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Abstract

These class notes are designed for use of the instructor and students of the course PHYS-2010:
General Physics I taught by Dr. Donald Luttermoser at East Tennessee State University. These
notes make reference to the College Physics, 7th Edition (2005) textbook by Serway and Faughn.



X. Rotational Equilibrium and Rotational Dynamics

A. Torque.

1. The ability of a force to rotate a body about some axis is mea-

sured by a quantity called torque τ (Greek letter ‘tau’).

a) The torque due to a force of ~F has a magnitude of

τ = F d . (X-1)

i) τ ≡ torque (N·m).

ii) F ≡ applied force (N).

iii) d ≡ lever arm (also called the moment arm) dis-

tance.

b) The lever arm is the ⊥ distance from the axis of rotation

to a line drawn along the direction of the force. Note that

d = r sin φ , (X-2)

where r is the magnitude of the displacement from the

axis to the point of the applied force ~F and φ is the angle

between the direction of ~r and the direction of ~F .

c) As a result, we can rewrite the torque equation (Eq. X-1)

as

τ = r F sin φ . (X-3)

X–1
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2. The net torque is found by summing all torques (i.e., multiple

forces acting on a rotating object).

τnet =
N∑

i=1
τi = τ1+τ2+· · ·+τN = F1d1+F2d2+· · ·+FNdN . (X-4)

a) τ is positive if the rotation is counterclockwise (CCW).

b) τ is negative if the rotation is clockwise (CW).
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negative
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Example X–1. Problem 8.2 (Page 253) from the Serway & Faughn

textbook: A steel band exerts a horizontal force of 80.0 N on a tooth at

point B in Figure P8.2 (of the textbook). What is the torque on the root of

the tooth about point A?

x

y

r d
r = 1.20 cm

B

A

F

φ  = 42.0o

48.0o

Solution:

The distance from point A to point B is r = 1.20 cm = 1.20 × 10−2 m.

As can be seen from the figure above, the lever arm is

d = r sinφ = (1.20 × 10−2 m) sin 42.0◦ = 8.03 × 10−3 m .

This gives a torque of

τ = Fd = (80.0 N)(8.03 × 10−3m) = 0.642 N · m .

Since the torque is positive, it is in the counterclockwise direction.
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B. Static Equilibrium.

1. The first condition of equilibrium is that the sum of all forces

acting on an object is zero:
N∑

i=1
Fi = 0 (X-5)

(see Eq. V-8).

2. The second condition for equilibrium asserts that if an object

is in rotational equilibrium, the net torque acting on it about any

axis must be zero:
N∑

i=1
τi = 0 . (X-6)

3. A body in static equilibrium must satisfy 2 conditions:

a) Resultant external force must be zero (Eq. X-5).

b) Resultant external torque must be zero (Eq. X-6).

4. If a body is in equilibrium, the position of the axis of rotation is

completely arbitrary when calculating net torque.

C. Center of Gravity.

1. The center of gravity of an object is the point where all of the

weight of the object can be considered to be concentrated.

2. This also is called the center of mass:

xcg =

∑N
i=1 mixi
∑N

i=1 mi
=

m1x1 + m2x2 + · · ·+ mNxN

m1 + m2 + · · ·+ mN
(X-7)

ycg =

∑N
i=1 miyi
∑N

i=1 mi
=

m1y1 + m2y2 + · · ·+ mNyN

m1 + m2 + · · ·+ mN
(X-8)

zcg =

∑N
i=1 mizi
∑N

i=1 mi
=

m1z1 + m2z2 + · · ·+ mNzN

m1 + m2 + · · ·+ mN
. (X-9)
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3. The center of gravity of a homogeneous, symmetric body must

lie on the axis of symmetry.
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center of
gravity at
r=0, y=L/2

center of
gravity at

r=0

D. Problem-Solving Strategy for Objects in Static Equilibrium.

1. Draw a diagram of the system.

2. Isolate the object that is being analyzed. Draw a free-body di-

agram showing all external forces acting on the system (do this

for all masses in the system). Be careful to show the point where

each force acts.

3. Chose coordinate axes and specify the positive sense of rotation.

Then resolve the forces into components along the axes.

4. Apply the first condition of equilibrium:

∑
Fx = 0 &

∑
Fy = 0 .
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5. Chose an origin for calculating a net torque (usually an axis of

rotation). Apply the second condition of equilibrium:

∑
τ = 0 .

