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Abstract .  W e  argue that only by taking into account the quantum properties or the 
bodies that form the reference frames, physical quantum operatois can be defined in 
quantum gravity. The theory of general relativity coupled to matter introduced in a 
companion paper is considered. Its formal canonical quantization yields two surprif 
ing results: the diffeeornorphism constmint can be exactly solved; and the Hamiltonian 
constraint reduces, in the contest of a well defined approximation, to a Sdu6dinger 
evolution equation. By using the solutions of the quantum constraints of vacuum 
general relativity recently obtained in the loop representation, and in the context of 
a 'realistic' local material reference system, we define a quantum gravitational theory 
in which the constraints can be solved, the only remainiilg equation is a regularized 
Schrcdinger equation which expresses the dynamics in the intgnal clodis. and a c l a s  
of gauge-invariant physical obsewables is explicitly displayed. 

Il?r..r 

1. Quantization of the reference systems 

In a companion paper [I]: \ye have argued that in order to  get ('local') gauge-invariant 
observables in a generally covariant, t,lieory (namely physical observables that have 
vanishing Poisson brackets with the constraints), one has also to  include i n  the system 
the dynamics of the objects that  form tlie reference system. 

In this paper we study the consequences of this fact on quantum theory. We 
do that by studying the formal canonical quantization [2,3] of the theory of general 
relativity plus matter xliich was introduced in the previous paper. 

In the canonical quantization of the gauge theories one imposes the quantum 
constraint equations on tlie quantum states' space H [4]: the states that solve this 
equations are the physical states of the system. Let H,, be the linear space of the 
physical s ta tes  Then, oiie defiiies the observables on H,, in terms of the basic op- 
erators defined on H. In order that an operat,or'Opl, on H be well defined on ihe 
subspace H,,,. it has to  commute with the const,raints. By taking tlie h c 0 liiiut of 
the commutator, it follows that d,, should correspond to a classical observable O,,, 
with vanishing Poisson brackets w i t h  tlie constraint,s, namely to a gauge-invariant, 
observable. 

Tlius, i n  order to build tlie quantum theory we cannot avoid the problem of find- 
ing the gauge-invariant observables. Since, as argued in the previous paper, gauge- 
invariant observahles (in the specified sense) can he defined only by t,aking int.0 account 
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the gravitational dyiia,mics of tlie material bodies that form the reference systems, we 
are forced to  conclude that a consistent quantization of a general covariant theory like 
general relativity can only be accomplished by also considering the quantum properties 
of the reference systems. 

Section 2 conbins  a preliminary discussion on the possibility of avoiding the quan- 
t i a d o n  of tlie reference systems. Then, in section 3, the quantization of the reference 
systems is studied by building the (formal) quantum theory of the model introduced 
in the companion paper. 

We get two surprising results. T h e  first is that the diffeomorphism constraint can 
be exactly solved in closed form. This is related to the fact that the 3-diffeo-invariant 
observable of the model are explicitly known. Tlie second, and most remarkable, 
result is that  the Hamiltonian constraint gives rise to a Schrodinger evolution equation 
in the approximation considered i n  the previous paper. 

I I I C I I  we a~scuss  a secoiid, iilore 'realistic', model in which ihe material refererice 
system is localized in a finite region of S ~ R C C .  In this model we  may make use, for 
the vacuum region, of the solut.ions of the qiiantom constraint equations of vacuum 
general relativity which wcre recently obtained by makiirg use of Aslitrliar'r variables 
[5,G] in the  loop representation [7]. By using these results, the theory is reduced to a 
system in which the basic constraint equations have been solved, the only remaining 
equation being a Sclrradinger evolution equation in tlie local internal clock time. A 
class of local gauge-invariant physical observables is displayed. We suggest that in this 
way the problem of the absence of physical observables in caiionical quailrum gravity 
can be overcome. 

r" . -  ,:..~.-. 

2. -Which theory silouid we quantize in order to get a quantum theory of 
the gravitational field? 

With reference to the previous paper [I], we may say that if we want to quaiitize a 
general covariant theory like general relativity, we have essentially three choices. 

