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Abstract. We argue that only by taking into account the quant um properties of the
bodies that form the reference frames, physical quantum operatois can be defined in
quantum gravity, The theory of general relativity coupled to matter introduced in a
companion paper is considered. Tts formal canonical gquantization yields two surpris
ing results: the diffeomeorphism constraint can be exactly solved; and the Hamiltonian
constraint reduces, in the context of a well defined approximation, to a Schrodinger
evolution equation. By using the solutions of the quantum constraints of vacuum
general relativity recently obtained in the loop representation, and in the context of
a ‘realistic’ local material reference system, we define a quantum gravitational theory
in which the constraints can be solved, the only remaining equation is a regularized
Schridinger equation which expresses the dynamics in the intermal clocks, and a class
of gauge-invariant physical observables is explicitly displayed.

1. Quantization of the reference systems

In a companion paper (1], we have argued that in order to get (‘local’) gauge-invariant
observables in a generally covariant theory {pamely physical observables that have
vanishing Poisson brackets with the constraints), one has also to include in the system
the dynarnics of the objects that form the reference system.

In this paper we study the consequences of this fact on quantum theory. We
do that by studying the formal canonical quantization [2, 3] of the theory of general
relativity plus matter which was introduced in the previous paper.

In the canonical quantization of the gauge theories one imposes the quantum
constraint equations on the quantum states’ space H [4]: the states that solve this
equations are the physical states of the system. Let Hp, be the linear space of the
physical states. Then, one defines the observables on Hpy, in terms of the basic op-
erators defined on H. In order that an operator Op), on H be well defined on the
subspace Hp,, it has to commute with the constraints. By taking the £ —— 0 limit of
the commutator, it follows that Op, should correspond to a classical observable Op,
with vanishing Poisson brackets with the constraints, namely to a gauge-invariant
observable.

Tlius, in order to build the quantum theory we cannot avoid the problem of find-
ing the gauge-invariant observables. Since, as argued in the previous paper, gauge-
invariant observables (in the specified sense) can be defined only by taking into account
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the gravitational dynamiecs of the material bodies that form the reference systems, we
are forced to conclude that a consistent quantization of a general covariant theory like
general relativity can only be accomplished by also considering the quantum properties
of the reference systems.

Section 2 contains a preliminary discussion on the possibility of avoiding the quan-
tization of the reference systems. Then, in section 3, the quantization of the reference
systems is studied by building the (formal) quantum theory of the model introduced
in the companion paper.

We get two surprising results. The first is that the diffeomorphism constraint can
be exactly solved in closed form. This is related to the fact that the 3-diffec-invariant
ohservables of the model are explicitly known. The second, and most remarkable,
result is that the Hamiltonian constraint gives rise to a Schrodinger evolution equation
in the approximation considered in the previous paper.

Then we discuss a secoid, more ‘Fealistic’, model in which the material reference
system is localized in a finite region of space. In this model we may make use, for
the vacuum region, of the solutions of the quantum constraint equations of vacuum
general relativity which were recently obtained by making use of Ashtekar’s variables
[5,6] in the loop representation [7]. By using these results, the theory is reduced to a
system in which the basic constraint equations have been solved, the only remaining
equation being a Schrddinger evolution equation in the local internal clock time. A
class of local gauge-invariant physical observables is displayed. We suggest that in this
way the problem of the absence of physical observables in canonical quantum gravity
can be overcome,. '

2. Which theory should we guantize in order to get a quantum theory of
the gravitational field?

With reference to the previous paper [1}, we may say that if we want to quantize a
general covariant theory like general relativity, we have essentially three choices,

(a) Consider pure general relativity in the non-local interpretation.

(b) Consider pure general relativity in the local interpretation.

(c) Consider a general relativity + matter system in which the matter is used as
a reference system.

