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Relativity 1 
 
Disclaimer: These lecture notes are not meant to replace the course textbook.  The 
content may be incomplete.  Some topics may be unclear.  These notes are only meant to 
be a study aid and a supplement to your own notes.  Please report any inaccuracies to the 
professor. 
 

Newtonian Relativity 
 
Galileo and Newton described the motion of objects with respect to a particular 
reference frame, which is basically a coordinate system attached to a particular observer. 
 
A reference frame in which Newton’s Laws hold is called an inertial frame. It is a 
frame that is not accelerating. 
 
Newtonian Principle of Relativity (Galilean Invariance): 
 If Newton’s Laws hold in one inertial frame, they also hold in a reference frame 
moving at a constant velocity relative to the first frame. So the other frame is also an 
inertial frame.  We can see this if we make a Galilean transformation: 

Galilean Transformation 
 
Consider a reference frame S’ moving at a constant velocity with respect to a frame S: 
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These transformation equations show you how to convert a coordinate measured in one 
reference frame to the equivalent coordinate in the other reference frame.  Implicit in a 
Galilean transformation is that time is universal (time runs at the same rate in all frames).  
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Now consider the action of a force in one reference frame. For example, the force of 
gravity causes a dropped ball to accelerate: 
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x component:
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Since the acceleration of the ball is the same in each reference frame, and thus the force 
acting on the ball, Newton’s Laws are valid in both frames.  Each is an inertial frame. 
 
Note that since the force is identical in each frame, there is no way to detect which frame 
is moving and which is not.  You can only detect relative motion.  For example, if a jet 
flies west at 1000 mph at the equator, is the jet moving or is the Earth moving?  The jet 
flies over the surface of the Earth, but with respect to the Sun the jet is not moving and 
the Earth is turning beneath it!  The fact that we cannot detect absolute motion is known 
as Relativity.  It is only relative motion that matters. 
 
Example: Consider tossing a ball forward from a moving car at a velocity v’ with respect 
to the reference frame of the car.  What is the velocity of the ball with respect to the 
sidewalk along the road?   
 
We need to know how to transform velocities.  If we assume that the car is moving along 
the x axis at a velocity v with respect to the reference frame of the road, then 
 x x vt= ′ +  
according to a Galilean Transformation.  If we differentiate this with respect to time, we 
get: 

 dx
dt

dx
dt

v=
′
+  

So, the velocity of the ball is v’+v.  It is the sum of the car’s velocity and the velocity of 
the ball with respect to the car.  This should agree with our common sense. 
 
Now suppose that instead of a ball we throw a light beam forward from the car.  Light is 
an electromagnetic wave, and according to Maxwell’s Equations it travels at a velocity 

 in vacuum.  For example, you could derive the following equation: c = ×3 0 108.  m / s
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This is the velocity with respect to the car, but what about the velocity with respect to the 
sidewalk?  Would it be c+v ?  That would agree with our common sense, but not with 
Maxwell’s Equations.  Maxwell’s Equations state that the speed of light is c and only c, 
but for which reference frame does it refer to? 
 
For clarification of the issue, let’s consider sound waves, which are another form of a 
traveling wave. Sound waves are pressure waves.  Pressure is a measure of how hard 
molecules push on a wall (force per unit area), so obviously you need some molecules 
around to have pressure, and thus pressure waves.  Therefore, sound waves require a 
medium to propagate.  The speed of sound at normal temperature and pressure in air is 
343 m/s, or about 765 mph. 
 
In our car example, we could consider honking the horn instead of turning on the 
headlights.  We then create sound waves that propagate forward from the vehicle.  The 
speed of sound is 343 m/s as we have noted, but this is the speed with respect to the 
propagation medium.  If the air is still with respect to the sidewalk, then the speed of the 
sound wave is 343 m/s with respect to the sidewalk and not the horn on the car.  In fact, 
if our car had a rocket strapped on, it could exceed the speed of sound and overtake its 
own emitted sound wave.  (You then create a shock wave, which gives rise to a sonic 
boom.  By the way, this car experiment was actually done recently!) 
 
So honking the horn is not the same as tossing a ball forward.  The velocity of the sound 
waves is always 343 m/s with respect to the reference frame of the air.  It did not obey a 
Galilean Transformation because it picks out a special reference frame. 
 