(a) Consider pure general relativity i n  the non-local interpreiation 
(b) Consider pure general relativity in the local interpretation. 
(c)  Consider a general relativity t matter system i n  which the matter is used as 

a reference system. 
The choice (a)  is, in a sense. more fundanrental; but it leads to  difiiculties, As 

we repeatedly advertised, no gauge-invariant observable is known in piire (compact 
space) general relativityt. This is a sad situation, since in the vaciiiim case solutions 
of the quantum constraint~s have been found, and tlierefore a t  least one sector of 
N,,, has being defined [7]. Oiie has H,,,, but 1101 even a single observable quantity 
that can be defined on it. Tliere are interesting linear operators well defined on 
Hph, But in quant,uin ineclianics it is not enough to have operabors: one needs their 
interpretation. Tlie interpretatioii is provided by relating tlie operators to classical 

t Thc asyinpt.otically Rat case allows t11c defiilition of  smile gaugeinvariant obsewables at infinity, 
like tlie ADM mass and riloimnta. Tlwe are some duulsls that these essentially non-local observahlcj 
could he implemenled in llie quantum thcory [S,9]. Our general philosophy here is tlia.1 Eiiice every 
observable has to be local (in R sui(ablc sense), fundiuirentd plysics carinol diestically dqxn i l  ou 
the boundary con4tions. To explore the opposite imint of view, work is in prog1-e~~ on the the 
asymptotically Rat ca5e [IO]. 
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observables, namely to  measurement procedures. Thus, these operators are useless 
until a way to  interpret them has been found?. 

Choice (b) implies some subtleties. Indeed, when read in the local interpretation, 
general relativity is not a gauge theory in which the Undetermined degrees of freedom 
are non-observable gauges, but it is an approximate theory in which the undetermined 
degrees of freedom just represent some physical degrees of freedom over which we do 
not have control [l]. This has some consequences. To understand these consequences 
let us consider a simple model. Consider two particles, I and y o n  a line. The first one 
represents a physical degree of freedom the dynamics of which we know, the second one 
a degree of freedom the dynamics of which we do  not know. The first one represents 
the true gravitational degrees of freedom, the second one the reference system degrees 
of freedom. Let the equations of mobion be 

z = 0 j i =  f ( t )  (1) 

where f ( t )  is an arbitrary external force, unknown, which drives y. These equations 
can be obtained by the Hamiltonian 

where r j ( t )  = f ( t ) .  Since t,he equations of motion do not contain my, we c a n  take the 
my h 03 limit in the Hamiltonian and get 

which, indeed, again gives the same evolution for y(t). Note that N ( t )  must not be 
considered as a Lagrange niultiplier, but just as an unknown arbitrary function. Let us 
consider the quantization. A standard Schrodinger quantization of the Haniiltonian (2) 
gives a wavefunction $ E L,[R2], which evolves according t o  a standard Schrodinger 
equation. ' T h e  solution of this equation can be obtained from the transformation 
properties of the wavefunction under arbitrary coordinate transfotmations (indeed 
the evolution in y is the one of a free particle i n  an arbitrary reference system). It is 
a superposition of waves 

(4)  

where S( t )  = N(t). The important point to notice is that the y dependence is not 
trivial and contains information even i f  s ( t )  is not known.  For instance, suppose a t  
2 = 0 the wavefunction w a s  concentrated in y = 0; then the centre of the wavepacket 
a t  later times depends on s ( t ) ,  but once this is known, the spread of the wavepacket is 
uniquely determined. Note rliat, consistent wi th  our interpretation, the wavefunctional 

t A possible altemative way out may be given by studying the interpretation of these operators in 
term of the gauge firing provided by the lineaiization. Work is in progress in this direction [ll]. 
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contains informat,ion on bolh I atid y. both of which can be measured. For every state 
$, the outcome of a measurement of I and y can be obtained by the standard rules. 

Suppose we decide that,  since y is totally undctermined, we treat it in the quanti- 
zation as we usually treat gauge degrees of freedom. This can be achieved by consider- 
ing the Hamiltonian (3) ,  and treating N as a Lagrange multiplier. We obtain a gauge 
theory with the constraint py = 0. By imposing it. on the states we would ohtain 

$ ( r 3 y ; f )  = l"(r;f)~ (6) 

Then the entire information on y is lost. and the theory does not describe y anymore. 
Thus this treatment is inconsistent with our interpretation of the y degree of freedom: 
if we interpret a local invariance of the equation as a lack of knowledge rather than a 
gauge invariance, then the Dirac quantization procedure is not viable. 