The choice (a) is, in a sense, more fundamental; but it leads to difficulties. As
we repeatedly advertised, no gauge-invariant observable is known in pure (compact
space) general relativityt. This is a sad situation, since in the vacuum case solutions
of the quantum constraints have been found, and therefore at least one sector of
Hp,, has being defined [7]. One has Hp,, but not even a single observable quantity
that can be defined on it. There are interesting linear operators well defined on
Hpy,. But in quantum mechanics it is not enough to have operators: one needs their
interpretation. The interpretation is provided by relating the operators to classical

1 The asymptotically Bat case allows the definition of some gauge-invariant observables at infinity,
like the ADM mass and momenta. There are some doubis that these essentially non-local ohservables
could be implemented in the quantum theory [8,9). Our general philosophy here is that since every
observable has to be local {in a suitable sense), fundamental physics cannot drastically depend on
the boundary conditions. To explore the opposite point of view, work is in progress on the the
asymptotically Aat case [10].
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observables, namely to measurement procedures. Thus, these operators are useless
until a way to interpret them has been foundt.

Choice (b) implies some subtleties. Indeed, when read in the local interpretation,
general relativity is not a gauge theory in which the undetermined degrees of freedom
are non-observable gauges, but it is an approximate theory in which the undetermined
degrees of freedom just represent some physical degrees of freedom over which we do
not have control [1]. This has some consequences. To understand these consequences
let us ¢consider a simple model. Consider two particles, z and y on z line. The first one
represents a physical degree of freedom the dynamics of which we know, the second one
a degree of freedom the dynamics of which we do not know. The first one represents
the true gravitational degrees of freedom, the second one the reference sysiem degrees
of freedom. Let the equations of motion be

E=0 = (1) (1)

where f(t) is an arbitrary external foree, unknown, which drives y. These equations
can be obtained by the Hamiltonian

— 1 2 1 2

we can take the

where N(t) = f(t). Since the equations of motion do not contain

m,, +— oo limit in the Hamilionian and get

y'l

H=

1
5—p; T N{t)p, (3)
2 :

X

which, indeed, again gives the same evolution for y(t). Note that N(?) must not be
considered as a Lagrange multiplier, but just as an unknown arbitrary function. Let us
consider the quantization. A standard Schrédinger quantization of the Hamiltonian (2)
gives a wavefunction ¢ € L,[R?], which evolves according to a standard Schrodinger
equation. "The solution of this equation can be obtained from the transformation
properties of the wavefunction under arbitrary coordinate transformations (indeed
the evolution in y is the one of a free particle in an arbitrary reference system). It is
a superposition of waves

wewt) = [ [a ) g yle (4)

buplzut) = oxp| L (k4 2 - P

kp(Z, 4,1} = exp y kx + = t]} exp P (y—slt)p+ 5 t (5)
T ¥

where §(f) = N(t). The important point to notice is that the y dependence is not
trivial and contains information even if s(¢) is not known. For instance, suppose at
t = 0 the wavefunction was concentrated in y = 0; then the centre of the wavepacket
at later times depends on s(t), but once this is known, the spread of the wavepacket is
uniquely determined. Note that, consistent with our interpretation, the wavefunctional

t A possible altermnative way out may be given by studying the interpretation of these operators in
terms of the gauge fixing provided by the linearization. Work is in progress in this direction [11].
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contains information on both x and y, both of which can be measured. For every state
1, the cutcome of a measurement of x and y can be obtained by the standard rules.
Suppose we decide that, since y iz totally undctermined, we treat it in the quanti-
zation as we usually treat gauge degrees of freedom. This can be achieved by consider-
ing the Hamiltonian (3), and treating NV as a Lagrange multiplier. We obtain a gauge
theory with the constraint p, = 0. By imposing it on the states we would obtain

iz u,t) =

T FoFTy

ey

~

iz, 1). (6)
Then the entire information on y is lost, and the theory does not describe y anymore.
Thus this treatment is inconsistent with our interpretation of the y degree of freedom:
if we interpret a focal invariance of the equation as a lack of knowledge rather than a
gauge invariance, then the Dirac quantization procedure ig not viable.

