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Fringing Field Formulas and Winding Loss Due to an Air Gap

Waseem A. Roshen

Physics Department, The Ohio State University, Hilliard, OH 43026 USA

The paper describes a simple treatment for the fringing fields of an air gap in the core of a magnetic component such as an inductor
or a transformer. It verifies the derived analytical formulas for the fields by using numerical (finite-element) calculations. It then applies
these formulas to the calculation of high-frequency eddy-current losses for two types of winding arrangements, both of which employ thin
rectangular conductors. The rectangular conductors are commonly used in flex circuit windings, printed circuit windings, and thin-film
windings. The two types of winding configurations are flat and barrel wound. Each behaves in a different way as a function of the position

of the conductor.

Index Terms—Air gap, fringing field, high frequency, inductor, motors, power conditioning, power conversion, power electronics,

transformer, winding loss.
I. INTRODUCTION

N MANY high-performance power electronics applications,
I the design of the magnetic components, such as inductors
and transformers, is the most important factor since it affects
the overall efficiency, size, and height of power conversion elec-
tronics in a very significant manner. In particular, the efficiency
of the magnetic elements is of great value for the power con-
verter designer.

A common problem in the design of a high-frequency mag-
netic component with an air gap is how the fringing field af-
fects the high-frequency winding losses and how to configure
the windings to minimize the effect of the fringing field of the
air gap. A number of authors have addressed the problem of
fringing field losses at high frequencies [1]-[9]. Most of the pre-
vious finite-element work [1]-[5] relates to multiple, discretely
distributed air gaps as compared to a single lumped gap. It has
been shown that distributing the gap along the magnetic path
reduces winding loss, as compared to the loss in the case of a
single lumped gap. Also, the emphasis in these works has been
on the planar magnetics [2]-[5]. Two previous analytic works
have also considered the problem of fringing field losses using
2-D solutions of electromagnetic equations [6], [7]. However,
these solutions remain fairly complicated to use, one requiring
numerical integrations while the other requires an iterative pro-
cedure. Furthermore, the solutions are provided only for the net
fields, which include fringing fields, self fields, and proximity
fields, and net losses and effects of fringing fields separately
cannot be clearly discerned. Other related work includes the cal-
culation of total energy and inductance [8], [9].

Thus, there is a need to derive simple analytic formulas
that can be used to calculate fringing fields and the associated
high-frequency winding losses. These formulas can be used
to quickly evaluate the effect of fringing field on the winding
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designs, especially if there are a number of candidate designs
being considered.

Another important motivation for this paper is that the cur-
rent understanding about the fringing field and its effect on the
winding loss is not very accurate (even qualitatively) and impor-
tant questions remain open. For example, the question of how
far away from the edge of the gap the fringing field remains im-
portant, is still not settled.

In this paper, by using a scalar potential approach, we have
derived two simple formulas for the fringing fields. The geom-
etry and coordinate system used in that paper is shown in Fig. 1.
The two derived formulas for the = and y components of the
fringing field H are

Ha () = 32 n [ 20

()2 W
and
ty (o) = = {tan™ |y |+ e} 12)

where m = 0 if 22 + y? > lg and m = 1if 22 + 42 < lz.
l, is half of the total gap length. H, = 0.9NI/2l,. Further,
we provide numerical (FEM) validation for these formulas. In
addition, we address the issue of high-frequency fringing field
loss by the use of the following well-known formula for high
frequency eddy-current loss per unit length for a thin rectangular
conductor [10]:

P = %(WMOHLf)Zw:‘t

1.3)

where 11, is the permeability of the free space, H is the com-
ponent of the fringing field, which is perpendicular to the long
face of the conductor, f is the frequency, w is the width of the
conductor, ¢ is the thickness of the conductor, and p is the resis-
tivity of the conductor material. The formula assumes that the
skin effect is negligible.
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Fig. 1. Geometry for the air-gap and the coordinate system used in the paper.

| J - § - ] - |

®

Fig. 2. (a) Barrel winding arrangement. (b) Flat (planar) winding arrangement.