In general relativity, the role of N ( t )  (and s ( t ) )  is played by the lapse function. To 
impose the constraints on the wavehinciion amounts io  requiring ihai. ihe wavefunc- 
tion does not depend a t  ail on the (arbitmry) reference system variables. Thus, tlie 
standard Dirac const,raint quantization is totally incompatible wit,h the quantization 
of the theory in the local inlcrpretation, which is the interpretation in wliiclr the local 
invariance of the Einstein equation is interpreted as a lack of knowledge of the motion 
of the reference system rather tlian as a genuine gauge invariance. If we wai t  to ad- 
here to the local interpretation, not only a,re we dealing with an approximate theory 
(as shown in [I]), but also we have t o  rethink tlie quantization procedure. 

The last choice (e) is tlic one to  which we adhere in this paper, and wliich is 
ana,lysed in the next sections. 

3. Quant iza t ion  of the gravi ty  $. reference s y s t e m  theory 

In this section, we study the formal canonical quantizatioii [2,3] of the system defined 
in the companion paper. \Ye refer to that paper for the notation. We recall liere 
that the theory is defined, in  the canonical framework, in terms of the pliass space 
coordinatcs g O b ( + ) , p o b ( s ) ,  S"(y),  p,(y), T ( ~ J ) ,  P(z) by tlie constraints 

- , ~ A D w + \  - ra I \ . - / . . j \  .> t.,\ 

N ( f )  = HAD"(f) - /d3y f ( . Y ( y ) ) J c Z i n 2  +p2(y) + ( W ~ / C ~ ) ( P ( V ) ) ~ .  

gab and pab are the standard space metric and its conjugate momentum (related to 
the extrinsic curvature of tlie space). The vect.ors y label the iiifiiiit~esirnal particles of 
a 'iiuid' that  form the materiai reiercnce sysiem: X"(y) is the position of iiie particle 
y and p"(y) the related momentum. T(y) is the value of a (clock) varialde attached 
to  the particle y and P(y) its momentum. 

Following DeWitt, we introduce 011 tlie configuration space { g a b ( + ) ,  S"(y).T(y)} 
a wavefu~ictional 

I J  I - \ J  I ~ J Y J I Z L I B I I  I ' n l S I  

, ,,.....,..., ."*../ (3 

P!g, x', TI (8 )  

iC,,(z)V[g,S, T ]  = 0 (9) 

and we define tlie quantum theory by iinposing on the quaiituni consiraiiits 
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(the hat indicates operators) obtained from the constraints (7) by the replacements 

We are not interested liere i n  problems related t.o the measure that defines the Hilbert 
structure, or the ordering of the Mainiltoiiian constraint. The momentum constraint is 
ordered so that it generates three-dimensional diffeomorphisms. The surprise is that 
these equations are not completely intractable. Indeed, the momentum constraint can 
be completely and exactly solved. This is related t.0 the fact that we know explicitly 
the classical Diff3 invariant observables. Indeed, we define, on the configuration space, 
the observable Ga6(y), which is a functional of g and X, 

Then a direct calculatioii shows that every state of the form 

Q b , X , T l =  Q k > T l  (12) 

solves the momentum constraint. This follows, of course, from the fact that j and T 
coordinatize the Diff3 invariant configuration space. 

Now, consider the approximation of the fu l l  theory considered i n  section 4. In this 
approximation the Hamiltonian constraint becomes 

From this equation it follows that 

where the tilde over the ADhl IIamiltoniaii constraints indicates that  i t  operates on 
the 3 variable rather thaii on the g variable. 

Equation (14) is a crucial result. It is a Schrodinger equation in the clock time 
T(y). More precisely it is a Sclirviiigcr-Tonioiiaga multi-fingered time evolutioi~ equa- 
tion. It fixes the value of U[3,T] everywhere if the value of Q [ B , O ]  is known. Given 
the discussion i n  section 4 of [l], it, is clear how we can interpret this result. We can 
identify the variable in this section with the init,ial value (T = 0) of the j phys- 
ical observable defined in [l]. j a b ( y )  at  T ( y )  = 0 can be seen as a complete set of 
gaugeinvariant configuration observables, and 11'[5,0] contains all t,lle information on 
the state and can be seen as an initial stat,e. Then the Schrodinger eqiiatiou (14) gives 
the relation with alternative descriptions, in berms of j at  different times. This can 
be read as an evolution equation in the clock's time. 
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In particular, we may decide to describe the system by sets of measurements 
performed in correspondence with tlie sets of spacetime points in which the clocks 
have the same value T(y) = T. Then we can write, without loosing informalion, 

qEa6(Y) l (T)  = q b o 6 ( Y ) ? q  (15) 

which satisfies the standard Sclirodinger equation 

a 
-in- %‘b](T) = d3y ktDM(y)) @b](T). ar 

We think. but i t  has  still to be checked, that any  other additional matter term in 
the theory (for instance electromagnetic or Yang-Mills fields) would appear in this 
Schrodinger equation in the correct form. This would be an interesting test of the 
ideas proposed in this paperf. 