Now let’s return to the light from the car’s headlights. If the light beam acts like a ball 
thrown forward, we would measure a different velocity for the light depending on 
whether we were in the car or on the sidewalk.  Also, Maxwell’s Equations would have to 
be modified to account for a velocity different than c for all reference frames other than 
the one it apparently describes (does it apply to the car reference frame or the sidewalk?)  
If the light waves act like sound waves, then what is the propagation medium?  Is it the 
air on the Earth?  It can’t be because light can propagate in a vacuum.  So instead, it was 
proposed in the 19th century that light propagates through ether—some sort of medium—
although nobody knew what this ether was.  It was supposed that this ether might be at 
rest with respect to the solar system, or maybe the galaxy.  In any case, the Earth would 
move through this ether, and we should observe light traveling at a speed different than c.   
 
The issue was settled experimentally, but it took Einstein to put everything in the right 
perspective.  The answer will surprise you.  Light waves do act like balls thrown forward, 
but the assumptions behind the Galilean Transformation are wrong.  Not only that, there 
is nothing wrong with Maxwell’s Equations.  The speed of light is always c no matter 
who measures it.  But I’m getting ahead of myself…  
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The Michelson-Morely Experiment 
 
The question of whether ether exists was settled by the Michelson-Morely experiment(s) 
in 1887.  An interferometer was used to separate a light beam into two paths of possibly 
different length and then recombined.  Since light is a wave, it exhibits the phenomenon 
of interference when multiple waves are combined.  If two light waves are completely in 
phase, then the amplitude of each wave adds constructively.  If they are completely out 
of phase, the amplitudes subtract destructively.  Interferometers use monochromatic light 
so that the light wave consists of nearly a single wavelength.  (Today we would use a 
laser). 
 
 
 Constructive interference Destructive interference 
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Calculate the time it takes to travel the horizontal path from A C↔ : 
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Calculate the time it takes to travel the vertical path from A D↔  using the Pythagorean 
theorem: 
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If you multiply this by c, then that is the extra distance light must travel along path 2.  
Even if the length of the arms of the interferometer are the same, there is a time 
difference because the interferometer is traveling through the ether (and the speed of light 
is fixed in the ether). 
 
Now consider rotating the entire interferometer by 90 degrees.  The horizontal path 
becomes the vertical path and vice versa.  We just swap indices and get: 
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So the difference in time between path 2 and path 1 changes when we change the 
orientation of the interferometer with respect to the velocity of the ether.  The difference 
of these differences is: 
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Here we have made use of the binomial expansion to approximate the answer: 
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If we multiply this difference of differences by the speed of light, then that corresponds to 
a shift in the path length difference between arm 1 and arm 2.  If we divide that by the 
wavelength of light, then we have the shift expressed as a fraction of a wavelength: 
 
∆
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Note that c f/ λ = , the frequency of the light. 
 
What we expect to see in the Michelson-Morely experiment is a shift in the interference 
fringes as one rotates the interferometer by 90 degrees.  Let’s see how big a shift: 
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We assume that the ether is 
at rest with respect to the 
solar system 

 
Therefore, we expect to see the fringes move by almost half the distance from one bright 
fringe to the next.  This should be quite noticeable. 
 
Conclusion: No shift was seen!  Nor has one been seen ever since 1887.  The conclusion 
must be that the ether does not exist.  Light does not require any medium to propagation.  
 

How the shift in 
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Relativity 2 
 
Disclaimer: These lecture notes are not meant to replace the course textbook.  The 
content may be incomplete or even inaccurate.  Some topics may be unclear.  These notes 
are only meant to be a study aid and a supplement to your own notes.  Please report any 
inaccuracies to the professor. 
 

Einstein’s Postulates 
 

The absence of any fringe shift in the Michelson-Morely experiment for any 
orientation of the interferometer and for any time of the year negated the ether hypothesis 
for light propagation.  Light waves are oscillations of the electromagnetic field, and no 
propagation medium is necessary, unlike sound waves.  However, if Galilean 
transformations are correct, then Maxwell’s equations must be modified for every 
possible reference frame to account for different velocities for the speed of light.  
Einstein assumed the opposite: that Maxwell’s equations are fundamentally correct, but 
that our intuitive Galilean transformation is not.  This led to the following two postulates:  

 
1. The laws of physics, including electromagnetism, are the same in all inertial 

frames.   
2. Every observer measures the same value c for the speed of light (in vacuum) in all 

inertial frames. 
 

