
Available: June 9 Summer 2014 Due: June 18

(a) Create arrays A and B with the data above.

(b) Find the indices (single-index) of elements of B that are less than 3. Assign this (column-
vector) to variable named validIndex.

(c) Find the maximum value of A, considering only the locations where the B constraint is
satisfied. Assign the maxinum value to AmaxbyB and the index where the max occurs to
Idx. Note: In this example, the proper value for the maximizing index is 5. However, this
will not be the index directly returned by max, since max is only “receiving” an array with 4
elements. Be careful here. There is one additional step.

(d) Use ind2sub to convert the single-index value Idx into the correct row and column indices.
Assign these to rowBest and colBest.

5. All forms of quantitative design involves choices (ie., the “design”), and almost all choices involve
tradeoffs. Complex dependencies make it critical to merge extensive domain-specific expertise
with modern theoretical and computational optimization tools to determine the optimal choices.

For problems with just a few (say 2) design choices, the incredible speed of today’s laptop com-
puters can be exploited, and quick solutions can be obtained to get a basic understanding of the
dominant issues in a given design problem. In this problem, you will use computation to solve a
simple design problem of this form. The ideas learned here can easily be applied to other problems
that share the same basic structure.

The design involves the choice of two parameters, b and h, which must be positive, and satisfy 4
constraints, listed below

6Pv

bh2
≤ 108,

6Ph

b2h
≤ 108,

4Pv

2 · 1011bh3
≤ 0.001,

4Ph

2 · 1011b3h
≤ 0.001

where Pv = 1000 and Ph = 100 are known, given values.

Looking at the formula, it is clear that since b and h are both in the denominator of all of the
fractions, simply picking them both “large enough” will satisfy the 4 constraints. However, the
tradeoff is that it is also important to keep the quantity bh as small as possible.

The general theory of optimization, which relies heavily on calculus can be used to understand
(and determine through computation) the best choices. Our approach here will be simpler - use
brute-force calculations, computing all relevant quantities for a large number of combinations of
b and h values, check which choices satisfy the constraints, and then determine which value for
b and h is the best at also making bh small. In the end, you will do this with just a handful of
Matlab commands. The problem is broken into many parts, each corresponding to a code-cell in
the template file.

(a) Define parameters

bmin = 0.001, bmax = 0.2, hmin = 0.001, hmax = 0.2

using variable names bMin, bMax, hMin, hMax. Also define variables Pv and Ph using the
values given in the problem introduction.

3 of 7



Available: June 9 Summer 2014 Due: June 18

(b) As mentioned, we will simply compute the relevant quantites for a large number of comina-
tions of value of b and h. Let’s use 500 different values for b and 500 different values for
h, so 250000 different combinations will be considered. Define a variable N = 500, using
the variable name N. Remark: Because of this choice, some of the arrays you define in
subsequent parts are going to be very large, and unmanagable to look at. You should start
by solving the problem with N = 5 instead, which will allow you to examine the arrays that
are being created, and more carefully analyze the effect of the commands you write. You
won’t have the autograder to rely on, but you’ll learn more, and that’s what we’re striving
for. Once everything is behaving well, increase N to 10, and then to 500, and you’ll probably
have a complete, correct solution to the problem.

(c) Create a row-vector bValues, with N elements, uniformly-spaced from bmin to bmax. For
the purposes of describing calculations, denote these vectors

bValues =
[

b1 b2 · · · bN
]

where b1 = bmin and bN = bmax. Do the same for the values for h, giving

hValues =
[

h1 h2 · · · hN
]

(d) Create an array B of dimension N ×N with the values

B =











b1 b1 · · · b1
b2 b2 · · · b2
...

...
. . .

...
bN bN · · · bN











Use the variable name B. Note that the (i, j) entry of B is bi. Also create an array H of
dimension N ×N with the values

H =











h1 h2 · · · hN
h1 h2 · · · hN
...

...
. . .

...
h1 h2 · · · hN











Use the variable name H. Note that the (i, j) entry of H is hj .

(e) Create a N ×N array S1 whose (i,j) element is equal to

S1(i, j) =
6Pv

bih
2

j

Use the variable name S1.

(f) Create a N ×N array S2 whose (i,j) element is equal to

S2(i, j) =
6Ph

b2ihj

Use the variable name S2.