In general relativity, the role of N(¢) (and s(t)) is played by the lapse function. To
impose the constrainis on the wavefuncilon amounts io requiring that the wavefune-
tion does not depend at all on the {arbitrary) reference system variables. Thus, the
standard Dirac constraint quantization is totally incompatible with the quantization
of the theory in the local inlcrpretation, which is the interpretation in which the local
invariance of the Einstein equation is interpreted as a lack of knowledge of the motion
of the reference system rather than as a genuine gauge invariance. If we want to ad-
here to the local interpretation, not only are we dealing with an approximate theory
(as shown in [1]), but also we have to rethink the guantization procedure.

The last choice (¢) is the one to which we adhere in this paper, and which is
analysed in the next sections.

3. Quantization of the gravity + reference system theory

In this section, we study the formal canonical quantization [2, 3] of the systemn defined
in the companion paper. We refer to that paper for the notation. We recall here
that the theory is defined, in the canonical framework, in terms of the phase space
coordinates g,,(=), P (=), X2(y), p, (1), T(y), P(x) by the constraints

(7)

baginith 1y 3

H(f) = HAPM(f) - f &y F(X ()N Em + pAy) + @2 /) P(y))?.

¢, and p®® are the standard space metric and its conjugate momentum (related to
the extrinsic curvature of the space}. The vectors y label the infinitesimal particles of
a ‘fluid’ that form the material reference system: X %(y) is the position of tie particie
y and p®(y) the related momentum. T(y) is the value of a (cilock) variable attached
to the particle ¥ and P(y) its momentum,

Following DeWitt, we introduce on the configuration space {g,,(=}, X*(y). T(y}}
a wavefunctional

Vg, X,T] (8)
and we define the quantum theory by imposing on ¥ the quantum constraints

H,(z)¥g, X, T]=0 {9)
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(the hat indicates operators) obtained from the constrainis (7} by the replacements

P(@) — 57 (o) = it
Po(y) — B.(y) = 5Xf(y) ' (10)
Ply) — P(y) = —ihé;ﬁ.

We are not interested here in problems related to the measure that defines the Hilbert
structure, or the ordering of the Hamiltonian constraint. The momentum constraint is
ordered so that it generates three-dimensional diffeomorphisms. The surprise is that
these equations are not completely intractable. Indeed, the momentum constraint can
be completely and exactly solved. This is related to the fact that we know explicitly
the classical Diff3 invariant observables. Indeed, we define, on the configuration space,
the observable §,,(y), which is a functional of g and X,

[ ;o
Fals, X1 = 22 (). (1)

Then a direct calculation shows that every state of the form

¥y, X,T) = ¥, T] (12)

solves the momentum constraint. This follows, of course, from the fact that § and T
coordinatize the Diff3 invariant configuration space.

Now, consider the approximation of the full theory considered in section 4. In this
approximation the Hamiltonian constraint becomes

7 ADM - . Li 3 _6__ - _
AN . T =82 [ (X)) s W16 T = 0. (13)
From this equation it follows that

5T( qu T) = —H“"DM (y)¥[3, T). (14)

where the tilde over the ADM Hamiltonian constraints indicates that it operates on
the § variable rather than on the g variable.

Equation (14) is a crucial result. It is a Schrédinger equation in the clock time
T(y). More precisely it is a Schwinger-Tomonaga multi-fingered time evolution equa-
tion. It fixes the value of ¥[§, 77 everywhere if the value of ¥[7,0] is known. Given
the discussion in section 4 of [1}, it is clear how we can interpret this result. We can
identify the § variable in this section with the initial value (T' = 0) of the § phys-
ical observable defined in [1]. §,;(y) at T(y)} = 0 can be seen as a complete set of
gauge-invariant configuration observables, and W[y, 0] contains all the information on
the state and can be seen as an initial state. Then the Schrddinger equation (14) gives
the relation with alternative descriptions, in terms of § at different times. This can
be read as an evolution equation in the clock’s time.
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In particular, we may decide to describe the system by sets of measurements
performed in correspondence with the sets of spacetime points tn which the clocks
have the same value T(y) = T". Then we can write, without loosing information,

‘Ii[aab(y)](T) = ‘I'[-a'ab(y)?T] (15)
which satisfies the standard Schrédinger equation
—ingn W) = (< [ A2P)) wial) (16)

We think. but it has still to be checked, that any other additional matter term in
the theory (for instance electromagnetic or Yang-Mills fields) would appear in this
Schrédinger equation in the correct form. This would be an interesting test of the
ideas proposed in this paperf.