In the approximate form of the Hamiltonian constraint, we  dropped the original 
absolute value. As shown in [l], i t  is consistent to restrict the classical theory to the 
sector P > 0. This amounts to assuming that the direction in which the coordinate- 
time flows is not observable. Thus, the classical theory that we are quantizing is 
supplemented by the P > 0 condition, and we may drop the absolute value. However, 
weshould then bring this condition to the quantum theory. In the quantum theory, this 
becomes a posit,ive frequency condition for the solutions of the Schrodinger equation. 
In turn, this implies that we have to restrict the physical Hilbert space to the states 
on which the Hamiltonian is positive. While this procedure is certainly viable (for 
the same reason as why we may select the po  > 0 sector of a quantum free particle), 
nevertheless, as pointed out by Kucliai [12], it raises certain issues about the quantum 
observability even of the classically gauge-invariant observables that we have found in 
tlie companion paper. The translations to the quantum theory of constraints expressed 
by inequalities has been studied by Isham [13]. The reason for which the classical 
gauge-invariant observables may give problems in the quantum theory is exemplified 
by the standard example of the quantization of a free particle on R+: while the 
momentum of the particle is a good classical observable, it cannot be translated in a 
genuine self-adjoint operator, essentially because tlie eigenfunctions of the derivat,ive 
operator cannot stay within a half-line. Alt.liougli these problems are certainly serious, 
they will not be addressed i n  this paper. We leave them for a future, more rigorous, 
investigation. 

We have shown that the coupled general relativity + matter theory defined i n  [l] 
can be formally quantized in the canonical framework, obtaining the two following 
results. The quantum momentum conshaint equation can be exactly solved: the 
quantum Hamiltonian constraiiit gives rise, i n  the approximation defined in section 4 
of 111, to a Schrodinger equation ill t,lie clock time T. All the quantities that appear 
in the final theory are gauge invariant. 

4. A ‘realistic’ model of a local mater ia l  reference sys tem,  t h e  ‘rocket’ 

Two features of the model presented i n  the last section are particularly disturbing. 
Firstly, free particles are not particularly nice objects in view of our essentially field 
theoretical understanding of fundamental physics. 

t This issue has been raised by A Ashtelar. 
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Secondly, and more importantly, the matter that we couple to general relativity as 
a physical reference system should represent the physical laboratory and objects that 
the experimenter uses for his or her measurements. The model in which the laboratory 
fills up the entire space is therefore quite unrealistic. For instance, it would kill all 
cosmological and astronomical physics, which is based on vacuum Einstein equations. 
In this section we partially improve the model in regard to the second criticism. We 
leave the first problem open. 

In the philosophy of the present papers, there is nothing like the correct model of 
a reference system. Indeed, different concrete physical situations, in which different 
matter is used as the reference system, would require to be described by different 
models. 

At the opposite extreme of filling the entire space with our laboratory, we could 
consider the simplest reference system given by a single particle. Attractive as this 
picture may be, i t  is not viable for a teclitiical reason that will be discussed later. Since 
one particle is not enough, we take a small cloud of them. These will represent, for 
instance, the atoms of a rocket,t sent through the solar system to measure gravitational 
fields (or maybe towards a black hole to measure quantum gravitational effects!). 
Including into the picture the electromagnetic interactions among these atoms, which 
structure the materials, would complicate, but not substantially modify the general 
picture. 

We label these small clouds of particles by a parameter y which now belongs 
to a finite region of R$ We denote this finite region by 72 (for rocket): R = 
{y E %; IyI 5 1). Our basic variables are now 

Sa*(") XYv) T(y) ?/ER. (17) 

The Lagrangian and Hamiltonian and constra,ints arc the same as in the previous 
model, with the difference that the domain of integration of all.the y integrals is R. 
Let us analyse this model. The point is that there are two regions: the rocket and 
the outside. We can solve tlie diffeomorphism invariance as we did previously only 
partially, namely only inside tlie rocket. We define the metric on the rocket by 

We decompose the constraints as follows 

(the superscript vac is for vacuum). The set of constraints k,(y), ffi-(z) is equivalent 
to the original set. Similarly we define 

s X z )  = s , A ( ~ )  - J, d3y 6 3 ( 1 . S ( ~ ) )  ria&/) ('20) 

t A peaceful rocket 
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nhicli is a metric that agrees with tlie original metric i n  vacuum and vanislies where 
the rocket is. It is straiglitfor\vard to verify that 

where S,g:3z) is the standard diffeo transformation generated by the constraints. 
Because of these equations, the quantum constraint equation 