4 of 7



Available: June 9 Summer 2014 Due: June 18

(g) Create a N ×N array D1 whose (i,j) element is equal to

D1(i, j) =
4Pv

2 · 1011bih3j

Use the variable name D1.

(h) Create a N ×N array D2 whose (i,j) element is equal to

D2(i, j) =
4Ph

2 · 1011b3ihj

Use the variable name D2.

(i) Create a N ×N array A whose (i,j) element is equal to

A(i, j) = bihj

Use the variable name A.

(j) Write a one-line command to determine how many pairs of (b, h) (from the N2 pairs con-
sidered) satisfy the 4 design constraints

S1 < 108, S2 < 108, D1 < 0.001, D2 < 0.001

We’ll refer to the combinations which satisfy all 4 constraints as the “valid designs.” Assign
this integer number to a variable nValidDesigns.

(k) We don’t just want to know how many valid designs there are - we actually want a valid
design. So, we’ll redo the main computation that you just used in getting nValidDesigns,
but to obtain additional useful information in the process. Write a 1-line command to
determine the indices (in single-index form) of the valid designs. Assign this column vector
(whose length is equal to nValidDesigns) to a variable named indexValidDesigns.

(l) It is of course true that the minimum value of all the entries of A is simply bminhmin.
Determine what is the minimum value of A corresponding to the valid designs. Assign
this to a variable named Amin. Hint: In this part (and the next part too) refer to the ideas
you learned in Problem 4.

(m) Calculate the index (single-index) where (within the N2 choices) the best design (satisfies
all constraints and minimizes A) is located, assigning it to a variable named indexBest.

(n) Convert indexBest, which is relative to a N × N array, to the corresponding row and
column. Use rowBest and colBest for the variable names.

(o) Using the row and column index associated with the best design, extract the optimal de-
sign parameters from bValues and hValues, respectively, storing them in variables named
bChoice and hChoice. Use the command disp and num2str to print (to the Command
Window) lines like

5 of 7



Available: June 9 Summer 2014 Due: June 18

The best value for b is: 0.112

The best value for h is: 0.051

These choices yield the minimum value of A is: 0.005712

Note that these are not the correct answers, and only used to illustrate what character string
we would like you to print.

Test Grades

In the assignment download there is a file called TestGrades.mat that contains a two-dimensional array
named Grades. This array will be used for Problems 6 to 14. Each row of this array corresponds to the
grades for an individual student and each column corresponds to an individual test. Hence, the value
of the (2,3)-element corresponds to the second student’s grade on the third test.

The scalar variable sNum is the student number that you want to determine information about and
the scalar variable testNum is the test number that you want to determine information about. Using
relational operators and other Matlab functions write one-line Matlab expressions that perform the
following tasks. These expressions should work for arrays of any size.

6. Assign true to the variable everLowest if the student indicated by sNum has the lowest score on

any of the tests, or false if otherwise. Here, “lowest” is to mean that the student’s score is less
than or equal to all the other students.

7. Assign true to the variable neverLowest if the student indicated by sNum does not have the

lowest score on any of the tests, or false if otherwise. Here, again, “lowest” is to mean that the
student’s score is less than or equal to all the other students.

8. Assign true to the variable alwaysLowest if the student indicated by sNum has the lowest score

on all of the tests, or false if otherwise. As before, “lowest” is to mean that the student’s score
is less than or equal to all the other students.

9. Assign true to the variable everHighest if the student indicated by sNum has the highest score

on any of the tests, or false if otherwise. Here, “highest” is to mean that the student’s score is
greater than or equal to all the other students.

10. Assign true to the variable neverHighest if the student indicated by sNum does not have the

highest score on any of the tests, or false if otherwise. Here, again, “highest” is to mean that
the student’s score is greater than or equal to all the other students.

11. Assign true to the variable alwaysHighest if the student indicated by sNum has the highest

score on all of the tests, or false if otherwise. As before, “highest” is to mean that the student’s
score is greater than or equal to all the other students.

12. Assign to the variable highScoreOn a 1-by-B array (B may be 0) of the test numbers where the
student indicated by sNum scored the highest. Again, “highest” is to mean greater than or equal
to all other students.

6 of 7