In the approximate form of the Hamilionian constraint, we dropped the original
absolute value. As shown in [1}, it is consistent to restrict the classical theory to the
sector P > 0. This amounts to assuming that the direction in which the coordinate-
time flows is not observable. Thus, the classical theory that we are quantizing is
supplemented by the P > 0 condition, and we may drop the absolute value. However,
we should then bring this condition to the quantum theory. In the quantum theory, this
becomes a positive frequency condition for the solutions of the Schrédinger equation.
In turn, this implies that we have to restrict the physical Hilbert space to the states
on which the Hamiltonian is positive. While this procedure is certainly viable (for
the same reason as why we may select the p° > 0 sector of a quantum free particle),
nevertheless, as pointed out by Kuchaf [12], it raises certain issues about the quantum
observability even of the classically gauge-invariant observables that we have found in
the companion paper. The translations to the quantum theory of constraints expressed
by inequalities has been studied by Isham {13]. The reason for which the classical
gauge-invariant observables may give problems in the quantum theory is exemplified
by the standard example of the quantization of a free particle on Rt: while the
momentum of the particle is a good classical observable, it cannot be transiated in a
genuine self-adjoint operator, essentially because the eigenfunctions of the derivative
operator cannot stay within a half-line. Although these problems are certainly serious,
they will not be addressed in this paper. We leave tliem for a future, more rigorous,
investigation.

We have shown that the coupled pgeneral relativity + matter theory defined in [1]
can be formally quantized in the canonical framework, obtaining the two following
results. The quantum momentum constraint equation can be exactly solved; the
quanturn Hamiftonian constraint gives rise, in the approximation defined in section 4
of [1], to a Schrédinger equation in the clock time T. All the quantities that appear
in the final theory are gauge invariant.

4. A ‘realistic’ model of a local material reference system, the ‘rocket’

Two features of the model presented in the last section are particularly disturbing.
Firstly, free particles are not particularly nice objects in view of our essentially field
theoretical understanding of fundamental physics.

t This issue has been raised by A Ashtelar.
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Secondly, and more importantly, the matter that we couple to general relativity as
a physical reference system should represent the physical laboratory and objects that
the experimenter uses for his or her measurements, The model in which the laboratory
fills up the entire space is therefore quite unrealistic. For instance, it would kill all
cosmological and astronomical physics, which is based on vacuum Einstein equations.
In this section we partially improve the model in regard to the second criticism. We
leave the first problem open.

In the philosophy of the present papers, there is nothing like the correct modet of
a reference system. Indeed, different concrete physical situations, in which different
matter is used as the reference systemm, would require to be described by different
models.

At the opposite extreme of filling the entire space with our laboratory, we could
consider the simplest reference system given by a single particle, Attractive as this
picture may be, it is not viable for a technical reason that will be discussed later. Since
one particle is not enough, we take a small cloud of them. These will represent, for
instance, the atoms of a rocket{ sent through the solar system to measure gravitational
fields {or maybe towards a black hole to measure quantum gravitational effects!).
Including into the picture the electromagnetic interactions among these atoms, which
structure the materials, would complicate, but not substantially modify the general
picture.

We label these small clouds of particles by a parameter y which now belongs
to a finite region of Rg. We denote this finite region by R (for rocket): R =
{y € R3;|y| < 1}. Our basic variables are now

NED Xy) Ty) yeR (17)

The Lagrangian and Hamiltonian and constraints are the same as in the previous
model, with the difference that the domain of integration of all the y integrals is R.
Let us analyse this model. The point is that there are two regions: the rocket and
the outside. We can solve the diffeomorphism invariance as we did previously only
partially, namely only inside the rocket. We define the metric on the rocket by

8X(y) aX*?
) = 5 B (X () (18)

We decompose the constraints as follows

Hy(y) = H,(X(y))

(19)
H;“(:::):H”(m)—/;zday 8z, X(y)) H,(y)