Hi(f)*[s,X,T] = 0 (22 )  

'2[g> S,T] = q[g'"',#,T]. (23) 

.. rrv=!f)$[5,x,Tj = 0 (24) 

is solved by any wavefunctional of the forin 

In order to deal with remaining momentum constraint 

i t  is coiivenientL given any  configuration ,Ya(y), t.o choose an arbitrary extension 
X&(y) defined for all t.lie y i n  R;, aiid sucl i  that ,  on R. i t  agrees with S. LVe denote 
the complement of tlie rocket as S (for sky); S = {y E R; I Iyl > 1) .  We will clieck 
at  the end that nothing depends on tlie est,ension chosen. By using A',,, we define 

(25) I T C X t l . . ,  ~ TT , I -  <.~,, 
1 1 ~  \vi = n o i . l e x t i ~ i i  

and 

In this equation tlie original variable I: 11% completely disappeared, everything is 
defined on l?;. The equation requires that @ depends on gext only modulo diffeoluor- 
phisms with support in the sky S (outside the rocket). This requirement is clearly 
independeni of the pariicuiar exi.ensioii ciioseii. Note h a t .  outside t i le rocket. iiie 
momentum constraint is givcn by j u s t  the ADM part. 

Let us now consider the IlamiIt,onian constraint. I t s  vacuum componrnt gives 

The rocket term gives. i n  the usiial approximation, 
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Thus, we have a mixed situat,ion: inside the rocket., since there is a reference 
system, the metric is observable, and t.here is an evolution in the clock's time. Outside 
the rocket the wavefunctionals have t,o be diff invariant and to satisfy the IIamiltonian 
ADM constrainl. 

At this point we can put t.ogether the strength of our (complementary) under- 
standings of both regions. Indeed, we do know how to solve the vacuum constraints 
equations. These have been solved, in the framework of Ashtekar's new variables 
version of general relativity [5], by using the loop representation of the quantum the- 
ory [7]. In these works no observable was available. Now the rockets provides some 
observables. Let us introduce the loop representation machinery. 

First, it is clear that everything that has been said in this paper works equally 
well in Ashtekar's version of general relativity. 

We introduce tlie Ashtekar variables A,(=) and t , (z)  on the (extended and cotn- 
plexified) phase space of general relativity. We define 

Then we repeat step by step the previous derivation. We find that our theory is given 
in the Ashtekar representation by the stat,es q[Aext,7'l and by the constraints 

where C(f) and C are the Ashtekar's diffeomorpliisins and Namiltoiiian constraints 
[6], expressed in terms of .AeYt. 

Then, we can transform from Aext to the loop representation. The loop repre- 
sentation is a representation for quantum general relativity in which the states are 
expressed as functionals of multiloopst. The transformation from the Ashtekar repre  
sentation to the loop representation is formally accomplished by means of a functional 
transform which is an infinite-dimensional analogue of the Fourier transform. Here we 
want to transform from Q[,4ext,T] to Q[e,T], where w is asingle loop, or a multiloop 
(a set of a finite nuniber of loops). Thus we define 

This formula allows us to transfer the qua,ntum operat.ors defined i n  the Ashtekar 
representation to the @[a,T]  space. As describcd i n  [i], one may proceed in a more 
rigorous way, and avoid the use of the i l l  defined functional integral, by quantiaing a 
suitable algebra of functions of A,,,,  but a t  tlie present level of rigour we do riot need 
here the rigorous version of hhe theory. Here e is a niirltiple loop on the space R i ,  

t The term representation is iised here in the sense of Dimc [ I I~] ,  as in the coowl i i i~ te  represcntalioii 
and momentum representation for a finite-diniensional system. 
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and, we recall, the clock variable "(U) is defined for the y in the rocket R. In this 
loop representation the const.raint equations become 

C J O y f ) Q [ a , q  = 0 SUPP f c s (33) 
C ' O O P ( y ) * [ a , T ]  = 0 Y € : s  (34) 

- - i h d - Q [ a , q  = U)  2 c l o o p ( ~ ) ~ i a , T j  ar E R. (35) 
W Y )  