The second postulate is really a consequence of the first, because if Maxwell’s 
equations hold in all inertial frames, then the only possible value for the speed of light is 
c.   These postulates embody Einstein’s Special Theory of Relativity, first published in 
1905 in a paper titled On the Electrodynamics of Moving Bodies.  Later he would 
incorporate gravity and acceleration in his General Theory of Relativity.  As in 
Newtonian Relativity, there is no way to detect absolute motion.  Only the relative 
velocities between two inertial reference frames matters. 

These seemingly simple postulates have extraordinary consequences.  For 
example, when you turn on the headlights of a car, the light beam leaves the car at a 
relative velocity of c  m/s.  However, someone standing on the sidewalk also 
measures the speed of the light beam as c independent of the velocity of the car!  How 
can this be?  As we shall see, our concepts of space and time must be modified.   

= ×3 0 108.
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Basic Definitions 
 
Events are physical phenomena that occur independent of any reference frame.  For 
example: a flash, explosion, return of a spaceship, or disintegration of a subatomic 
particle. 
 
Observers record events, both the time and spatial coordinates, in a particular 
reference frame.  For example, Mission Control in Houston marking down the time and 
location of the splashdown of a space capsule.  The reference frame in this case is the 
Earth. 
 
Simultaneous events occur when the light signals from two events reach an 
observer at the same time 

Relativity of Simultaneity:  
Two events simultaneous in one inertial frame are not simultaneous in any other frame.  
This is a consequence of Einstein’s Postulates.   
 
Proper time is the time difference between two events occurring at the same position 
(Denoted by t0  or τ ). 
 
Rest frame is the inertial frame where two events are only separated by time.  The 
frame in which the proper time is measured 
 
Proper length is the distance between two positions at rest, the length measured in the 
rest frame. (Denoted by L0). 

 

Now that we are armed with these definitions, let’s explore the consequences of the 
constancy of the speed of light in all inertial frames.
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Time Dilation 
 
We explore the rate of time in different inertial frames by considering a special kind of 
clock – a light clock – which is just one arm of an interferometer.  Consider a light pulse 
bouncing vertically between two mirrors.  We analyze the time it takes for the light pulse 
to complete a round trip both in the rest frame of the clock (labeled S’), and in an inertial 
frame where the clock is observed to move horizontally at a velocity v (labeled S). 
 
In the rest frame S’ 
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Now put the light clock on a spaceship, but measure the roundtrip time of the light pulse 
from the Earth frame S: 
 

 

t t

t t

c

L v t c t

L c v t

t L
c v

t L
c v c v c

1

2

2 2 2 2 2

2 2 2 2

2
2

2 2

2 2 2 2

2

2

4 4

4

4

2 1
1 1

= =

= =

+ =

= −

=
−

=
−

=
−

 time up

 time down

The speed of light is still  in this frame,  so

/ /

/

/ /

c h

τ

 

L
c t / 2

v t / 2  

 
So the time it takes the light pulse to make a roundtrip in the clock when it is moving by 
us is appears longer than when it is at rest.  We say that time is dilated.  It also doesn’t 
matter which frame is the Earth and which is the clock.  Any object that moves by with a 
significant velocity appears to have a clock running slow.  We summarize this effect in 
the following relation: 
 
 1
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Length Contraction 
 
Now consider using a light clock to measure the length of an interferometer arm.  In 
particular, let’s measure the length along the direction of motion. 
 
In the rest frame S’ 
 
L c
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Now put the light clock on a spaceship, but measure the roundtrip time of the light pulse 
from the Earth frame S: 
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In other words, the length of the interferometer arm appears contracted when it moves by 
us.  This is known as the Lorentz-Fitzgerald contraction. It is closely related to time 
dilation.  In fact, one implies the other, since we used time dilation to derive length 
contraction. 
 
Time dilation and length contraction are consequences of the assumption that all 
observers measure the same value for the speed of light.  This means that time runs at 
different rates for different inertial frames.  There is no absolute time, time only has a 
relative meaning.  Likewise, length also has only a relative meaning.  Everything depends 
on the relative velocity between two objects.  We only notice these strange effects when 
the velocity is near c, however. 
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The Lorentz Transformation 
 
We are now ready to derive the correct transformation equations between two inertial 
frames in Special Relativity, which modify the Galilean Transformation.  We consider 
two inertial frames S and S’, which have a relative velocity v between them along the x-
axis. 
 