(the superscript vac is for vacuum). The set of constraints & 2(y), H () is equivalent
to the original set. Similarly we define

053 (2) = gou() ~ ]r &%y 8z X (y)) Gs(¥) (20)

t A peaceful rocket.
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which is a metric that agrees with the original metric in vacuum and vanishes where
the rocket is. It is straightforward to verify that

{H(£),§ap(2)} =0

{H™(£), dapl2)} = 0

{H{(F), 05%(x)} =

{H™(F), g3°(x)} = bp953°(x)

where 6,g;3¢(x) is the standard diffeo transformation generated by the constraints.
Because of these equations, the quantum constraint equation

(21)

A(H9(g,X. T)=0 (22)
is solved by any wavefunctional of the form

Ylg, X, T = ¥{g"™, 5, 7). (23)
In order to deal with remaining momentum constraint

HY(£100y, X, T] = 0 (24)
it is convenient, given any configuration .V%(y). to choose an arbitrary extension
X8 (y) defined for all the y in R3, and such that, on R, it agrees with .X. We denote
the cormplement of the rocket as § (for sky); S = {y € R3 | lut > 11. We will check
at the end that nothing depends on the extension chosen. By using X,,, we define

Frexts. .y . rr s PR RY Inr\
Iro \Y) = I\ Aet\U}) L2}
and
AXE, (y) OX i
ity = BaW B, ) (26)

vac(f Uy, T] =0 Supp FC 5. (27)

In this equation the original variable = has completely disappeared, everything is
defined on Rg. The equation requires that ¥ depends on %! only modulo diffeornor-
phisms with support in the sky S (outside the rocket). This requirement is clearly
independent of the particuiar exiension chosen. Noie that, ouiside the rockei. the
momentum constraint is given by just the ADM part.

Let us now consider the Hamiltontan constraint. Its vacuum component gives

HADM(y),I‘[gext.T] =0 y e S [28)

The rocket term gives, in the usual approximation,

— _i_ axt _ £ ;7ADM ext _
méT(y) Uly .T]—WH () %[5, T] VER (29)
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Thus, we have a mixed situation: inside the rocket, since there is a reference
system, the metric is observable, and there is an evolution in the clock’s time. Qutside
the rocket the wavefunctionals have to be diff invariant and to satisfy the Jamiltonian
ADM constraint.

At this point we can put {ogether the strength of our (complementary) under-
standings of both regions. Indeed, we do know how to solve the vacuum constraints
equations. These have been solved, in the framework of Ashtekar’s new variables
version of general relativity [5], by using the loop representation of the quantum the-
ory [7). In these works no observable was available. Now the rockets provides some
observables. Let us introduce the loop representation machinery.

First, it is clear that everything that has been said in this paper works equally
well in Ashtekar’s version of general relativity.

We introduce the Ashtekar variables A (x) and &,(2) on the {extended and com-
- plexified) phase space of general relativity. We define

— 3Xebxt (¥)

A3 (@) == T A X () o0

Then we repeat step by step the previous derivation. We find that our theory is given
in the Ashtekar representation by the states W{A®™* T and by the constraints

L (FP[AT T)=0 Supp F C S
Cly)e[4™ T] =0 yES (31)
) & et ¢
. Aex . Aext‘ 3
lhéT(y)wH T wC‘(y)!Il[ i YER

where C(f) and C are the Ashtekar’s diffeomorphisms and Hamiltonian constraints
[61, expressed in terms of A%%Y,

Then, we can transform from A% to the loop representation. The loop repre-
sentation 18 a representation for quantum general relativity in which the states are
expressed as functionals of multiloopst. The transformation from the Ashtekar repre-
sentation to the loop representation is formally accomplished by means of a functional
transform which is an infinite-dimensional analogue of the Fourier transform. Here we
want to transform from ¥[4¥* T] to ¥[e,T), where o is a single loop, or a multiloop
(a set of a finite number of loops). Thus we define

Ula,T] = '/[dAem] Tr P exp(/a Aext)ﬂ![Aem,T]. (32)