Two winding arrangements of rectangular conductors are
considered: 1) barrel wound [Fig. 2(a)] and 2) flat wound
[Fig. 2(b)]. For barrel wound magnetic components, the width
w is along the y-axis and H, is equal to H,, as given by
(I.1) and evaluated at the center of the conductor for which
loss is being calculated. Similarly, for flat wound magnetic
components, the width w is along the z-axis and H should be
taken to be H,, of (I1.2) evaluated at the center of the flat wound
conductor for which the loss is to be calculated.

II. SCALAR POTENTIAL

There are several methods of calculating the magnetic field of
a gap. Here, we use a scalar potential and separation of variables
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approach to obtain an exact expression for this scalar potential.
We consider the region in and around the gap as a source-free
region, which implies that self and proximity fields are negli-
gible. This assumption has been verified using finite-element
simulations both for the inductor and transformer cases. Then
a scalar potential ¢(z,y) can be defined which satisfies the
Laplace equation [11], [12] and is related to the magnetic field
H by

H=-Vo(z,y). (IL1)
The coordinates and the geometry are defined in Fig. 1. Here,
H, is the magnetic field at the center edge of the gap (z =
0, y = 0). It is assumed that the gap is infinitely deep. This
assumption is valid if the gap length is small compared to the
dimension of the core. We also assume that the core pieces near
the gap are equipotential. This assumption implies large perme-
ability of the core material, which usually is a very good as-
sumption. The scale of H| is set by the field at the center of the
gap H/, which is given by

NI NI
H‘;Ziz

- 1.2
Ay + b/ 2, ({-2)

where N1 is the driving amperes-turns, 2/, is the gap length, 1
is the permeability of the core material, and [,,, is the magnetic
path length in the core. A large permeability is assumed. The
exact relationship between H, and H; can be determined by
a magnetostatic finite-element calculation. However, for most
inductor and transformer applications, the gap length is very
small compared to the width of the core piece and it can be
shown using finite-element simulation that

NI
Hy,=09H, = 0.95—. (I1.3)
21,

See Fig. 3 for a finite-element example.

In region I, the potential can be expanded as

EEH H
Z an sin(nwy/ly)e 2gy

<0, 0<y<lg.

(I1.4)
In the region of primary concern, region I, the potential is given

by
/ b(p
0
The field H, in (IL4) is given by (II.3). The constants a,, and

b(p) are determined by matching the potential and the derivative
at x = 0. Matching the potential at x = 0

sin(py)e P*dp x> 0. (IL.5)

oo > a,sin(nmy/ly)
n=1
/b p)sin(py)dp = &H,/l,) 0<y<l,
0 H,l, ly <y < oo.
(IL6)
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X 104 40 Turn Inductor : 1 =1 A: Gap = Tmm

Magnitude of the Fringing Field {(A/m)

x-distance from the center of the gap (y =0)

Fig. 3. Example of finite-element result showing the value of H, at the edge
of the gap and the field value deep inside the gap.

Similarly matching the normal derivative at x = 0, we get

—/b( sin(py)d, Z sin(nry/ly)(nw/ly) 0<y<lg.
) n=1

L7)
These two sets of equations can be solved for the coefficients a,,
and b(p) by use of Fourier transforms. First, an equation for b(p)
is obtained by multiplying (II.6) with sin(py) and integrating
over y. The left-hand side simplifies due to the orthogonality of
the sine functions and only one b(p) remains on the left-hand
side. Similarly, an equation for the coefficients a,, is obtained
by multiplying (IL.7) with sin(mmy/l,) and integrating over y.
In this case, only one term on the right-hand side survives due
to the orthogonality of sine functions and one obtains an equa-
tion for a,. Thus, one ends up with two sets of simultaneous
equations. If the integrals on the right-hand side of the equation
resulting from (I1.6) and the integral on the left-hand side of the
equation resulting from (II.7) are performed, then these two sets
of equations can be solved for the two sets of coefficients a,, and
b(p).
The resulting potential in the region of interest (xz > 0) is
given by

ﬂ / dpefpz Sln(plg):m(py)
7T p
0

/d J— sin pl sin(ply) sin(py)
P2 = (nm/ly)?

