A truely “educational” treatment of the quasistationary limit

Hendrik van Hees

February 18, 2014

1 Introduction

Im referring to the paper [BCG13al] and the comment and corrigendum to it [[Her14, BCG13b]]. While
the starting point of the original paper is clearly wrong, as stated in Heras’s comment, the corrected ver-
sion is formally correct but misleading for students. This is related to the traditional way to introduce
the “displacement current” as Maxwell’s correction of Ampere’s Law, following the historical develop-
ment of electromagnetic theory in the 19" century. Already this ansatz is, in my opinion, teaching
an outdated and even wrong picture as if Maxwell’s additional term in Ampeére’s Law is indeed an
“additional current density” and thus a source of the magnetic field.

The modern understanding is due to the special theory of relativity, which has been found by Ein-
stein in 1905 (after other earlier work by Poincaré, FitzGerald, and Lorentz) and brought to its final
four-dimensional form by Minkowski in 1908, in studying the symmetry properties of Maxwell’s equa-
tions with regard to the special principle of relativity (indistinguishability and physical equivalence of
different inertial frames).

The following is far from new. It can be found in any decent textbook on classical electrodynamics,
e.g., [SomO1]].

2 Retarded potentials and fields

Classical electrodynamics thus should be presented as a relativistic covariant local field theory, start-
ing in the local form of Maxwell’s equations in vacuo, written as (using Heaviside-Lorentz units for
convenience)
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Here, the structure of Maxwell’s equations becomes very clear: Egs. (1) and (2), the homogenous
Maxwell equations, are constraint equations for the field components. They thus should be used to
introduce the electromagnetic potentials as an ansatz to get rid of these constraints to simplify the solu-



tion of the equations of motion (3) and {4), the inhomogeneous Maxwell equations, that clearly identify
the current and charge densities as the source of the electromagnetic field.

As is well known from Helmholtz’s fundamental theorem of vector analysis, from (1) it follows the
existence of a vector potential for the magnetic field,
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and thus, again according to Helmholtz’s theorem the existence of a scalar potential for the field in the
brackets, i.e.,
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The vector field is only determined up to a gradient field, and thus if Aand ® lead to the electromagnetic
field (£, B) according to (5) and H this is also the case for
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This is the gauge invariance of Maxwell’s electromagnetics. Thus we can use one “gauge constraint” on
the potential (®,A4) to simplify the equations of motion, which follow by plugging in (5) and 1) into
the inhomogeneous Maxwell equations (3) and {4):
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one finds from the first equation that the Lorenz-gauge constraint
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eliminates ® from the equation and separates also the components of A, leading to the wave equation
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It also eliminates A from the second equation @), leading also to the wave equation for ®:
0% = p. (13)

Of course, and (13) are only compatible with the Lorenz-gauge constraint (11), if electric charge is
conserved, i.e.,

d,p+V-j=0. (14)

This is, however, also a compatibility constraint for the Maxwell equations (1{4) themselves.



Now it’s easy to solve the inhomogeneous wave equation, using the retarded propagator of the (14-3)-
dimensional wave equation,
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It is easy to show that these solutions indeed fulfill the Lorenz-gauge constraint (L1).

The corresponding fields are found by using (5) and (7). To take the derivatives, it’s most convenient
to use the expressions with the & distributions, making use of
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This leads, after some manipulations to the retarded fields,
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which equations are known also as Jefimenko equations. The quasi-stationary limit is then obtained
by a formal expansion of the retarded sources around the instant time in powers of 1/c. From now on
we use the abbreviation

=1 (18)
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for the retarded-time argument in convolutions of functions with the retarded Green’s function.

One should emphasize in teaching classical electrodynamics that (17) clearly shows that a time-varying
electric field or the “displacement current” d,F is not a causal source of the magnetic field, as is clearly
shown in (17). To the contrary, the causal source of the magnetic field is solely the electric current
density (consisting of moving charges)! The same holds true for the electric field, which of course also
contains contributions from the charge density in addition to the one from the time-varying current
density.

