.18)Formulas (7.3.16)-(7.3.18) are a 
onsequen
e of the de�nition 
hosen in (7.3.15) for AT�(with minus sign), whi
h has its origin in the fa
t that Cy = �C. If we rede�ned AT�without the minus sign in (7.3.15), we would haveAyT� = �AT� ; (7.3.19a)AT+AT� = �I ; (7.3.19b)AT�AT+ = �I ; (7.3.19
)AT+ = AT� : (7.3.19d)We 
an 
hoose either (7.3.16)-(7.3.18) or (7.3.19). The 
hoi
e (7.3.19) has the advantage ofhaving a unique time reversal operator, and the distin
tion between AT+ and AT� indi
atesthe restri
tion of a unique time reversal operator to di�erent subspa
es �r�. As we shall seelater, this 
hoi
e has the disadvantage of leading to the appearan
e of a minus sign in theformulas of the a
tion of the time reversal operator on the semigroups.The importan
e of the above 
onstru
tion lies on the possibility of extending the timereversal operator to the dual spa
es, whi
h 
ontain the Lippmann-S
hwinger kets and theGamow ve
tors.We de�ne the Lippmann-S
hwinger kets in the �T = �I = �1 
ase asjE�; r = +i = � jE�i0 � 2 (�r=+� )� ; (7.3.20a)jE�; r = �i = � 0jE�i � 2 (�r=�� )� : (7.3.20b)The kets in Eqs. (7.3.20) are generalized eigenve
tors of the operator H 
 I (H is the exa
tHamiltonian, and I is the identity on C 2) with generalized eigenvalue E > 0. We now



7.3 The Time Reversal Doubling (�T = �I = �1) 237determine the a
tion of AT� on those eigenkets. We start with the following de�nition,whi
h has its origin in (7.2.8):h��jA�T�jE�; ri = h�E; rjAyT���i ; �� 2 �r� : (7.3.21)From (7.3.15) we obtain AT� = �� 0 AT��AT� 0 � : (7.3.22)Let us write �� = � '� � � ; (7.3.23)where '�;  � 2 ��. We shall study separately the 
ases r = �. Take �rst r = +. Thenh�E; r = +jAyT���i = �(h�Ej; 0) � AyT� ��AyT�'� �= �h�EjAyT� �i= �h �jA�T�jE�i= �h �jE�i= �('�;  �) � 0jE�i �= �h��jE�; r = �i : (7.3.24)This and Eq. (7.3.21) yield A�T�jE�; r = +i = �jE�; r = �i : (7.3.25)The � signs appear as the 
oeÆ
ient of jE�; r = �i in Eq. (7.3.25) only if we make the
hoi
e AT� = �Uy�CU+. The 
hoi
e AT� = Uy�CU+ repla
es the � signs in (7.3.25) by plus.Now take r = �. An analogous 
al
ulation to (7.3.24) yieldsA�T�jE�; r = �i = �jE�; r = +i ; (7.3.26)where the � signs have the same origin as in the 
ase r = +. The 
hoi
e AT� = Uy�CU+repla
es them by minus.The next step is to de�ne the Gamow ve
tors and to obtain their images under timereversal. The Gamow ve
tors jz�Ri and jz�+R i 
an be used to de�ne the following Gamowve
tors for our �T = �I = �1 
ase:jz�R ; r = +i := � jz�Ri0 � ; (7.3.27a)jz�R ; r = �i := � 0jz�Ri � ; (7.3.27b)jz�+R ; r = +i := � jz�+R i0 � ; (7.3.27
)jz�+R ; r = �i := � 0jz�+R i � : (7.3.27d)
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eThe Gamow ve
tors (7.3.27a) and (7.3.27b) are generalized eigenve
tors of the operatorH 
 I with generalized eigenvalue zR, while the Gamow ve
tors (7.3.27
) and (7.3.27d) aregeneralized eigenve
tors of H 
 I with generalized eigenvalue z�R . One 
an also show thatA�T+jz�R ; r = +i = �jz�+R ; r = �i ; (7.3.28a)A�T+jz�R ; r = �i = jz�+R ; r = +i ; (7.3.28b)A�T�jz�+R ; r = +i = jz�R ; r = �i ; (7.3.28