The first two of these equations are solved in [7]. Equation (34) is solved by any Ilr 
which has support. only on the loops that have no corners or intersections outside the 
rocket. The general solution of equation (33) is obtained by requiring that V has the 
same value for every two multiple loops a and p which can be transformed one into 
the other by a diffeomorphism with support on the sky. Namely on any two loops a 
and P which are identical i n  the rocket, hut are just knotted and linked in the same 
way in the sky, hi other words we require that *[&,?'I depends on the location of a 
in the rocket and on the way a is knobted and linked in the sky. Let us assume that Q 
has these propertiest. Then, the only remaining equation is equation (35). As wc did 
in section 5, we may, without loosing any information, decide to describe the system 
in terms ofjust  one time, and we have 

In 171 the Hamiltonian loop constraint operat.or Cto0P is defined i n  suclr a way that its 
action on its kernel is non-divergent. An alternative definition of ille Hamiltonian loop 
constraint operator is studied by Biencowe in [i7]. According io this reference, the 
operator Cloap is a regulariacd operators defined in the entire loop space. See also the 
subsection of 171 on the shift operator. By using the Blencowe Hamiltonian constraint 
C'''p, equation (36) is a regularized Sclirodinger equation that expresses tlie quantum 
gravitational evolution of the physical statcs in the clock time T .  Equation (3G) is our 
main result. By using this equation, concrete calculations in quantum gravity could 
perhaps be performed. 

Note that the value of any T"[a] observable [7] inside the rocket, a t  any given time 
T ,  is a gauge-invariant qua,nt,ity. For instance 

To[a](0)  e Tr P exp (S,.'F) a : S ' u R  (37 )  

is a (complex) gaclge-iauarinw physical observablc i n  quantum gravity. It is related 
to tlie change i n  the inbernal direction of a left-handed spin particle dragged along a 
loop defined by tlie particles of t,he rocket. 

In  conclusion, we have defined ill this section a theory i i i  wliicli quant,uin general 
relativity is coupled to a quantized local reference system, that can he interpreted as 
a free-falling laboratory (rocket). The constraints of the quantum theory are solved. 
The physical wavefunction is a function of tlie clock inside the laboratory and of sets 

t There are some subtleties here: 10 wliidi order i i i  the derivatives at tlie border of the rocket do the 
t w o  loops haw to agree, in order to be identified? LVe l e w e  these finer points to a later and inore 
careful analysis of the model. 
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of loops which may go in and out tlie laboratory. The wavefunction does not depend 
on the locations of the loop outside the laboratory, but only on the way they are 
knotted and linked. It does depend on the locat~on of the loops inside the laboratory. 
Moreover it has support only on loops that are smooth and non-intersecting outside 
the laboratory. These quantum states represent physical quantum states of the non- 
perturbative quantum gravitational theory. To first order in the approximation of big 
lengths (with respect to ./U) these states evolve in the laboratory clock time according 
to the Schrodinger equation ( 3 B j ,  in which the Hamiltonian is a reguiarized operator. 
The (complex) observables of the theory are given by the r"[a](T) observables defined 
in [q, where a lies inside the rocket, and the observable is defined at the clock time T.  

5. Perspectives 

In this section we collect some considerations on the previous results and some spec- 
ulations on the possibility of extending and improving them. 

We may note that the approximation in which a Schrodinger equation holds is 
not a semiclassical approximation. Rather, it is a certain physical regime, defined in 
the Hamiltonian picture by the fact that  physical quantities with a dimension of a 
length are big with respect to c / o  and in t.he Lagrangian framework by the fact that 
the motion of the physical clocks is adequate (is as fast as possible). Therefore this 
way of recovering of the Schrodinger equation is different from the one discussed, for 
instance, in 12,181. However, i t  is likely that there is a strict relation between the two 
points of view. 

One can consider higher-order terms in c / w ,  and study the terms that have to be 
added to the Schrodinger equation. By espanding in powers of c / w ,  and also keeping 
the second term, the iiamiiionian consiraini is 

(3 c -1 C 
H ( y )  = H A D M ( y )  - (--) P(y) - - (m? + p2)P- '+  0 - 

w 

The corresponding quantum equation is (we arbit,rarily choose an ordering) 

If we represent tlie states i n  terms of a uniforni clock time T(y) = T and we express 
everything in terms of the # variable, we have tlie 'corrected' Schrodinger equation for 
the wavefunctional Q[i](T)  

c .  
w 

where the Hamiltonian is the integral of the ADM Hamiltonian constraint 
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The cz/w2 term is the quantiim gravitational correction to the Schrzdingcr equation 
due to the physical nature of the clocks. In our model it is given by 

(42) 

It is very tempting to claim tliat this c2/w2 term gives indeed physical elfects that 
are, in principle, observable. Note that it is non-local in time. Once more we stress 
that in spite of this term the probabilistic interpretation of the quantum theory still 
holds. 