Now, to find the quasi-stationary approximation we note that for any “retarded function” f we obtain
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For the magnetic field this leads to
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For the electric field we find
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The validity range for this expression is most easily understood when we assume a harmonic time
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dependence of the sources p,; o< exp(—iwt). Then the leading neglected term in the bracket under
the integral for the magnetic field becomes of the order O(w?|¥—%'|*/¢?) = O(Ii—%'|*/ A?). The same

holds for the first correction in the first line of (21). The second correction with ; can be estimated

as of order |x —x’|/c and then using 7: ©Vgsife also smaller by and additional factor of O(|Ty,|/¢),
supposed the drift velocity is small compared to the speed of light which is always the case for usual
“house-hold currents”.

This finally implies that the quasistationary approximation for the fields in free space is good in the
region close to the sources, where the retardation effect of the finite speed of light doesn’t play a role. Of
course the same argument holds for the usual application of the quasi-stationary limit in circuit theory,
where the extension of the circuit is small compared to the “typical wavelength” of the electromagnetic

fields.

3 Direct approach without potentials

We can also come to the Jefimenko equations and the quasistationary limit by considering the Maxwell
equations of the fields without introducing the potentials. We start with the magnetic field, taking the
curl of (3) and using (1) and (2) in the corresponding expression to derive the wave equation for the
magnetic field as
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Using again the retarded Green’s function leads to the solution
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To show that this is identical with (17) for current densities that vanish sufficiently fast at infinity we
note that by integration by parts we have
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where 8(...) is always the expression in (23). Evaluating the derivative in (23) one finds after some
simple manipulations
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Using this rule in (23) we recover indeed (17) as it should be.
For the electric field, one takes the curl of (2) and then uses (3) and (4) to derive the wave equation
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Using again for the V/ o term again leads 1) We note that is only compatible with Gauss’s
Law (4), if the continuity equation for the electric charge is fulfilled, as is already found above as
an integrability constraint for the inhomogeneous Maxwell equations (3) and {4).

4 Quasistationary limit from Maxwell’s equations

The quasistationary limit is more easily obtained directly from Maxwell’s equations either. This also
sheds some light on the fact that Maxwell’s addition of the “displacement current” is responsible for
the retardation effect, i.e., the finite propagation speed of electromagnetic waves, i.e., the speed of light.

Indeed, neglecting the “displacement current” in the Ampeére-Maxwell Law (3) leads back to the original
Ampeére Law,
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One should note in the first place that this is inconsistent with the continuity equation for the electric

charge . Thus, for the quasitationary limit to be valid we must be able to neglect J, p against V. f,
which latter quantity vanishes by virtue of (28).

Using (1) from taking the curl of (28) we get the Poisson equation
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and using the Green’s function of the Laplacian leads to the Biot-Savart Law in the form
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which can be brought into the usual form by the same manipulations that lead from back to the
Jefimenko expression (17)),
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which indeed coincides with the neglect of higher-order retardation effects, cf. (20). One should, how-
ever, note that it is much harder to derive the validity conditions for the quasitationary approximation
with this approach. Also the negligence of retardation effects does not become explicit here.

In conclusion one can say that the somewhat more complicated approach to the quasistationary limit of
the Maxwell equation becomes better understandable, using the retarded solutions of the full Maxwell
equations either via the potentials in Lorenz gauge or directly the electric and magnetic fields as shown
above.



A Derivation of the retarded propagator

For convenience, here we derive the expression for the Green’s function of the D’Alembert operator,

O=1/c?3*—A, defined by
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The most convenient way to find an explicit solution is to introduce the “Mills representation”, i.e.,
the Fourier transform of the Green’s function with respect to position,
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Plugging this into one finds
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This is easily solved with the ansatz
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leading to
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The Fourier transformation (33) is easily performed in spherical coordinates with the polar axis in
direction of X, with # = cos J leading to
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