)A�T�jz�+R ; r = �i = �jz�R ; r = +i : (7.3.28d)The overall signs on the right hand side of Eqs. (7.3.28
) and (7.3.28d) 
orrespond to the
hoi
e AT� = �Uy+CU� : (7.3.29)For the 
hoi
e AT� = Uy+CU� ; (7.3.30)the overall signs on the right hand side of Eqs. (7.3.28
) and (7.3.28d) are the opposite.Now, we obtain the a
tion of the time reversal operator on the time evolution semigroups.The time evolution semigroups are de�ned on the dual spa
es (�r�)� asW�� (t) := U�� (t)
 I = � U�� (t) 00 U�� (t) � : (7.3.31)The operator W�+ (t) is well de�ned on (�r+)� for t > 0 only, whileW�� (t) is well de�ned on(�r�)� for t < 0 only. From Eqs. (7.2.19) it follows thatA�T+W�+ (t)A�T� =W�� (�t) ; t > 0 ; (7.3.32a)A�T�W�� (t)A�T+ =W�+ (�t) ; t < 0 : (7.3.32b)This result has been obtained for the 
hoi
e of AT� as in (7.3.29). If we made the 
hoi
e(7.3.30), a minus sign would appear on the right hand side of Eqs. (7.3.32). As mentionedabove, we prefer the 
hoi
e (7.3.29), be
ause we want Eqs. (7.3.32) to not have that minussign.7.4 Appendix 10: Time ReversalTextbooks on Quantum Me
hani
s usually de�ne the time reversal operation in the positionrepresentation as C (~x; t) =  �(~x;�t) ; (7.4.1)where the star denotes 
omplex 
onjugation. We are going to explain what this de�nitionmeans.Following Wigner, time reversal is an operation su
h that the following operations, whenperformed sequentially, yield the identity:
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time displa
ement by t� time reversal� time displa
ement by t� time reversal : (7.4.2)If we denote the time reversal operator by C, a possible de�nition would be C (t) =  (�t).However, this kind of operation is obviously linear. The need for an antilinear time reversaloperation has been ni
ely shown by Wigner in the following terms:Consider a system whose Hamiltonian has a 
omplete set of eigenve
tors 'n (forinstan
e, the Harmoni
 os
illator, the bound states of the Hydrogen atom, or anysystem formed by the bound states of the Hamiltonian, if any). Then, any stateve
tor ' 
an be expanded by those eigenve
tors,' =Xn an'n ; (7.4.3)where H'n = En'n : (7.4.4)The operations (7.4.2) yield the identity if and only if:time displa
ement by t� time reversal = time reversal� time displa
ement by � t :(7.4.5)Let us apply these operations to ' in (7.4.3). If we assume that the time reversaloperator C is linear, then C' =Xn anC'n : (7.4.6)Sin
e [H;C℄ = 0, C'n is also an eigenve
tor of the Hamiltonian with the same eigen-value En. Therefore, time displa
ement by t on (7.4.6) givesXn ane�iEntC'n : (7.4.7)A

ording to the rule in (7.4.5), this should be equal to the result of performing �rstthe time displa
ement by �t on ' Xn aneiEnt'n ; (7.4.8)and then the time reversal operation C, whi
h (assuming that C is linear) leads toXn aneiEntC'n : (7.4.9)This result does not 
oin
ide with the expression given by (7.4.7). However, they do
oin
ide if C is de�ned as an antilinear operator.
