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Introduction 
 

In the game of Risk, players control countries by occupying them with a variable number of “armies.”  The 

object is to gain more territory by conducting battles between neighboring countries.  A battle consists of the 

armies of a single country going against an opponent’s armies occupying a neighboring country.  The battle 

progresses by each player rolling a prescribed number of dice, and applying rules to determine from the 

outcome how many armies are lost for each player.  The dice are rolled repeatedly until either the defender loses 

all his armies (in which case the attacker can occupy the disputed country), or until the attacker is reduced to a 

single army (in which case there is no army to spare for occupying the opponent’s country).  An attacker can 

never lose control of his own country.  The battle may also be stopped at any prior time at the attacker’s 

discretion. 

 

The rules for determining how many dice a player may shake are as follows: 

 

1. The attacker may shake one less die than the number of armies on his country, to a maximum of three. 

2. The defender may shake as many dice as the number of armies on his country, to a maximum of two. 

 

The rules for deciding the outcome of a particular throw of the dice are as follows: 

 

1. The highest attacker die is compared against the highest defender die.  Whoever has the lower number loses 

one army.  Ties go to the defender. 

2. The procedure is repeated for the second-highest dice. 

 

In cases where either the attacker or the defender only rolls a single die, a total of only one army will be lost; in 

all other cases a total of two armies will be lost. 

 

Table 1.  Probability Matrix for a Single Roll of Dice 
 Defender dice = 1 Defender dice = 2 

Attacker dice = 1      

 Attacker losses: 0 1 0 1  

 Defender losses: 1 0 1 0  

 Probability: 15/36 21/36 55/216 161/216  

 Expected attacker losses per roll: 0.5833 0.7454  

 Expected defender losses per roll: 0.4167 0.2546  

Attacker dice = 2      

 Attacker losses: 0 1 0 1 2 

 Defender losses: 1 0 2 1 0 

 Probability: 125/216 91/216 295/1296 420/1296 581/1296 

 Expected attacker losses per roll: 0.4213 1.2207 

 Expected defender losses per roll: 0.5787 0.7793 

Attacker dice = 3      

 Attacker losses: 0 1 0 1 2 

 Defender losses: 1 0 2 1 0 

 Probability: 855/1296 441/1296 2890/7776 2611/7776 2275/7776 

 Expected attacker losses per roll: 0.3403 0.9209 

 Expected defender losses per roll: 0.6597 1.0791 

 

Table 1 summarizes the probability of each outcome for every possible combination of attacker vs. defender 

dice.  The following conclusions can be drawn: 

 



1. When both attacker and defender have a large number of armies, the attacker will, on average, lose armies at 

a 15% slower rate than the defender. 

2. Towards the end, when either the attacker or the defender must shake fewer dice, the advantage swings 

more strongly toward the player with the most armies. 

 

Probability of an Attacker Victory 
 

 The course of a battle traces out a random-walk path through the two-dimensional Attacker-Defender 

space, ending, if taken to its conclusion, either with zero defender armies (attacker victory) or a single attacker 

army (attacker defeat).  The probability distribution function for the path is a typical discrete diffusion problem 

with, however, special conditions prevailing near the boundaries where the numbers of dice thrown per roll 

change.  In the following sections a solution is given first to the “free-space” region in which the attacker 

throws three dice and the defender two, then to the boundary regions, and then finally a comprehensive solution 

stitches these two regions together.  Later sections will address the probability of an attacker successfully 

carrying out a sweep through a string of adjacent countries. 

 

(a) Free-Space Solution 
 

When the number of attacker armies, A, is greater than 3 and the number of defender armies, D, is 

greater than 1, the roll will be 3 attacker dice vs. 2 defender dice, and there will be three possible outcomes:  

attacker loses 2 armies, each loses 1 army, or defender loses 

2 armies.  In the attacker-defender space, this can be viewed 

as shown in Figure 1.  After two rolls, there are five possible 

locations.  Since a total of two armies are always lost per 

shake, the possible outcomes will fall on the diagonal line 

corresponding to points equidistant from the starting point, 

the distance being twice the number of rolls.  Distance, here, 

refers to the total number of horizontal and vertical steps 

between points. 

 Viewed as a diffusion problem, diffusion actually 

occurs in only one dimension, in the direction from upper 

left to lower right.  In the direction perpendicular to this, 

from upper right to lower left, the motion is completely 

deterministic, marching two steps per roll.  The equation of 

motion for Pm,n(s), the probability of reaching the point (m, 

n) in the A-D plane after s rolls of the dice, is: 
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where f 
i
mn is the probability of the attacker losing i armies in a roll of m dice vs. n dice. 

 By defining a new function Rk(s) = Pm,n(s) where k = m – n this equation can be reduced to a discrete 

diffusion equation in one dimension: 
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However, this step turns out to be unnecessary because the solution for Pm,n can be obtained directly by 

counting the number of paths between the starting point and the point of interest.  In the first place, the starting 

point (M, N) and the endpoint (m, n) are subject to the following constraints: 

 

 m  M and n  N 

 (M + N) – (m + n) = 2s 

Starting point 

D 

A 

Figure 1.  The possible states of the system after 

one and two rolls. 



 

Now define L = (m – n) – (M – N) to represent the relative advantage picked up by the attacker after s rolls.  