 
 
 
 
 
 
 
 
 
Now suppose that there is a single flash at the origin of S and S’ at time t t , when 
the two inertial frames happen to coincide.  The outgoing light wave will be spherical in 
shape moving outward with a velocity c in both S and S’ by Einstein’s Second Postulate. 
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We expect that the orthogonal coordinates will not be affected by the horizontal velocity: 
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But the x coordinates will be affected.  We assume it will be a linear transformation: 
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But in Relativity the transformation equations should have the same form (the laws of 
physics must be the same).  Only the relative velocity matters.  So ′ =k k . 
 
Consider the outgoing light wave along the x-axis (y = z = 0). 
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Now plug these into the transformation equations: 
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So the modified transformation equations for the spatial coordinates are: 
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So the correct transformation (and inverse transformation) equations are: 
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The Lorentz 
Transformation 

te the following features: 

• We recover the Galilean transformation if c v→∞ → →  (or   so that 0 1) γ  
• Space and time coordinates are mixed (x,t) 
• No change in form of equations from one frame to another (Einstein’s 1st  

postulate) 
• Only relative velocities matter 

o, note that you can derive time dilation and length contraction from these equations.  
 example, if a clock sits at rest in frame S’ at position x’=0, then an observer in frame 
easures the period of the clock to be T = γ τ . 

reover, note that two events which are simultaneous in frame S’ (say at time t’=0 and 
ositions x ) are not simultaneous in frame S (tx2

′
1
′  and t1 2≠ ). 
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Relativity 3 
 
Disclaimer: These lecture notes are not meant to replace the course textbook.  The 
content may be incomplete.  Some topics may be unclear.  These notes are only meant to 
be a study aid and a supplement to your own notes.  Please report any inaccuracies to the 
professor. 
 

Addition of Velocities 
 
Now that we know that the Galilean transformation must be modified, it’s time to revisit 
the topic of adding velocities.  Consider two inertial frames S and S’ with a relative 
velocity v.   
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Consider the inverse Lorentz Transformation: 
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Divide one by the other:
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The velocity addition formulae are: 
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lilean:  !

rentz:   

u c c c

u c c c

x

x

= + c= >

=
+

= <

0 8 0 8 1 6
1 6

1 0 8
0 9762

. . .
.

.
.

 

of a projectile we turned on a light beam, both observers on the spacecraft and 
ould agree that the velocity of the light beam is c, as required by Einstein’s 2nd 

 

on of velocity formulae tell us that nothing can exceed the speed of light. 
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Doppler Effect 
 
The Doppler effect is a change in frequency of a traveling wave when the source is 
moving toward or away from a receiver, like the change in pitch of a car’s engine when it 
travels by you.  We can derive the change in “pitch” for light using what we have learned 
in Special Relativity. 
 
Consider a light wave traveling along the x-axis.  It emits n wave crests in a time T0  in 
the rest frame of the emitter. 
 
 
 
 
 
 
 
 
 

 

crest 1 crest n λ0 

v

Frame S’ Frame S 

Source here 

 

 

Length of wavetrain =  

For light,  

 frequency of light in rest frame

L n cT
cT
n

f c

f c n
T

0 0 0

0
0

0
0 0

= =

⇒ =

=

⇒ = = =

λ

λ

λ

λ

The frequency 
is n crests per 
time T0

Now consider a receiver in a different inertial frame S.  Suppose that t
frame S’ is moving toward the receiver at a velocity v.  Let’s compute
received given that the speed of light is always a constant for all frame
 
L n cT vT

c v
n

T

= = −

⇒ =
−

λ

λ

   length of wavetrain in frame S
 Distance tr

distance so
of the last c 

Now from time dilation we know that T T= γ 0  
 

λ γ

γ

γ

=
−

⇒ =
−

=
−

=

c v
n

T

f cn
c v T

f f
v c

f n T

 

 

   Since 

0

0

0
0 01

a f

a f/
/
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Now we substitute in for γ: 
 

f v c
v c

f
v c v c

v c
f=

−
−

=
+ −

−
1
1

1 1
1

2 2

0 0
/

/
/ /

/
a fa f

 

 
So the Doppler shift equations are: 
 
 
 
 
 
 
 

f f v c
v c

f f v c
v c

=
+
−

=
−
+

0

0

1
1

1
1

/
/

/
/

    Source and receiver approaching

    Source and receiver receding

 
Thus, when source and receiver approach each other, the frequency is shifted higher.  We 
say that the light is blue-shifted. 
 