6. Solve the set of simultaneous equations from steps 4 and 5 and

solve for the unknowns.

Example X–2. Two children are playing on a balanced seesaw. One

child with a mass of 42 kg sits 1.4 m from the center. Where on the other

side must the second child sit if her mass is 34 kg?

m1 m2

(axis)

n

wsw1 w2

x1 = 1.4 m x2

positive
torque
(CCW)

negative
torque
(CW)

Solution:

Since the seesaw is balanced, the sum of all torques must be zero. We

will choose the axis at the point where the fulcrum is located. With this

location of the axis, the torques from two of the forces, the weight of the

seesaw ws and the normal force on the fulcrum n, are zero since the lever

arm is zero for both forces. Since the weight of mass 1, w1, will cause the

seesaw to rotate in the counterclockwise (CCW) direction, it will have

a positive torque. Since the weight of mass 2, w2, will cause the seesaw

to rotate in the clockwise (CW) direction, it will have a negative torque.
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Hence the torque equation becomes (remembering that w = mg)

∑
τ = τ1 − τ2 + τs + τn = 0

= w1x1 − w2x2 + 0 + 0 = 0

= m1gx1 − m2gx2 = 0 .

Here, τ1, τ2, τs, and τn are the torques of mass 1, mass 2, the mass of the

seesaw, and the normal force, respectively. Mass m1 = 42 kg and m2 =

34 kg. The lever arm on mass 1 is x1 = 1.4 m. We want to find the lever

arm on mass 2, which will be the distance that the second child is from the

fulcrum (i.e., the balance point), x2, since this distance is perpendicular

to the force vector w2. Since the equation above, has only one unknown

in it, we do not need the first condition of equilibrium for this problem

(e.g.,
∑

F = n − w1 − w2 − ws = 0). Solving the above torque equation

gives

x2 =
m1

m2
x1 =

42 kg

34 kg
(1.4 m) = 1.7 m .

E. Torque and Moment of Inertia.

1. The tangential force on a rotating object is:

Ft = mat .

a) Multiplying this by the radius r of the rotation object

gives

Ft r = mrat .

b) Since at = rα (see Eq. VIII-13), we can write

Ft r = mr2α .

c) Finally, Ft r is nothing more than the torque, so

τ = mr2α , (X-10)
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where m is the mass of the rotating object, r is its radius,

and α its angular acceleration.

d) The quantity mr2 is called the moment of inertia of

mass m =⇒ usually represented with an I .

2. The total torque on a rotating object is then the sum of all the

torques on each mass of the rotating object(s):

τnet =
N∑

i=1
τi =




N∑

i=1
mir

2
i


 α , (X-11)

where the N is the number of the individual objects of mass mi

rotating about a common axis, each at a distance ri from that

axis.

a) The moment of inertia is then

I =
N∑

i=1
mir

2
i (X-12)

or

I = m1r
2
1 + m2r

2
2 + · · ·+ mNr2

N

=⇒ [I ] = kg m2.

b) We can then rewrite Eq. (X-11) as

τ = Iα . (X-13)

c) Note the similarity of this equation to Newton’s 2nd Law

of motion
∑

F = ma =⇒ Eq. (X-13) is the rotational

counterpart to Newton’s 2nd law.

d) Force & mass in linear motion correspond to torque &

moment of inertia, respectively, in rotational motion.
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3. Moments of inertia for common solids:

a) Solid sphere (with axis of rotation through center): I =
2

5
MR2 (M = mass, R = radius of sphere).

b) Hoop or cylindrical shell (with axis of rotation through

center, parallel to the wall): I = MR2 (R = outer radius).

c) Solid cylinder or disk (with axis of rotation through cen-

ter, parallel to wall): I =
1

2
MR2 (R = radius of cylinder).

d) Long thin rod (rotation about center): I =
1

12
ML2 (L =

length of rod).

e) Long thin rod (rotation about one end): I =
1

3
ML2.

Example X–3. Problem 8.35 (Page 258) from the Serway &

Faughn textbook: A 150-kg merry-go-round in the shape of a uniform,

solid, horizontal disk of radius 1.50 m is set in motion by wrapping a rope

about the rim of the disk and pulling on the rope. What constant force must

be exerted on the rope to bring the merry-go-round from rest to an angular

speed of 0.500 rev/s in 2.00 s?