This advantage is equal to twice the excess of “good” rolls (where the attacker loses 0 and the defender loses 2) 

over “bad” rolls (where the attacker loses 2 and the defender loses 0).  If we represent the number of “good” 

rolls by G, “bad” rolls by B, and neutral rolls by I (for “indifferent”), then we have the relations 
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The probability of getting from (M, N) to (m, n) is the sum of probabilities for each path between these points.  

These paths are each described by a triplet (G, B, I); the probability of tracing out any particular one of these 

paths is 
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The number of paths corresponding to this triplet is the number of ways to split s items into three groups of G, 

B, and I members, respectively, which is simply the multinomial coefficient (s!)/(G! B! I!).  Thus the total 

probability of getting from (M, N) to (m, n) is this multinomial coefficient, multiplied by the single-path 

probability (4), and summed over all combinations of (G, B, I) that satisfy the constraints (3).  These 

combinations can be enumerated as follows.  Start with the minimum value of I (either zero or one depending 

on whether (s – L/2) is even or odd), and increase I by two while decreasing G and B each by one (since the 

difference between G and B must remain constant) until reaching the maximum value of I, which will occur 

when either G or B reaches zero.  For example, if L = 4 and s = 12, the allowed combinations of  (G, B, I) are 

(7, 5, 0), (6, 4, 2), (5, 3, 4), (4, 2, 6), (3, 1, 8), and (2, 0, 10). 

The final solution can be written: 
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(b) Boundary Region Solution 
 

 In the boundary region (M < 4 or N < 2) the number of dice thrown depends on the number of armies.  

The solution for an arbitrary (M, N) in this region can be obtained by solving for Pm,n in strips of constant M or 

N, beginning at the edges and working inward.  Denoting the probability of an attacker victory by Qb(m, n), 

some simple cases can be dispensed with immediately: 
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Equation (7) was obtained by the observation that the only possible losing path is for the attacker to lose every 

single roll of the dice; the probability of winning is one minus the probability of losing.  Equation (8) gives the 

probability for the single possible winning path.  For values of m greater than 2 and n greater than 3 the 

solutions become more involved, but are still summable.  The equation of motion for m = 3 and n  2 is: 
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Plugging in the solution for Q(2, n-1) from equation (8) gives: 
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After multiplying this equation by (f 022)
-n/2

 it can be rearranged into the following form: 
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where 
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The solution to equation (11) is a summation over the term kC
2i

.  Choosing a lower bound of 1 for the 

summation and putting in an arbitrary additive constant, the series can be summed as follows: 

 

(13) 

oddnL
C

CC
kLCky

evennL
C

CC
kLCky

nn

i

i

n

nn

i

i

n

,
1

,
1

32

32/)3(

1

12

22

22/)2(

1

2

























 

 

It is clear from evaluating these equations for y2 and y3 that L2 = y2 and L3 = y3.  Retrieving the original variables 

from equation (12) gives, finally: 
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where use was made of Qb(3, 2) = f 0
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 The solution for n = 2 and arbitrary m, although not technically in the boundary region, can be obtained 

in a similar fashion. 

 

(c) Combined Solution 
 

 The general solution for the probability of an attacker win, valid for all points in the A-D plane, can be 

stitched together from the free-space solution and the boundary region solutions by multiplying the probability 

of reaching each boundary region point by the probability of victory from that point, and summing.  The 

“boundary” points must be chosen such that they are reachable purely through 3 vs. 2 rolls so that the free-space 

solution can be correctly applied. 

Care must be taken, however, to make sure that all paths to victory are counted once and once only.  For 

example, consider the point marked “1” on the edge of the free-space region in Figure 2.  There are three 

possible ways to get there with one roll.  One of these ways, however, is from a point that is also on the edge of 



the free-space region (marked point “2”).  If we were to multiply the probability of reaching point 1 times the 

probability of victory from point 1, and then do the same thing for point 2, both of those terms would include 

the path that joins points 1 and 2.  Summing all such terms therefore would lead to double-counting of many of 

the paths to victory. 

In order to prevent this, we must construct our solution out of terms comprised of the following factors: 

 P*(M, N, m, n) = probability of first reaching the boundary 

region at point (m, n) from the starting point (M, N) – excludes 

paths reaching (m, n) from another boundary point. 

 Qb(m, n) = probability of an attacker victory from starting point 

(m, n). 

 

P* is easily constructed from our existing free-space solution by 

counting only the paths indicated by the solid arrows in Figure 2.  

For points on the edge of the free-space region, the equation is: 
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We also must look at points one row closer to the axes, such as 

point “3” in Figure 2, since they can also be the target of a first-time 

entry into the boundary region.  For such points the only path of interest is the one which “leaps over” the edge 

of the free-space region, either by losing two defender armies (if n = 3) or by losing two attacker armies (if m = 

5): 
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The general solution, Q(M, N), for the probability of an attacker victory from an arbitrary starting point (M, N) 

is: 
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A javascript implementation of equations (5) – (8), (14), and (17) is available at 

http://www.recreationalmath.com/risk/riskprob.htm. 

 

Attacking Multiple Countries Sequentially 
 

<to come> 

 

A 

D 

1 2 

“Free space” 
region 

Boundary 
region 

3 

Figure 2.  Ways of reaching the 

boundary region. 
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