1.8
1) (IL.8)

where a, satlsfy a set of algebraic equations

H,B,
D" Crn + —5—

n+1 nlz::l 2

(I1.9)

[In(2nm) — Ci(2n7) + y] (I1.10)
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and
(1/nm) - Si(2n) m=n
Chm = { 72(n? —m?)
x [In(n/m) + Ci(2mn) — Ci(2n7w)] m#n
(L11)

where v = 0.5772 is the Euler’s constant and In is the natural
logarithmic function and

oo o

Ci(mo):/ Cojm)dx Sz'(:vO):/

o 0

sin(z)

dr. (IL12)

T

The coefficients a,, are a decreasing function of . (roughly ~
l/ nz). Thus, the first few terms make the dominant contribution.
In Section V, it is shown that even just the first term gives a good
approximation of the exact result.

III. FRINGING FIELDS

Differentiating the potential ® with respect to z and y, we ob-
tain the z- and y-component of the magnetic field in the region
z >0

Hg 7 _ox Sin(ply) sin(py
Hm(xay):g /dp(_p)e P %
0
= T _ o Sin(ply) sin(py)
+ 2n(—1)"a, /dp —ple” P —————~
R N ST

(IIL1)

Hg T _ox Sin(pl,) cos(py
Hy(ﬂ?ay)=7 /dp(P)e P %
0

 Jonm

As a first approximation, we keep only the first terms in (IIL.1)
and (II1.2) to obtain

_pxsm(pl ) cos(py)
p*—(nm/ly)?
(I11.2)

+ ) 2n(-1
n=1

oo

/ —p:r Sln(pl )sln(py) (III3)

; p

/ —pT Sln(pl );OS(py) i (1114)
p

0

Integrations in the above two equations yield the approximate
analytic result [13]

(1IL5)

H () = Hgln{w“r(y—lg)?]

2m 2+ (y+ly)?
2z,
2 +92 —lg

H,(z,y)= —%{tan_l[ }me} (I11.6)

where m = 0if 2> + 3> > 2 and m = 1if 2> + 3> < [2.
Verifications for (I1.5) and (II1.6) are provided in Section V.

These two approximate results can then be used to calculate
the high-frequency conductor losses. Depending on the winding
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Fig. 4. (a) Variation of the y-component of the fringing field H, with the x
(horizontal) distance from the edge of the core. Gap length = 2I, = 2. (b)
Variation of the y-component of the fringing field H, with y (vertical) distance
from the center line with & as a parameter. Gap length = 21, = 2.

configuration (“flat” versus “barrel”), either the z-component or
the y-component is important [see Fig. 2(a) and (b)].

IV. FIELD DISTRIBUTION

Fig. 4(a) shows the variation of the y-component of the field
H,, with the horizontal distance x from the edge of the core for
four different values of y. These fields have been obtained by
setting H, = 1. It is also assumed that [, = 1. We remind
the reader that the total gap length is equal to 2[,. Generally,
the field falls off substantially within one gap length distance
(2l,) from the edge of the core. However, it is important to note
that the field component remains substantially higher than other
fields (self and proximity fields) in the problem, even after 10
gap length distance. We have confirmed this by using finite-el-
ement modeling. Thus, the fringing cannot be neglected even at
such large distances from the core and may determine the overall
loss in a winding conductor at such distances. Another inter-
esting feature to note from Fig. 4(a) is that for y > 1, the initial
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Fig.5. (a) Variation of the z-component of the fringing field H,, with the y(ver-
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= 21, = 2. (b) Variation of x-component of the fringing field H, with the x
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B

value of H, for z = 0 must be zero because of the boundary
condition imposed by the large permeability of the core.
Similarly, Fig. 4(b) shows the variation of the y-component
of the field H, with the vertical distance y with z as a parameter.
First thing we note is that for small x, there is a sharp drop
in the value of the field as we approach the core corner of the
core (y = 1), which is again due to the boundary condition,
that at the surface of the core the field must be perpendicular
to the surface of the core. For more important cases of practical
interest, where there is substantial insulation separating the core
from the windings, x is usually > 1. For such cases, we see from
Fig. 4(b) the drop in the value of the field is much more gradual.
Fig. 5(a) shows the variation of the z-component of the
fringing field H, with the y (vertical) distance from the central
line for various values of z, the horizontal distance from the
core. The most outstanding feature with regards to H, is that
its value peaks near the corner of the gap (y ~ 1.0), in sharp
contrast to H,, which peaks along the central line (y ~ 0). The
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Fig. 6. (a) Comparison of the calculated fringing field component H, of a
transformer with the finite-element simulation. (b) Comparison of the calcu-
lated fringing field component H, of a transformer with the finite-element
simulation.

symmetry of the model forces H, to be zero or near zero along
the central line. This feature has not been fully recognized in
the past. In particular, it indicates that for barrel type windings,
shown in Fig. 2(b), the maximum fringing field loss would
occur not along the central line but near the corner of the gap.