When source and receiver recede from each other, the frequency is shifted lower.  We say 
that the light is red-shifted.  Red light has a lower frequency than blue light. 
 
Modern electronics allow us to determine frequencies very accurately, so we can measure 
relative velocities accurately as well using this effect.  Examples include Doppler weather 
radar, police radar, and even the expansion of the universe! 
 

Lorentz Invariance 
 
We have seen that some quantities change from one inertial frame to another (length, 
time, velocity, frequency).  A quantity which does not change after a Lorentz 
transformation is said to be Lorentz Invariant. One special invariant is the 

Space-time Interval: 
 
∆ ∆ ∆ ∆ ∆

∆

∆

s c t x y z

t t t
x x x

a f a f a f a f a f2 2 2 2 2

2 1

2 1

= − + +

= −

= −   etc.
 

 
This is the generalization of Cartesian distance for 4-dimensional space-time.  The same 
value for ∆  is obtained for any inertial frame.  So although length and time separately 
are not invariant from one frame to another, this particular combination is. 

s

 
We can prove that this is true by applying the Lorentz transformation.  For example, 
consider a subatomic particle which decays in a time τ in its rest frame. 
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In the rest frame S’: 
t t x x y

s c
1 2 1 2 10 0′ = ′ = ′ = ′ = ′ = =

⇒ =

, ,    τ
τ∆

 

 
Now make a Lorentz transformation to another frame S moving at velocity v: 
 

 

x x vt y y z z

t t vx c

x v x x v
t t t

s c v c v c

c
v c

v c

s c

= ′ + ′ ′ = = ′ = =

= ′ + ′

= = ⇒ =

= = ⇒ =

= − = −

=
−

−

⇒ =

γ

γ

γ τ γ τ
γτ γτ

γ τ γ τ γ τ

τ

τ

a f
c h

a f c h
c h

     

      
         

  as in the rest frame

0

0
0

1

1
1

2

2 1

2 1

2 2 2 2 2 2 2 2 2 2 2 2

2 2

2 2
2 2

/

,
,

/

/
/

∆

∆

∆

∆

 

 
Some terminology: 
 
∆

∆

∆

s

s

s

2

2

2

0

0

0

> ⇒

= ⇒

< ⇒

      time - like

      light - like

      space - like

 

A frame exists where 2 
events occur in one 
place, separated by time.

 2 events are separated 
by the speed of light. 

 No light signal can 
connect the 2 events. 
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Relativity 4 
 
Disclaimer: These lecture notes are not meant to replace the course textbook.  The 
content may be incomplete.  Some topics may be unclear.  These notes are only meant to 
be a study aid and a supplement to your own notes.  Please report any inaccuracies to the 
professor. 
 

Relativistic Momentum 
 
Newton’s 2nd Law can be written in the form 
 F p

=
d
dt

 

where the non-relativistic momentum of a body is p u= m  where u x
=

d
dt

.  However, 

because of the Lorentz transformation equations, d
dt
x  is measured differently in different 

inertial frames. Thus, Newton’s 2nd Law would not have the same form in different 
frames.  We need a new definition of momentum to retain the definition of force as a 
change in momentum. 
 
Suppose p x

= m d
dτ

, where τ is the proper time in the object’s rest frame.  Every observer 

will agree on which frame is the rest frame.  Also, since ′ = ′ =y y z zand , the transverse 
momentum (py and pz)  will be invariant for a Lorentz transformation along the x axis. 
(This would not be the case if we did not use the proper time in the definition).  We can 
rewrite this momentum definition as follows: 

Recall that momentum is a 
vector quantity.  Conservation of 
momentum, which still applies 
in Special Relativity, implies 
that each component of 
momentum is conserved.

p x x
= =

= ⇒ =

m d
d

m d
dt

dt
d

t dt
d

τ τ

γ τ
τ

γ                  From time dilation
 

1

Note th
referen

In this 
of an o
such th
the ma
problem
 

D. Aco
 
 

 
 

2 2
        

1 /
u um

u c
γ γ= =

−
p u

at u is the velocity of the object in a reference frame, not the velocity of a 
ce frame relative to another. 
 
definition of momentum, the mass m=m0  is the “rest mass”.  That is, it is the mass 
bject in its rest frame.  Sometimes γ m  is referred to as the “relativistic mass”, 
at we can retain the Newtonian definition of momentum as p u= m .  In this sense, 
ss of an object grows as its velocity increases.  But this convenient trick can be 

atic.  As we shall see, the kinetic energy, for example, is not ½ mv2. 
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Relativistic Force 
 