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eOn
e we have shown that the time reversal operator must be antilinear, we study itsa
tion in the energy representation. In this representation, the Hamiltonian H a
ts as themultipli
ation operator. If  (E) is a wave fun
tion in the energy representation, then thea
tion of the time reversal operator on it is de�ned byC (E) :=  �(E) ; (7.4.10)where we have 
hosen the 
omplex 
onjugation as the time reversal operator (as Wignerdoes). Time displa
ement by t on (7.4.10) givese�iEt  �(E) : (7.4.11)If we apply time reversal to (7.4.11), whi
h is now equivalent to perform the 
omplex
onjugation operation, we obtain eiEt  (E) : (7.4.12)Finally, time displa
ement by t on (7.4.12) givese�iEt eiEt  (E) =  (E) : (7.4.13)Hen
e, the time reversal operator C de�ned by (7.4.10) ful�lls the above rule (7.4.2) and isantilinear. Obviously, C ( (E; t)) = C (e�iEt (E)) = eiEt  �(E) : (7.4.14)We 
an look at eiEt  �(E) as the result of applying time displa
ement by �t on  �(E).Therefore, eiEt  �(E) is what should be identi�ed with the  �(E;�t) (or  ��t(E)) thatappears in the literature. Note that  �(E;�t) = eiEt  �(E) = [e�iEt  (E)℄� = [ (E; t)℄�.The same 
an be argued in the position representation, where time reversal is given byeC  (~x) =  �(~x) : (7.4.15)However, in the momentum representation, the time reversal operator, whi
h we denoteby C 0, a
ts as C 0 '(~p) = ['(�~p)℄� ; (7.4.16)sin
e the time reversal 
hanges ~p for �~p.In order to show it, let  (~x) be a wave fun
tion in the position representation. Thenthe 
orresponding wave fun
tion in the momentum representation is given byb (~p) � F (~p) := 12� Z 1�1 e�i~p~x  (~x) d~x : (7.4.17)where F and hat denote the Fourier transform. The Fourier transform takes the timereversal operator in the position representation into the time reversal operator in themomentum representation, C 0 = F eCF�1 : (7.4.18)
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e, (C 0 b )(~p) = (F eCF�1 b )(~p)= (F eC )(~p)= 12� Z 1�1 e�i~p~x( eC )(~x) d~x= 12� Z 1�1 e�i~p~x �(~x) d~x= [ b (�~p)℄� ; (7.4.19)whi
h proves Eq. (7.4.16).Consider now an arbitrary representation supported by the Hilbert spa
e H. Let U bethe unitary operator that transforms from the position into that arbitrary representation.Analogously to (7.4.18), we de�ne the time reversal operator AT on H asAT� := U eCU�1� � U eC�(~x) : (7.4.20)If we denote �T := AT�, �(t) := e�itH�, and 
all H 0 = U�1HU the Hamiltonian in theposition representation, then AT�(t) = AT e�iHt�= U eCU�1e�iHt�= U eCU�1e�iHtU�(~x)= U eCe�iH0t�(~x)= UeiH0t��(~x)= eiHtU eC�(~x)= eiHtU eCU�1�= eiHtAT�= (AT�)(�t)= �T (�t) : (7.4.21)Thus AT�(t) = �T (�t), whi
h generalizes the equation C (~x; t) =  �(~x;�t).However, this is not the whole story. As mentioned above, Wigner [61, 62℄ realized that,when 
onstru
ting proje
tive representations of the Poin
ar�e group extended by time inver-sion and parity, new possibilities exist. These new possibilities are not independent of therepresentation of the parity and imply a doubling of the spa
e supporting the representa-tion. We do not want to dis
uss this 
onstru
tion here. Instead, we present a table withthe four possibilities (see Table I below). The four possibilities are 
hara
terized by twoparameters, whi
h also appear among the parameters that 
hara
terize the representationsof the extended Poin
ar�e group.Consider the spa
e, time, and total inversion operators on a Hilbert spa
e H, whi
h wedenote respe
tively by UP , AT and AI . The operator UP is unitary, while AT and AI are
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eantiunitary. From the nature of the 
orresponding physi
al operations, it follows that theoperators U2P , A2T , and A2I must be proportional to the unit operator. Sin
e UP is unitary,we 
an 
hoose its phase su
h that U2P = I ; (7.4.22)while su
h a normalization is not possible for the antiunitary AT or AI . In fa
t, the antiu-nitarity and the asso
iative law of the group multipli
ation di
tate that the squares of ATand AI must ne
essarily equal either +1 or �1:A2T = �T I ; �T = �1 ; (7.4.23a)A2I = �II ; �I = �1 : (7.4.23b)Moreover, the phase of AI 
an be 
hosen su
h thatAI = UPAT : (7.4.24)Corresponding to the values that �T and �I 
an take, there exist four extensions of the
ontinuous symmetry group. Barring the existen
e of any additional 
onditions, all four arepossible, and Wigner [61℄ has derived these four 
lasses of proje
tive representations of theextended Poin
ar�e group. The results are summarized in the following table:2Table I�T �I UP AT(�1)2j (�1)2j 1 C�(�1)2j (�1)2j � 1 00 �1 � � 0 C�C 0 �(�1)2j �(�1)2j � 1 00 �1 � � 0 CC 0 ��(�1)2j �(�1)2j � 1 00 1 � � 0 C�C 0 �In this table, j refers to the spin of the parti
le under 
onsideration, while C is the wellknown (2j + 1)-dimensional matrix whose entries are 
�;� = (�1)j+�Æ�;��, �j � �; � � j.In these representations, the 
ontinuous spa
e-time transformations Ug, as well as any otherknown observables su
h as the internal symmetry generators B, have the following form:Ug = � Ug 00 Ug � ; B = � B 00 B � : (7.4.25)2In the non-relativisti
 
ase, J. F. Cari~nena and M. Santander have obtained a totally analogous resultfor the Galilei group (in the 
ase with mass) [63℄.