This formula allows us to transfer the quantum operators defined in the Ashtekar
representation to the ¥{a,T] space. As described in [7], one may proceed in a more
rigorous way, and avoid the use of the ill defined functional integral, by quantizing a
suitable algebra of functions of A,,,, but at the present level of rigour we do not need
here the rigorous version of the theory., Here o is a multiple loop on the space R‘;,

t The term representation is used liere in the sense of Dirac {16], as in the coordinate representation
and momentum representation for a finite-dimenstonal system,
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and, we recall, the clock variable T{y) is defined for the ¥ in the rocket R. In this
loop representation the constraint equations become

CooP(£)¥[a, T} = 0 Supp FC S (33)
Co%P () W[, T] = 0 yes (34)
iVl ]= £ CP@)¥e 7] yeR. (35)

The first two of these equations are solved in [7]. Equation (34) is solved by any ¥
which has support only on the loops that have no corners or intersections outside the
rocket. The general solution of equation (33) is obtained by requiring that ¥ has the
same value for every two multiple loops o and # which can be transformed one into
the other by a diffeomorphism with support on the sky. Namely on any two loops o
and F which are identical in the rocket, but are just knotted and linked in the same
way in the sky. In other words we require that ¥[a,T] depends on the location of
in the rocket and on the way o is knotted and linked in the sky. Let us assume that ¥
has these propertiest. Then, the only remaining equation is equation (35). As we did
in section 5, we may, without loosing any information, decide to describe the system
in terms of just one time, and we have

~ i Wa](T) = fR 43y G (y) T[a](T). (36)

In [7] the Hamiltonian loop constraint operator C'°°? is defined in such a way that its
action on its kernel is non-divergent. An alternative definition of the Hamiltonian loop
constraint operator is studied by Blencowe in [17]. According to this reference, the
operator C'9P is a regularized operators defined in the entire loop space. See also the
subsection of [7] on the shift operator. By using the Blencowe Hamiltonian constraint
(', equation (36) is a regularized Schrédinger equation that expresses the quantum
gravitational evolution of the physical states in the clock time T, Equation {36) is our
main result. By using this equation, concrete caleulations in guantum gravity could
perhaps be performed.

Note that the value of any T™[a] observable [7] inside the rocket, at any given time
T, is a gauge-invariant quantity. For instance

T°[a](0) = Tr P exp U .4“‘) a:§8— 7R (37)

i8 a {complex) gauge-invariant physical observable in quantum gravity. It is related
to the change in the internal direction of a left-handed spin particle dragged along a
loop defined by the particles of the rocket.

In conclusion, we have defined in this section a theory in which quantum general
relativity is coupled to a quantized local reference systemn, that can be interpreted as
a free-falling laboratory (rocket). The constraints of the quantum theory are solved.
The physical wavefunction is a function of the clock inside the laboratory and of sets

t There are some subtleties here: to which order in the derivatives at the border of the rocket do the
two loops have to agree, in order to be identified? VWe leave these finer points to a later and more
careful analysis of the model.
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of loops which may go in and out the laboratory. The wavefunction does not depend
on the locations of the loop outside the laboratory, but only on the way they are
knotted and linked. It does depend on the location of the loops inside the laboratory.
Moreover it has support only on loops that are smooth and non-intersecting outside
the laboratory. These quantum states represent physical quantum states of the non-
perturbative quantum gravitational theory. To first order in the approximation of big
lengths {with respect to c/w) these states evolve in the laboratory clock time according
to the Schrodinger equation (36), in which the Hamiltonian is a reguiarized operator.
The (complex) observables of the theory are given by the T"[a](T) observables defined
in [7], where o lies inside the rocket, and the observable is defined at the clock time 7.

5. Perspectives

In this section we collect some considerations on the previous results and some spec-
ulations on the possibility of extending and improving them.