Fig. 5(b) shows the variation of H, with x for fixed values
of y. Once again we see that the peak of the initial value of
H, occurs near y ~ 1 (near the corner). However, another in-
teresting feature, which is apparent from Fig. 4(b), is that the
curves, which start out high, also show steeper decline as the
value of z is increased. In fact some of the curves that start out
low in value can have larger values as x is increased.

V. NUMERICAL VALIDATION FOR FIELDS

In order to validate the fringing fields’ formulas (I.1) and
(I.2), we have performed extensive numerical (FEM) calcula-
tions and have found good agreement between the numerical
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Fig. 7. (a) Comparison of the calculated fringing field component H, of a
inductor with the finite-element simulation. (b) Comparison of the calculated
fringing field component H, of a inductor with the finite-element simulation
results.

results and the formulas both for transformers and inductors
having an air gap.

In Fig. 6(a) and (b), we show the comparison of finite-element
simulation with the calculations using (I.1) and (1.2) for the =
and y components of the fringing field in the case of a gapped
transformer. The transformer had a gap length of 1 mm, a turn’s
ratio of 2:1, and driving current of one ampere. The number
of primary turns was 32 and the primary and secondary were
inter-leaved. As is clear from these graphs, generally the agree-
ment between finite-element simulation results and the results
obtained using formulas is very good. In particular, the form of
variation of H, and H, is described exactly. In addition, there is
excellent agreement between the magnitudes calculated, using
(2) for H,, and the finite-element results. In the case of H,, the
agreement is not as good with a difference of about 10%—-15%.
This may be caused by the sharp corner of the model, which
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%1072 Loss (due to Hx) Variation with y: w =.5mm, t =1mm, f = 100 kHz
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Fig. 8. (a) Variation of loss due to H, (barrel wound) with y for fixed values
of x. (b) Variation of loss due to H . (barrel wound) with x for fixed values of y.

produces large variations in the fields around the corners of the
gaps.

Fig. 7(a) and (b) shows a similar comparison in the case of
an inductor. The inductor had 24 turns, a gap length of 1 mm,
and a driving current of one ampere. Once again the agreement
between calculated results for H, and H, and finite-element
simulation is excellent.

VI. LossS DISTRIBUTION

Next we consider high frequency winding loss of thin rect-
angular winding conductors by employing the well-known for-
mula (I.3). We first consider loss due to the H, distribution,
which is the more important component of the field for the barrel
wound windings, shown in Fig. 2(a). Fig. 8(a) shows the vari-
ation of the loss due to this component as a function of y for
fixed values of y. For these figures, the following values are
used in (V.8): w = 0.5 mm, ¢ = 0.1 mm, f = 100 kHz,
1/p = 5.8 x 107" mho/m, and i, = 47 x 10~7. The most
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Fig. 9. (a) Variation of loss due to H, (flat wound winding) with x for fixed
values of y. (b) Variation of loss due H, (flat wound winding) with y for fixed
values of x.

important feature, which is somewhat surprising, is that the loss
shows a maximum near y ~ 1 (near the corner) instead of y ~ 0
(near the central line). This is because the field component H,
shows a maximum around y ~ 1 as shown in Fig. 5(a). Simi-
larly, Fig. 8(b) shows the same loss as a function of = for fixed
values of y.

Next, we consider the loss for the flat wound winding for
which the y component of the field H, is more important.
Fig. 9(a) shows the loss as a function of z for fixed values of
y. We see that the initial value of loss is largest for the smaller
values of y (near the central line). However, the drop in the
values as z is increased is also steeper for these values of x. For
larger values of x, all curves approach roughly the same value
irrespective of the value of y, indicating for some distance
from the core losses would be somewhat independent of the
vertical position. Similarly, Fig. 9(b) shows the variation of this
loss with y for fixed values of z. Once again we see a similar
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Fig. 10. High-frequency loss per unit length of a conductor with aspect ratio
of 4:1 due to (a) y-component and (b)z-component of the fringing field.

variation, where the initial values of the loss start high near the
core edge (z < 1) but shows a much steeper decline in the
value as ¥ is increased.