A weakness of the model presented i n  section 3 is the kind of matter chosen to 
represent the reference system. In our philosophy, as we already said, there is not a 
model of reference system wliicli is the correct and unique one. Different reference sys- 
t e m  correspond to a different laboratory used t,o perform gravitational experiments. 
More sophisticated models can be studied. 

For instance, one may stittly what are tlie consequences of considering the discrete 
nature of the particles and taking a finite number of particles. Note tliat. in tlic loop 
representation there is no observable localized iii  one point. This is a fiirt,lier reasoii 
for whiclr a single-particle reference system would not be enougli. It. is not clear to 
us if this impossihility of siiigle points reference systems and observables reflects any 
underlying physical reasont. A n  at,tractive alteriiative is to take a minimal reference 
syskm formed only by a loop of particles (X - SI). This reference system defines 
a single loop observable (and it,s powers). By using this reference system, the great, 
advantage is that the physical Ilamikonian is expressed by a one-dimensiooal integral. 
Thus lhe dynamics lias the structure of tlre two-dimensional field theories. wliicli are 
now pretty we l l  under control. 

Given our essentially field tlteoretical understanding of the world. it would perhaps 
be more appropriate to couple a field, rather than a continuum of particles. to general 
relativity. The technical difficulty. then, is relat,ed to tlie possihility of inverting the 
field, in order to use its value as a coordinat.e. But maybe this is not the correct 
thing to do: we sliould use a second quantized language for the field, atid use tlie 
second quantization part,icles for defining tlie physical points. Would tliis cliatige our 
conclusions in air essential way? \\'oitld the creal ion atid anniliilat~ioit processes of a 
field theory, or the properties ofsymmet.ry iiiidcr particle exchange, modify (lie picture 
we gave here (whicli is essentially defined by a fixed particle nunil~er sector of t he  fu l l  
t heory)?t 

The idea discussed i n  section 4 is tlic split of tlie universe into a rocket and a sky. 
Diffeomorphism invariance ltolds i i i  the sky, but is hidden by tlie iiiattcr in  tlie rocket. 
h e  owe to Louis Crane the idea that meaningful local ol~serval~lrs iii qtia111.~11i1 gravity 
could be obtained by splitt,ing the systetn i i i  two regions. Note tliat. this cotifigiiralion 

t This possibility was suggeted t.g Ishnni. 
$ Anotlicr possibility is to consider the Iiypotliesis that ftrnd.u,ientd objects arc stringlike at high 
energy. Standard string theory is defiued on a fixed badgrotaid in t h e  target si)acc. and is not 
diIleoitiorphism irwarimt. But it lins been rcpeaterllg suggested that t h e  Ilieory represmls, i t ?  S O ~ C  

sense, the low-energy (broken) pliasc of il tlicovy that is fully difTceniorphism invariant at Itigh cnrwgy. 
In  t h i s  case, if  any definition of plysical six+cetiuie pnilitr Itas t o  be recovered. otic hic, go tlirougli 

s t r i n s .  .4t low energies t.liese ~oiilrl belinw like parliclcs, I h t  at high energy t l~cy becomc escilerl 
and they are spre.d in some finite region or E [IO]. Does t l~is  mean timi st r ing t l m n  implies l l ~ a t  
the physical spacc cannot be dcfirrrd bel& a certain scale [1!1,20]? 

like tile a la~ys~s  of t i l iS I,aPer; lrrlt t i l c  reielrel,ce bssteIll to ilC ,iefillr,i il, L ~ ! ~ ~ ~ ~ ~  or 
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can also be interpreted as a configuration for a scattering experiment. Indeed, we may 
think that the sky is the 'internal' scattering region, and the rocket is the 'external' 
laboratory region. In this way we can recover the asymptotically flat case without 
unnaturally breaking the diKeoinorphisni invariance. The crucial result, in this case, 
is that the time evolution (and the Sclirodinger equation) is defined by the laboratory 
(the rocket). 

Louis Crane has recently observed [21] that the structure that one obtains in the 

defined by the axioms of the topological quantum field theories. More precisely, every 
state of quantum gravity corresponds to a given topological quantum theory. Since 
these, in turn, are in correspondence with the class of the rational conformal quantum 
field theories, these developments suggest that there may be a correspondence between 
conformal theories and states of quantum gravity in the loop representation. The 
rocket-sky loop model can be considered as a first step toward the implementation of 
these ideas. 