Solution:

This problem is clear enough without drawing a diagram. We first need

to calculate the moment of inertia for the merry-go-round. Since we are

told it has a solid disk shape rotating about its center,

I =
1

2
MR2 =

1

2
(150 kg)(1.50 m)2 = 169 kg ·m2 .

We also can calculate the angular acceleration based on the information

given:

α =
ω − ω◦

∆t
=

0.500 rev/s − 0

2.00 s
= 0.25 rev/s2 · (2π rad/rev) =

π

2
rad/s2 .
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Using Eq. (X-1) in conjunction with Eq. (X-13), we have

τ = Fd = Iα ,

where the lever arm here is just the radius of the merry-go-round: d = r.

As such,

F =
Iα

r
=

(169 kg · m2)(π/2 rad/s2)

1.50 m
= 177 N .

F. Rotational Kinetic Energy.

1. A body rotating about some axis with an angular speed ω has a

rotational kinetic energy of

KEr =
1

2
I ω2 , (X-14)

which can be shown through the following argument.

a) Total kinetic energy of all “mass elements” in a rotating

body is

KET =
N∑

i=1

(
1

2
miv

2
i

)
.

b) However, v = rω for an object in rotation, thus

KET = KEr =
N∑

i=1

(
1

2
mir

2
i ω

2
i

)
=

1

2
ω2

N∑

i=1

(
mir

2
i

)
,

where we have taken the angular speed out of the sum-

mation since all of the mass elements of the rotating body

have the same angular speed.

c) Finally, I =
∑

mr2, so

KEr =
1

2
Iω2 ,

hence we have proven Eq. (X-14).
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2. The conservation of mechanical energy now becomes

(KEt + KEr + PE)i = (KEt + KEr + PE)f . (X-15)

a) KEt ≡ translational (straight line) KE.

b) KEr ≡ rotational KE.

c) PE ≡ potential energy.

Example X–4. Problem 8.41 (Page 258) from the Serway &

Faughn textbook: A horizontal 800-N merry-go-round of radius 1.50 m is

started from rest by a constant horizontal force of 50.0 N applied tangentially

to the merry-go-round. Find the kinetic energy of the merry-go-round after

3.00 s. (Assume it is a solid cylinder.)

Solution:

This problem is clear enough without drawing a diagram. We first need

to calculate the moment of inertia for the merry-go-round. Since we are

told it is a solid cylinder rotating about its center,

I =
1

2
MR2 =

1

2

(
w

g

)
R2 =

1

2


 800 N

9.80 m/s2


 (1.50 m)2 = 91.8 kg · m2 .

We also can calculate the angular acceleration from the torque equations:

α =
τ

I
=

F · R
I

=
(50.0 N)(1.50 m)

91.8 kg · m2 = 0.817 rad/s2 .

With this angular acceleration, we can now calculate the angular speed

after 3.00 s starting from rest with

ω = ω◦ + αt = 0 + (0.817 rad/s2)(3.00 s) = 2.45 rad/s .

Finally, we can calculate the rotational kinetic energy with Eq. (X-14):

KEr =
1

2
Iω2 =

1

2
(91.8 kg ·m2) (2.45 rad/s)2 = 276 J .
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G. Angular Momentum.

1. We have the torque equation of Eq. (X-13):

τ = Iα .

a) However, ω = ω◦ + αt or ω = ω◦ + α(∆t) if t◦ 6= 0, thus

α =
ω − ω◦

∆t
=

∆ω

∆t
.

b) Then, we can rewrite torque as

τ = I

(
∆ω

∆t

)
=

Iω − Iω◦

∆t
.

2. The angular momentum of a rotating object is the moment of

inertia multiplied by the angular velocity:

L ≡ I ω . (X-16)

3. As a result, the torque also can be defined as the ratio of the

change in angular momentum to the time interval ∆t over which

the change occurs:

τ =
change in ang. mom.

time interval
=

L − L◦

∆t
=

∆L

∆t
. (X-17)

a) This is the rotational analogy to F = ∆p/∆t (see Eq.

VII-2).

b) If
∑

τ = 0, then ∆L/∆t = 0 and L i = L f or I iω i = I fω f.

4. Conservation of Angular Momentum.

a) The angular momentum of a system is conserved when

the net external torque acting on the system is zero:

If
∑

τ = 0 , then L i = L f .
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b) In an isolated (or closed) system, the energy, linear mo-

mentum, and angular momentum of the system remains

constant.