VII. NUMERICAL VALIDATION FOR LOSS

Fig. 10(a) and (b) shows the comparison of the theoretical
computational results of fringing field high frequency loss using
(I.3), and either (1) or (2) with finite-element simulation results.
The results are shown for a 40-turn inductor only but the results
for a gapped transformer are similar. The exciting current is one
ampere and the gap length is 1 mm. The frequency was chosen
to be 100 kHz. The conductor for which loss is calculated has
an aspect ratio of 4:1 and is made of copper. For Fig. 10(a),
the results are shown along a horizontal line with y = 0. This
line was chosen because Hy is the largest along this line. The
conductor was placed so that its long face was horizontal. For
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Fig. 9(b), the conductor was placed along a vertical line with
x = 0.25 mm with its face vertical.

It is clear from Fig. 10(a) and (b) that there is general agree-
ment between the finite-element results and the results obtained
by using (I.3) for both the z and y component of the fringing
field. A somewhat larger difference in the case of Fig. 10(b) may
be due to the sharp corner, which makes it somewhat hard to sat-
isfy boundary conditions in the finite-element algorithms.

VIII. CONCLUSION

We have derived two simple formulas for the calculation of
fringing field components. We have shown that these formulas
can be used for calculating high-frequency fringing field loss
for thin rectangular conductors. Both the field formulas and loss
calculations have been validated numerically using finite-ele-
ment analysis. The formulas for fringing fields may also be ap-
plicable to electrical machines such as motors and generators
where air gaps can determine the field distribution, the power
converted (from electrical to mechanical or vice versa), as well
as the losses.

Also to be noted is that even though we have discussed the
loss calculations only for thin rectangular conductors and is di-
rectly applicable to thin film [14]-[16], thick film [17], printed
circuit board and flex circuit [18] windings, the qualitative con-
clusions regarding the variation of the loss with the position of
the conductors also apply to other conductor shapes as round
wires and thick rectangular conductors. However, in many cases
more exact formulas would be needed for shapes other than
thin rectangular conductors. In particular, the formula for the
fringing field loss for a round conductor would be needed. Also,
the formula for rectangular conductors with an aspect ratio close
to 1:1 is needed. Dealing with both of these conductor shapes
requires the simultaneous incorporation of both # and y com-
ponents of the fringing field in the loss calculation. This can be
done using the principle of superposition. We intend to develop
such formulas in a near future publication.

While it is true that the fringing field, if present, is over-
whelmingly dominant over the self and proximity effect field
(generally speaking), some of the winding conductors may be
placed far away from the air gap. In such a case the fringing field
may have decayed enough to become comparable in magnitude
to the self and proximity fields. In this situation, one must use all
three fields in the calculation of the winding loss. Once again,
the principle of superposition can be used. A future publication
would address the problem of incorporating self and proximity
fields in the analysis of fringing field loss.

The current paper also neglects skin effect. Inclusion of this
effect may pose a formidable challenge and is beyond the scope
of the present work. However, if the fringing field by itself does
vary appreciably along the width of the conductor, a rough treat-
ment suggests that the skin effect may be incorporated, approx-
imately, by modifying (I.3) as follows:

P = & (poHLf)?wdt x F()

(VIIL1)
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where the function F'(¢) is given by

_ 3 sinh ¢ —sin(

F(Q) = ¢ cosh ( — cos(

(VIIL2)

and where ¢ = w/6 and ¢ is the skin depth. A future publication
will provide a fuller description of the derivation of (VIIL.1) and
finite-element simulation verification.

Although, in this paper, we have only considered high fre-
quency winding losses due to the fringing fields, the fringing
field formulas (I.1) and (I.2) derived here may also be used for
calculating laminations core losses of low frequencies (~50 Hz)
reactors, where split laminations are used [19], [20]. A future
publication will explore these types of core losses in greater
detail.

REFERENCES

[1] J. Hu and C. R. Sullivan, “Optimization of shapes for round-wire high-
frequency gapped-inductor windings,” in Conf. Record. IEEE Industry
Applications Conf., 1998, pp. 907-911.