We may note that the approximation in which a Schrédinger equation holds is
not a semiclassical approximation. Rather, it is a certain physical regime, defined in
the Hamiltonian picture by the fact that physical quantities with a dimension of a
length are big with respect to ¢/w and in the Lagrangian framework by the fact that
the motion of the physical clocks is adequate (is as fast as possible). Therefore this
way of recovering of the Schrédinger equation is different from the one discussed, for
instance, in [2, 18]. However, it is likely that there is a strict relation between the two
points of view, :

One can consider higher-order terms in ¢/w, and study the terms that have to be
added to the Schrédinger equation. By expanding in powers of ¢/w, and also keeping
the second term, the Hamiitonian consiraint is

H) = B0 - (2) 7 Py - £ ot 10 (&), (39)

The corresponding quantum equation is (we arbitrarily choose an ordering)

it g ¥15,T] = S 3P ()91, 7]

., ¢ § V71 82 . ct
v (sr) (7 + ) o+ () 39

If we represent the states in terms of a uniform clock time T(y) = T and we express
everything in terms of the § variable, we have the ‘corrected’ Schrédinger equation for
the wavefunctional ¥[3](T)

g o _ I ¢t
—ihgm ¥ = HlIJ+1h—H\P+O( ) (40)

where the Hamiltonian is the integral of the ADM Hamiltonian constraint

f= [ &y M), (41)
24
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The ¢?/w? term is the quantum gravitational correction to the Schrodinger equation
due to the physical nature of the clocks. In our model it is given by

. & 6
H*’:/ d® (n2+Da . P D y— ) 42
(o4 N 6gab(y)g dﬁgcd(y) ( }

It is very tempting to claim that this ¢?/w? term gives indeed physical effects that
are, in principle, observable. Note that it is non-local in time. Once more we stress
that in spite of this term the probabilistic interpretation of the quantum theory still
holds.

A weakness of the model presented in section 3 is the kind of matter chosen to
represent the reference system. In our philosophy, as we already said, there is not a
model of reference system which is the correct and unique one. Different reference sys-
tems correspond to a different laboratory used to perform gravitational experiments.
More sophisticated models can be studied.

For instance, one may study what are the consequences of considering the discrete
nature of the particles and taking a finite number of particles. Note that in the loop
representation there is no observable localized in one point. This is a further reason
for which a single-particle reference system would not be enough. It is not clear to
us if this impossibility of single points reference systems and observables reflects any
underlying physical reason}. An atiractive alternative is to take a minimal reference
system formed only by a loop of particles {R ~ §*). This reference system defines
a single loop observable (and its powers). By using this reference system, the great
advantage is that the physical {lamiltonian is expressed by a one-dimensional integral.
Thus the dynamics has the structure of the iwo-dimensional field theories, which are
now pretty well under conirol.

Given our essentially ficld theoretical understanding of the world, it would perhaps
be more appropriate to couple a field, rather than a continuum of particles, to gencral
relativity. The technical difficulty, then, is related to the possibility of inverting the
field, in order to use its value as a coordinate. But maybe this is not the correct
thing to do: we should use a second quantized language for the field, and use the
second quantization particles for defining the physical points, Would this change our
conclusions in an essential way? \Would the creation and annihilation processes of a
field theory, or the properties of symmetry under particle exchange, modify the picture
we gave here (which is essentially defined by a fixed particle number sector of the full
theory)?t

The idea discussed in section 4 is the split of the universe into a rocket and a sky.
Diffeomarphism invariance liolds in the sky, but is hidden by the matier in the rocket.
We owe to Louis Crane the idea that meaningful local observables in quanium gravity
could be obtained by splitting the system in two regions. Note that this configuration

t This possibility was suggested by Isham,

1 Another possibility is to consider the hypothesis that fundamental objects are string-like at high
energy. Standard string theory is defined on a fixed background in the target space, and is not
diffeomorphism invariant. But it has been repeatedly suggested that the theory represents, in some
sense, the low-cnergy (broken) phase of a theory that is fully diffeomorphisim invariant at high energy.
In this case, if any definition of physical spacetime points has to be recovered, one has go through
something like the analysis of this paper; Lut the reference system has to he defined in terms of
strings. At low energies these would behave like particles, but at high energy they become excited
and they are spread in some finite region of T [19}. Does this mean that string theary implies that
the physical space cannot be defined below a certain scale [19,20]7
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can also be interpreted as a configuration for a scattering experiment. Indeed, we may
think that the sky is the ‘internal’ scattering region, and the rocket is the ‘external’
laboratory region. In this way we can recover the asymptotically flat case without
unnaturally breaking the diffeomorphism invariance. The crucial result, in this case,
is that the time evolution (and the Schrddinger equation) is defined by the laboratory
(the rocket).