7.4 Appendix 10: Time Reversal 243The representation spa
e of the extensions of the spa
e-time symmetry group by P andT is therefore redu
ible under the restri
ted symmetry transformations and observables.From Table I we see that only the 
ase for whi
h �T = �I = (�1)2j leads to no doublingof the spa
e of the mi
ros
opi
 system under inversions. This is the only 
ase dis
ussed inrelativisti
 quantum �eld theory, and quantum �elds have so far been 
onstru
ted only forthis 
lass of the four 
lasses of proje
tive representations of the extended Poin
ar�e group [94℄.In the three other 
ases, the restri
ted spa
e-time symmetry transformation is doubledafter the time reversal operator is adjoined|the time reversal doubling. In these 
ases,the two subspa
es that are left invariant under Ug and B remain invariant also under UP ,albeit they have opposite relative parity in the two 
ases for �T �I = �1. In these two
ases, the two subspa
es 
an in fa
t be distinguished by their parity eigenvalue, and tothe extent that we asso
iate mi
ros
opi
 systems with irredu
ible representations of thesymmetry group, the two subspa
es would des
ribe parti
les with the same mass and spinbut opposite parity. This, however, is not the situation for the extended group 
hara
terizedby �T = �I = �(�1)2j for whi
h the relative parity of the two subspa
es of states is +1. It isthis 
lass of proje
tive representations whi
h have been used in Ref. [64℄, be
ause for theserepresentations a label r 
an be introdu
ed, a two-valued parameter, whi
h was used inRef. [64℄ to distinguish between the spa
e of prepared states and the spa
e of time reversedregistered observables. These two subspa
es (have the same parity and) remain irredu
ibleunder Ug and B. From Table I it is 
lear that AT 
hanges the value r.





Chapter 8Con
lusionsIn this last 
hapter, we present the 
on
lusions of the dissertation.
There is never an ending to Paris and the memory of ea
hperson who has lived in it di�ers from that of any other. Wealways returned to it no matter who we were or how it was
hanged or with what diÆ
ulties, or ease, it 
ould be rea
hed.Paris was always worth it and you re
eived return for what-ever you brought to it. But this is how Paris was in the earlydays when we were very poor and very happy.Ernest Hemingway, A movable Feast
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Con
lusions 247The RHS language has been used to des
ribe Dira
 kets, Lippmann-S
hwinger kets andGamow ve
tors in a 
onsistent way. We have seen that the mathemati
al image of thoseobje
ts should be the following:Physi
al quantity Mathemati
al image Symbol NameBound state of Normalizable eigenve
tor of H jEn) Bound stateenergy En < 0 with eigenvalue EnS
attering state of Generalized eigenve
tor of H jE+i Lippmann-S
hwingerenergy E > 0 with real eigenvalue E ketResonan
e of energy Generalized eigenve
tor of H jz�Ri Gamow ketER and width �R with 
omplex eigenvalue zRIn terms of results, we would like to highlight the following:� We have presented a systemati
 review of the mathemati
al methods of the RiggedHilbert Spa
e.�We have reviewed and improved the 
onstru
tion of the RHS of the harmoni
 os
illator.�We have shown that the natural framework for the solutions of the S
hr�odinger equationis the RHS. We have illustrated this point by 
onstru
ting a RHS of the square barrierpotential expli
itly.� We have shown that a 
onsistent des
ription of the Lippmann-S
hwinger equationsneeds a pair of RHSs. We have also shown that the Lippmann-S
hwinger kets a
t as anti-linear fun
tionals over spa
es of wave fun
tions that are boundary values of fun
tions that
an be 
ontinued analyti
ally.� We have translated A. Mondrag�on et al.'s integral equation for the Gamow ve
torsinto the RHS language.� We have 
onstru
ted the Gamow ve
tors of the square barrier potential Hamiltonian.We have shown that the [0;1)-energy representation of these ve
tors is the 
omplex deltafun
tional, and that their (�1;1)-energy representation is the Breit-Wigner amplitude.� We have dis
losed the time asymmetry of the purely outgoing boundary 
ondition.� We have studied the a
tion of the time reversal operator on resonan
es for the stan-dard 
ase and for one of the 
ases that lead to a doubling of the spa
e supporting therepresentation. The doubling has been expli
itly 
onstru
ted within the RHS framework.
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