.IIr lnnn ronrremt .nt inn .-r.-"-.."-".".. hv "= noFfnrmina r...I..I L... t h i e  I ... 1 1  snliI.finn r.."",~.6 ic  .I oe-ontixllv -~"-..".1.5 irnmnrnhir .I_..._. r..." w i t h  ... 1.. tho I..-"..- n n o  

6. Coiiclusioiis 

The main thesis of the work described i n  this paper and in the companion one is that 
gravitational physics cannot be properly understood unless one takes into account the 
physical nature and the gravitational interactions of the bodies that form the reference 
system. 

In tlie classical theory one can always work in an approximation i n  whicli the effects 
and the dynamics of the mat,erial reference systems are neglected; but i n  tlie quantum 
theory one has to take into account the quantum properties of tlie objects that form 
?!!e reference system, 

In the quantum theory, in fact, i n  order to define tlie physical ga.iige-invariant 
quantum operators and therefore to understand which quantities are subject to quan- 
tum fluctuations, one is forced to explicitly include the material reference systems in 
the system. The key point is that these physical material objects of tlie reference 
system add to the system some addit,ional degrees of freedom, which can be gauge 
transformed to give physical gauge-invariant meaning to the gauge part. of tlie gravi- 
tational metric. 

We can now answer the specific qriest,ion t,liat opens the companion paper. It 
is wrong to consider both the quairtiiin fluct,iiations of tlie metric and the quantum 
fluctuations of the particles used to ideiitify tlie points. Botli the metric and tlie 
position of the part.icle are iion-gaoge-iiivariaiit concepts. ?'lie only gauge-invariant 
quantities are the relative qtiaotities, ~ianirly tlte metric dist,ances betwcen t,lie particles 

not subject Lo quantum fluctuation. it is riot. correct to msert t h t  bot,li the niet.ric 
and the particle positioii fluctuate. Indeed rliere is just one fluctuat,ing object, which 
is the metric that define2 the distance bet,ween tlie particles (,$). This is a crucial 
conceptual result of the present work. 

The  main technical result of the two papers is that the program of coupling mat,ter 
degrees of freedom, and then gauge fixing by absorbing them in a new gauge-invariant 
observable metric, can indeed be carried out in a concrete fasliion This is true both 
i n  the classical theory, where the program provides reasonable gauge-ilivariant observ- 
a b l e ~  and in the (formal) quant,um t,lieory. 

is !!!is se!lse tl!it we !!&ye 2 'q:sntiEed Snapat.ime', ~" .... " ' 

, I  e:..".. -I^^...^^^ ^P C..̂ ,̂l̂ ... I ..-, 1.- 6 I .̂.-I .,.-""c-"* ^..^ 
L I , , C I I I U C I " ~ O _  d L , , L . =  &a"&" "C&LS"" Y ,  L L C ~ I I Y I I I  I , , , ,  >U ,,"I. I,\ q l l ~ i l l L I o c l l .  Bllll V l l C l C l Y l r  a,= 
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In the quantum theory, certain surprising results follow. The first one is that 
the momentum constraint of the coupled theory can be exactly solved. The second 
and perhaps most remarkable result is that the FIamiltonian constraint gives rise to 
a functional equation which reduces. in a certain approximation, to a Schr6dinger 
evolution equation. 

This result strongly supports the thesis that the Schrodinger equation describes an 
approximate regime. It is important. t.o stress here that general quant.um mechanics 
and its standard Copenhagen probabilistic interpretation still hold also outside the 
Schrodinger approximation. This is discussed in detail in [14]. 

The model of reference system used in  these papers can certainly be improved 
in several directions. The  rocket-sky local model presented in the section 4 is more 
realistic than the infinite model of section 3. Other models of reference systems cer- 
tainly deserve to be studied: this is the only way we see in order to construct realistic 
gaugeinvariant physical observables i n  quantum gravity. 

The rocket-sky model becomes particuhrly interesting if the results that have 
been obtained i n  the loop representatiori are included in the picture and added to 
tlic results of this paper. In the rocketsky loop theory we have physical states, 
gaugeinvariant physical observables and a regularized Schrodinger equation. Many 
problems remain open before a complete quantum theory of gravity can be defined. 
But we think that having a regularized Schrodinger equation, a well defined set or 
gauge-invariant quantities and a set of physical states may be a new, excitiiig and 
encouraging situation i n  quantum gravity, 
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