With the previous relativistic definition for momentum, we can retain the usual definition 
for force: 

 ( )
2 2

1          where  =    and  
1 /

u u
d d d d dm m
dt dt d dt dt u c

γ γ
τ

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠ −

p x xF u u  

 
It is useful to consider how force transforms under a Lorentz Transformation: 
 

 

x 

y 

z 

S y'

 z'

S' 
v ′

 
According to the addition of velocity formulae, the transform
perpendicular to the direction of the Lorentz Transformation 
 

( ) 2 22

1    where   
1 /1 /

v

v x v cvu c
γ

γ
⊥

⊥

′
= =

′ −+

uu  

 
So for the perpendicular force, which can be written as: 
 

d d dm m
dt d dτ τ⊥ ⊥= =

xF u  

 
it transforms as: 
 

( ) ( )

( )

2 2

2

1

1 / 1 /

1 /

v x v x

v x

ddm m
d dvu c vu c

vu c

τ τγ γ

γ

⊥ ⊥
⊥

⊥
⊥

′ ′
= =

′ ′+ +

′
=

′+

u uF

FF
 

 
where we assume no acceleration in the direction parallel to t
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Relativistic Energy 
 
Now work is defined as force applied over a distance. It corresponds to the expended 
energy to accelerate a body.  If the force and path are constant,  
 
  W F d= ⋅
 
More generally, if the force and path vary, then a line integral must be performed from 
initial position 1 to final position 2. 
 
  W d12 1

2
= ⋅z   F s

 
The work applied to a body translates to a change in the kinetic energy since energy must 
be conserved.  If we assume that the body is initially at rest, then the final kinetic energy 
is equal to the work expended: 
  

d s 

u 
1 

2 
W K d

dt
m dt d

K m dt d
dt

K m u d u

K mU m u du

mU m u du
u c

mU mc u c

mU mc U c mc

mU mc U c mc

U

U

U

U

= = ⋅ =

= ⋅

=

= −

= −
−

= + −

= + − −

= + − −

z
z
z
z
z

γ

γ

γ

γ γ

γ

γ

γ

γ

γ

            where we have used  

  

Integrate by parts:

    

   

 

 

u u s u

u u

a f

a f
a f

c h

0

2

0

2
2 20

2 2 2 2
0

2 2 2 2 2

2 2 2 2 2

1

1

1

1

/

/

/

/

dt

  
You can check this 
integral by differentiation

 
Thus, we get for the relativistic kinetic energy: 
 

K mc mc mc= − = −γ γ 2 2 1a f 2  
 
 
 
T
eq

lig

D

his final expression for the kinetic energy looks like nothing like the non-relativistic 
uation K .  However, if we consider velocities much less than the speed of 

ht, we can see the correspondence: 

mu=
1
2

2
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γ

γ

= − ≈ + +

⇒ = − ≈ <<

−
1 1 1

2

1 1
2

1
2

2 2 1 2 2 2

2
2

2
2 2

u c u c

K mc u
c

mc mu u c

/ /
/c h

a f

   using the binomial expansion

=     for 
 

 
So at low velocities there is no difference between the definition of kinetic energy in 
Special Relativity from that in Newtonian Mechanics. 
 
Now let’s consider the opposite limit when the velocity approaches the speed of light.  In 
that case, the kinetic energy becomes infinite as the relativistic factor γ goes to infinity.  
This is another way of saying that objects cannot exceed the speed of light, because it 
would take an infinite amount of energy. 
 
Now let’s rewrite the equation involving the kinetic energy: 
 
 
 

E mc K mc≡ = +γ 2 2

This equation has the form of kinetic energy plus potential energy equals total energy.  
What is the potential energy? It is the term: 
 

E mc2=   
 
w
th
vi
 
Ex
½
m
th
ha
en

C
W
co
ca
po
en
de

D

0

hich we refer to as the rest energy.  As you know, this is Einstein’s famous equation 
at tells us that mass is another form of energy.  Mass can be converted into energy and 
ce versa.  How much energy?  Let’s see: 

ample: Suppose that a 1 kg mass moves at a velocity u = 1 m/s.  The kinetic energy is 
 m u2 = ½ J. (We can use the non-relativistic equation because the velocity is much 
uch smaller than the speed of light.) The rest mass energy is mc2 19 0 10 6= ×.  J. Clearly 
ere is a tremendous amount of energy in 1 kg of mass.  That is why nuclear weapons 
ve the power that they do, because they convert a significant amount of mass into 
ergy. 