[2] J. Hu and C. R. Sullivan, “AC resistance of planar power inductors and
the quasidistributed gap technique,” IEEE Trans. Power Electron., vol.
16, no. 4, pp. 558-567, Jul. 2001.

[3] K. D. T. Ngo and M. H. Kuo, “Effects of air gaps on winding loss in
high-frequency planar magnetics,” in 19th Power Electronic Specialist
Conf., 1988, pp. 1112-1119.

[4] N. H. Kurkut and D. M. Divan, “Optimal air-gap design in high fre-
quency foil windings,” IEEE Trans. Power Electronics, vol. 13, no. 5,
pp. 942-949, Sep. 1998.

[5] L. Ye, G. R. Skutt, R. Wolf, and F. C. Lee, “Improved winding de-
sign for planar inductors,” in Proc. IEEE Power Electronics Specialists
Conf., 1997, vol. 2, pp. 1561-1567.

[6] M. Albach and H. Robmanith, “The influence of air gap size and
winding position on the proximity losses in high frequency trans-
formers,” in Conf. Rec. IEEE Power Electronics Specialists Conf.,
2001, pp. 1485-1490.

IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 8, AUGUST 2007

[7] P. Wallmeirer, N. Frohleke, and H. Grotstollen, “Improved analytical
modelling of conductive losses in gapped high frequency inductors,” in
Conf. Record. IEEE Industry Applications Conf., 1998, pp. 913-920.

[8] L. M. Escribano, R. Prieto, J. A. Oliver, J. A. Cobos, and J. Uceda,

“New modeling strategy for the fringing energy in magnetic compo-

nents with air gap,” in Proc. IEEE Power Electronics Specialists Conf.,

2002, pp. 144-150.

A. Balakrishman, W. T. Jones, and T. G. Wilson, “Air gap reluctance

and inductance calculations using a Schwarz-Christoffel transforma-

tion,” in Proc. IEEE Power Electronics Specialist Conf., 1995, vol. 2,

pp. 1050-1056.

[10] E. C. Snelling, Soft Ferrites: Properties and Applications, 2nd ed.
London, U.K.: Butterworth, 1988.

[11] J. D. Jackson, Classical Electrodynamics, 3rd ed. New York: Wiley,
1999.

[12] P. Lorain and D. Corson, Electromagnetic Fields and Waves. San
Francisco, CA: Freeman, 1970.

[13] 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Prod-
ucts. New York: Academic, 1980.

[14] L.Daniel, C.R. Sullivan, and S. R. Sanders, “Design of microfabricated
inductors,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 709-723,
Jul. 1999.

[15] T. Sato, H. Tomita, A. Sawabe, T. Inoue, T. Mizoguchi, and M. Sa-
hashi, “A magnetic thin film inductor and its application to a MHz
switching dc-dc converter,” IEEE Trans. Magn., vol. 30, no. 2, pp.
217-223, Mar. 1994.

[16] W. A. Roshen and D. E. Turcotte, “Planar inductors on magnetic sub-
strates,” IEEE Trans. Magn., vol. 24, no. 6, pp. 3213-3216, Nov. 1988.

[17] F. Gradzki and F. Lee, “Design of high-frequency hybrid power trans-
former,” in Proc. 6th Annual Power Electronics Seminar, VPEC, 1988,
pp. 319-326.

[18] W. Roshen et al., “High frequency, high density MHz magnetic com-
ponents for a low profile converter,” in 1992 IEEE Applied Power Elec-
tronics Conf. Rec., 1992, pp. 674-683.

[19] S.Nagawa, M. Kuwata, T. Nakau, D. Miyagi, and N. Takahashi, “Study
of modeling method of lamination of reactor core,” IEEE Trans. Magn.,
vol. 42, no. 4, pp. 1455-1458, Apr. 2006.

[20] S. Nogawa, M. Kuwata, D. Miyagu, H. Tounai, T. Nakau, and N. Taka-
hashi, “Study of eddy current loss reduction of slit in reactor core,”
IEEE Trans. Magn., vol. 41, no. 9, pp. 2024-2027, Sep. 2005.

[9

—

Manuscript received December 28, 2006; revised April 29, 2007. Corre-
sponding author: W. A. Roshen (e-mail: wroshen@msn.com).