Example X–5. (a) Calculate the angular momentum of Earth

that arises from its spinning motion on its axis and (b) the angular

momentum of Earth that arises from its orbital motion.

Solution (a):

This problem is clear enough without drawing a diagram. The

angular momentum is L = Iω. If we treat the Earth as a solid

sphere spinning about its center, the moment of inertia is

I rot =
2

5
MR2 =

2

5
M⊕R2

⊕ =
2

5
(5.98 × 1024 kg)(6.38 × 106 m)2

= 9.74 × 1037 kg m2 .

The angular speed of the Earth’s rotation is

ω rot =
2π

T rot

=
2π

24 hr
· 1 hr

3600 s
= 7.27 × 10−5 rad/s .

This then gives the angular momentum of the Earth’s spin as

L rot = I rot ω rot = (9.74 × 1037 kg m2)(7.27 × 10−5 rad/s)

= 7.08 × 1033 J · s .

Solution (b):

Considering the orbital motion, we consider the Earth to be a

point mass a distance of r⊕ = 1.496 × 1011 m from the Sun in a

circular orbit, so

I orb = M⊕r2
⊕ = (5.98×1024 kg)(1.496×1011 m)2 = 1.34×1047 kg m2 .

The angular speed of the Earth in its orbit is

ω orb =
2π

T orb

=
2π

1.00 yr
·

1.00 yr

365.24 day
·
1.00 day

24.00 hr
·
1.00 hr

3600 s

= 1.99 × 10−7 rad/s .
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This then gives the angular momentum of the Earth’s orbital

motion as

L orb = I orb ω orb = (1.34 × 1047 kg m2)(1.99 × 10−7 rad/s)

= 2.66 × 1040 J · s .

5. The Formation of the Solar System.

a) The solar system started out as a giant (more or less

spherical) gas cloud a few light years in diameter and ro-

tating very slowly (a few meters per second on the outer

rim) =⇒ we currently see such clouds in star forming re-

gions of our Milky Way Galaxy.

b) An instability occurred in the cloud from either the pas-

sage of one of the spiral arms of the Milky Way or a super-

nova shock wave passing through the cloud (aluminum iso-

tope ratios in the solar system suggest the latter of these

two causes likely happened). This set up a compression

in the cloud which caused Fg > (P ·A) (the weight of the

cloud exceeded the internal pressure that was keeping it

stable) =⇒ the cloud began to collapse.

i) Initially these clouds, called Giant Molecular

Clouds (GMC), have thousands of solar mass worth

of material in them.

ii) Within the GMC, turbulence is common just as

in a thunderstorm here on Earth. This turbulence

causes localized spinning “eddies” to exist within

the GMC.
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iii) During the collapse, gravitational instabilities

cause the GMC to fragment into smaller cloudlets

that range in mass from approximately 0.1 M� up

to approximately 100 M� in mass each.

iv) The eddies from the GMC induce an initial spin

to each cloudlet as it begins to collapse (see the

diagram below).

axis

Cloudlet

v) The more massive the cloudlet, the faster it col-

lapses as shown in the following table.

Cloudlet Mass Contraction Time
(M�) (Years)

0.1 108

1.0 107

3.0 106

10 105

100 104
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c) As the solar cloudlet (often referred to as the solar neb-

ula) collapsed, it began to spin faster due to the conser-

vation of angular momentum:

L i = L f

I iω i = I fω f

2

5
M ir

2
i ω i =

2

5
M fr

2
fω f ,

and since the mass is conserved during collapse, Mi = Mf ,

r2
i ω i = r2

fω f

ω f =

(
r i

r f

)2
ω i .

d) The faster the cloud spins, the flatter it got =⇒ “centrifu-

gal” acceleration as shown in the following diagram.

axis

Bulge

Disk

i) A central bulge formed (called protostars, and in

the case of the Sun, the protosun).

ii) A disk formed surrounding the central bulge.

e) P and T got so high in the central bulge that thermonu-

clear reactions began =⇒ the Sun was born.
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f) Meanwhile in the cooler disk, the planets (initially called

protoplanets) formed through the process of condensa-

tion (solids forming from gas), advection (bigger particles

forming from smaller ones), and accretion (large objects

forming even larger objects through collisions).

Protostar

IR Light

Protoplanet