onservation of Energy: 
e have learned in earlier physics courses that kinetic energy does not have to be 
nserved in an inelastic collision.  Likewise, mass does not have to be conserved since it 
n be converted into energy.  However, the total energy (kinetic, rest mass, and all other 
tential energy forms) is always conserved in Special Relativity.  Momentum and 
ergy are conserved for both elastic and inelastic collisions when the relativistic 
finitions are used. 
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Relationship between Energy and Momentum 
 
Using the Newtonian definitions of energy and momentum,  
E mu p m=

1
2

2  and  u= , we can write: 

 
 
 
 
N
 
E
p

p

p

p

B

S
 
T
 
 
 

p2

T
c
o
in
a
 
P

E
T
v
A
li

D

ow consider the relativistic definitions: 

mc
mu

m u

c m u c m c u
c

m c

c m c m c

E mc

p c E m c

=
=

=

= = = −
F
HG
I
KJ

= −

=

= −

γ
γ

γ

γ γ γ
γ

γ

γ

2

2 2 2 2

2 2 2 2 2 2 2 2 4
2

2
2 2 4

2

2 2 2 2 4 2 4

2

2 2 2 2 4

1 1

ut   

o   

 

hus the equivalent relationship between energy and momentum in Relativity is: 

  E  
m

=
2

E p c m c m c E p c2 2 2 2 4 2 4 2 2= + = −       or equivalently    2
his is another example of Lorentz Invariance.  No matter what inertial frame is used to 
ompute the energy and momentum, E p c2 2 2−  always given the rest energy of the 
bject.  Energy and momentum take the role of time and space in the other Lorentz 
variant quantity ∆ .  In fact, we refer to ( ,s , , ) ( , , , )t x y z E p p px y z and   as four-vectors, 

nd the “lengths” of these vectors are these Lorentz-invariant expressions we derived.  

articles without mass are a special case   
⇒ =E pc  

 and pc can also be written: E mc pc mu= c=γ γ2  and  .   
he only way we can reconcile these last two definitions with E pc=  is to set the 
elocity to c.  Massless particles must travel at the speed of light. 
s we will learn, light itself is composed of particles (photons).  To travel at the speed of 
ght, these particles must be massless. 
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The Electron-Volt Energy Unit 
 
The Lorentz force law is F E v B= + ×qa f , where E is the electric field and B is the 
magnetic field.  The work done to move a charged particle in an electric field only is: 
 

( )

2 2

12 1 1

2 1

  

     

W d q

q V V

= ⋅ = ⋅

= −
∫ ∫F s E sd

 

 
The electric potential is φ (such that the electric field V= −∇E ).  We can summarize the 
work done by; 
 
 
 

       potential differenceW q V V= ∆ ∆ =

C
 
W
 
T
o
 
 
 
 
E
 
E

E
 
W
e
b
 
S
l

D

onsider the work done to move an electron across a potential difference of  1 Volt? 

= − × − = ×− −1 6022 10 1 1 6022 1019 19. . C  Vc ha f  J  

1 V

e--    q=-1.6022 x 10-19 C

his is a very small unit!  We define it as a new unit  
f energy, the electron-volt: 

1 6022 10 19 eV  J= × −.  

i

1

xample:  Express the electron rest mass energy in this new unit: 

m ce0
2 31 8 2

0

911 10 3 0 10 1

511 000

= = × ×
×

=

−. .

,

 kg  m / s eV
1.6022 10  J

 eV     (or 511 keV,  0.511 MeV,  0.000511 GeV)

-19c hc h  

e also can define new units for mass and momentum.  For example, the mass of the 
lectron can be expressed m .  In other words, if you multiply the mass 
y c

c/e = 0 511 2.  MeV
2, you get the rest energy in electron-volts. 

imilarly, we know that pc has units of energy, so momentum can be expressed in units 
ke MeV / c. In other words, if you multiply by c, you get an energy in electron-volts. 
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Invariant Mass 
 
 We can now apply the relativistic definitions of energy and momentum to 
calculations of particle collisions.  In particular, we can compute the rest mass of a 
particle formed when two particles annihilate into pure energy and then form a new 
particle. 
 