Louis Crane has recently observed [21] that the structure that one obtains in the
loop renresentation hv nerforming this splitting is essentially isomornhic with the one

loop representation by performing this splitting is essentially isomorphic with the or
defined by the axioms of the topological quantum ﬁeld theories. More precisely, every
state of quantum gravity corresponds to a given topological quantum theory. Since
these, in turn, are in correspondence with the class of the rational conformal quantum
field theories, these developments suggest that there may be a correspondence between
conformal theories and states of quantum gravity in the loop representation. The
rocket—sky loop model can be considered as a first step toward the implementation of
these ideas.

6. Conclusions

The main thesis of the work described in this paper and in the companion one is that
gravitational physics cannot be properly understood unless one takes into account the
physical nature and the gravitational interactions of the bodies that form the reference
system.

In the classical theory one can always work in an approximation in which the effects
and the dynamics of the material reference systems are neglected; but in the quantum

theory one has to take into account the quantum properties of the objects that form
the reference svstemn. It is in this sense that we have a ‘guantized qnar‘pfn"np

LTATLIRLILT oyouliL, AL L il s oTLIST VAAGL W & QUalluisll opalouiille

In the quantum theory, in fact, in order to define the ph_ys:cal gauge-mvariant
quantum operators and therefore to understand which quantities are subject to quan-
tum fluctuations, one is forced to explicitly include the material reference systems in
the system. The key point is that these physical material objects of the reference
system add to the system some additional degrees of freedom, which can be gauge
transformed to give physical gauge-invariant meaning to the gauge part of the gravi-
tational metric.

We can now answer the specific question that opens the companion paper. [t
is wrong to consider both the quantum fluctuations of the metric and the quantum
fluctuations of the particles used to identify the points. Both the metric and the
position of the particle are non-gauge-invariant concepts. The only gauge-invariant
quantities are the relative quantities, namely the metric distances between the particles
themselves. Since gauge degrees of freedom must not be guantized, and therefore are
not subject to quantum fluctuation, it is not correct to assert that both the metric
and the particle position fluctuate. Indeed there is just one fluctuating object, which
i5 the metric that define$ the distance between the particles (7). This is a crucial
conceptual result of the present waork.

The main technical result of the two papers is that the program of coupling matter
degrees of freedom, and then gauge fixing by absorbing them in a new gauge-invariant
observable metric, can indeed be carried out in a concrete fashion. This is true both
in the classical theory, where the program provides reasonable gauge-invariant observ-
ables and in the (formal) quantum theory.
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In the quantum theory, certain surprising results follow. The first one is that
the momentum constraint of the coupled theory can be exactly soived. The second
and perhaps most remarkable result is that the Hamiltonian constraint gives rise to
a functional equation which reduces, in a certain approximation, to a Schrédinger
evolution equation.

This result strongly supports the thesis that the Schrédinger equation describes an
approximate regime. It is important to stress here that general quantum mechanics
and its standard Copenhagen probabilistic interpretation still hold also outside the
Schrodinger approximation. This is discussed in detail in [14].

The model of reference system used in these papers can certainly be improved
in several directions. The rocket-sky local model presented in the section 4 is more
realistic than the infinite model of section 3. Other models of reference systems cer-
tainly deserve to be studied: this is the only way we see in order to construct realistic
gauge-invariant physical observables In quantum gravity.

The rocket—sky model becomes particularly interesting if the resulis that have
been obtained in the loop representation are included in the picture and added to
the results of this paper. In the rocket-sky loop theory we have physical states,
gauge-invariant physical observables and a regularized Schrodinger equation. Many
problems remain open before a complete quantum theory of gravity can be defined.
But we think that having a regularized Schrédinger equation, a well defined set of
gauge-invariant quantities and a set of physical states may be a new, exciting and
encouraging situation in quantum gravity.
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