Example: An electron and a positron (an anti-electron) annihilate with equal and 
opposite momentum: .  (Note the new momentum unit).  The collision 
produces a new particle called the J/ψ in the following reaction: .  What is 
the mass of this new particle? 

p = 155.  GeV / c
e e J− ++ → /ψ

 
 We need to compute the invariant mass of the electron-positron initial state to 
determine the rest mass of the new particle: 
 

 

Mc E p c E p
p p p c c
E E E

E p c m c

E E
Mc E

tot tot tot tot

tot

tot

tot

2 2 2 2

1 2

1 2

1 1
2 2 2 4 2 2

1 2
2

155 155 0

155 0 000511 155

155 155 31

= −

= + = − =
= +

= + = + ≈

=

⇒ = = + =

  where   and  are the total energy and momentum
 GeV /  GeV /     by conservation of momentum

   by conservation of energy

 GeV  GeV  GeV

   because the magnitude of the momentum (and mass) is the same
 GeV  GeV

. .

. . .

. . .

b g b g
 

 
The J/ψ particle has a mass of 3.1 GeV/c.  Note that we have made extensive use of the 
new Lorentz-invariant quantity involving energy and momentum 
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Binding Energy 
 

As we have learned, mass is a form of potential energy.  It can be converted into 
energy, or energy can be converted into mass.  Because of this, mass does not have to be 
conserved in reactions.  If you throw two balls at each other and they stick together (an 
inelastic collision), the resulting mass is not necessarily the sum of the individual masses 
of the two balls. 

This surprising result makes sense when we consider that mass is just another 
form of potential energy.  When two balls stick together, there must be some attractive 
force holding the composite system together.  In the case of the hydrogen atom, an 
electron and proton are bound by an attractive electromagnetic force.  To separate the 
electron and proton (i.e. ionize hydrogen), one must overcome the attractive force, and 
that takes energy.  In other words, the particles have larger electromagnetic potential 
energy when separated than together.  This potential energy is: 

V e
r

=
− 2

04πε
 

which increases as the separation distance r increases.   
 Where does this increase in energy go, since we know the total energy must be 
conserved?  It goes into the rest mass energies of the electron and proton in the case of 
hydrogen.  Another way of putting it is that the hydrogen atom has a mass that is less 
than the sum of the separate masses of the electron and proton.  The difference in the rest 
mass energies of the separate objects from the combined system is called the binding 
energy: 
 
  BE M M c= −separate bound  b g b gm r 2

 
In the case of hydrogen, the binding energy is 13.6 eV; that is, hydrogen has a mass that 
is 13.6 eV less than the sum of the masses of the electron and proton. 
 Let’s consider another example.  The deuteron is a bound system of a neutron and 
a proton.  The binding energy is given by: 
 

 

BE M M M c

BE c c c

BE

= + −

= + −

=

n p H  

 MeV /  MeV /  MeV /

 MeV

2b g b g c ho t
m r

2

2 2939 57 938 28 187563

2 22

. . .

.

2  

 
Clearly nuclear binding energies are much larger than atomic binding energies!  We will 
explore this more when we study nuclear physics toward the end of this course. 
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Reaction Energy 
 
 Closely related to binding energy is the concept of reaction energy.  Not all 
composite systems have a mass less than the sum of its constituent masses, and some 
fundamental particles spontaneously decay into particles whose combined mass is less 
than that of the parent.  In these cases, energy is released in the decay or reaction because 
of the difference in rest mass energies.  We define this reaction energy as: 
 
  Q M M c= −initial products final products  b g bm r 2g
 
As you can see, it is just the negative of the binding energy.  If Q is positive, we say that 
the reaction or decay is exothermic; that is, it releases energy.  If Q is negative, the 
reaction or decay is endothermic; it takes energy to make it happen. 
 
Example:  Consider the spontaneous decay of a neutron: . We can 
calculate the energy released in this decay by taking the difference in mass of the left-
hand side from the right-hand side.  The neutrino (

n p e e→ + +− ν

ν e ) will be discussed later in the 
nuclear and particle physics sections; what is relevant here is that its mass is essentially 
zero.  

  

Q M n M p M e c

Q c c

Q

= − −

= − −

=

−b g b g c ho t
m r

 

 MeV /  MeV  MeV  

 MeV

2

2 2939 57 938 28 0511

0 78

. . / .

.

c c2 2/
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