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1. Introduction

Recall that the exterior Schwarzschild metric g defined on the 4-manifold
M = R× (R3\B2m) = {(t, r, θ, φ) : r > 2m} is given by:

g = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θ dφ2).

It describes the gravitational field outside a spherically symmetric body of
mass M . Four of the tests of general relativity are based on this metric and
its geodesics: the gravitational redshift, the bending of light, the precession
of the perihelion of Mercury, and the time delay of radar signals. In these
lectures, we will study the null and timelike geodesics of the Schwarzschild
metric, and describe the first three tests mentioned above.

The following simple result can be viewed as a special case of Nöther’s
Theorem.

Proposition 1. Let (M, g) be a pseudo-Riemannian manifold, let ξ be a
Killing vector field of (M, g), and let γ be a geodesic of (M, g). Then g(ξ, γ̇)
is constant.

Proof. Extend γ̇ in a neighborhood of γ to a vector field X. Since Lξg = 0,
we have

2g(∇ξX,X) = ξ
(
g(X,X)

)
= 2g([ξ,X], X),

Thus:

X
(
g(ξ,X)

)
− g(ξ,∇XX) = g(∇Xξ,X) = g(∇ξX − [ξ,X], X) = 0.

Since along γ, we have X = γ̇, and∇γ̇ γ̇ = 0, we conclude γ̇
(
g(ξ, γ̇)

)
= 0.

The Schwarzschild metric is rich in isometries; its isometry group is G =
R×SO(3). This, in conjunction with Proposition 1, will be used to integrate
explicitly the geodesic equations.

The vector field ∂t = ∂/∂t is a future directed timelike Killing field,
which we call the static Killing field . Note that g(∂t, ∂t) = −(1 − 2m/r).
The integral curves of ∂t when reparameterized by proper time are the world
lines of static observers, i.e. observers which are fixed as viewed from infinity.
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2. The Gravitational Redshift

Light, as all electromagnetic waves, is modeled in relativity by solutions
of the Maxwell equations. However, for high frequencies, the geometrical
optics approximation is quite accurate. In this approximation, light signals
are modeled by null geodesics. If a light signal is given by a null geodesic
γ, then its frequency measured by an observer β receiving the signal at a
point p ∈ M is ω = −g(γ̇, β̇)|p. Consider now two static observers β1 and
β2 in the Schwarzschild spacetime, and suppose that β1 emits a light signal
γ at point p1 which is received by β2 at point p2. From the fact that both
observers are static, it follows that

β̇j =
∂t√

1− 2m/r
, j = 1, 2.

By Proposition 1, we have g(∂t, γ̇) constant along γ, hence the gravitational
redshift factor , defined to be one less than the ratio of the frequency of the
light emitted ω1 to the frequency of the light received ω2, is:

ω1

ω2
− 1 =

√
1− 2m/r2
1− 2m/r1

− 1.

If the light is emitted closer to the center, where the gravitational field
is stronger, and received further from the center, where the gravitational
field is weaker, then the frequency is shifted toward the red. This effect has
been measured to 1% accuracy in laboratory experiments on earth. The
gravitational redshift of spectral lines from the Sun has also been observed,
though with lesser accuracy due to other effects.

We make one last interesting observation related to the redshift. One can
show rather easily that for any spherically symmetric perfect fluid body in
equilibrium, there holds M/R ≤ 4/9, regardless of the equation of state,
where M is the total mass, R is the area radius R =

√
A/4π, and A is the

surface area of the body. It follows that the maximum redshift factor, when
r2 =∞ and r1 = R, is 2. The redshift factor from quasars is commonly far
larger than 2. This is presumably due to cosmological effects.

3. Integration of the Geodesic Equations

Let γ be any geodesic then g(γ̇, γ̇) is constant along γ. Thus if γ is not
null, we can assume that it is parameterized by proper time τ , i.e. that
g(γ̇, γ̇) = −1. If γ is null, we assume that τ is any affine parameter along
γ. Note that we still have the freedom to rescale τ this case. We also make
the following simple observation.

Lemma 1. Let (M, g) be a pseudo-Riemannian manifold, and let ϕ be an
isometry of (M.g). Let Σ be the set of fixed points of ϕ: {p ∈M : ϕ(p) = p}.
Then any geodesic γ initially on Σ and tangent to Σ remains in Σ. In
particular, Σ is totally geodesic.
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Proof. Indeed, suppose to the contrary that γ(τ) 6∈ Σ for some τ . Then
ϕ(γ(τ)) 6= γ(τ). However, ϕ ◦ γ is a geodesic with the same initial conditions
as γ, since ϕ(γ(0)) = γ(0) and ϕ(γ̇(0)) = γ̇(0). This violates the uniqueness
theorem for geodesics.

For the Schwarzschild solutions (M, g), the map (t, r, θ, φ) 7→ (t, r, π −
θ, φ) is an isometry whose set of fixed points is the equatorial plane Σ =
{(t, r, θ, φ) : θ = π/2}. If γ is any geodesic then there is an isometry ϕ ∈
SO(3) such that ϕ(γ(0)) ∈ Σ and ϕ(γ̇(0)) ∈ TΣ. By Lemma 1, it follows
that ϕ ◦ γ remains in Σ. Therefore, it is sufficient to consider geodesics
in the equatorial plane. The same result could have been obtained from
Proposition 1.

Let γ = (t, r, π/2, φ) be a geodesic in the equatorial plane. Then (t, r, φ)
is a critical point of the Lagrangian:

E =
∫ {
−
(

1− 2m
r

)
ṫ2 +

(
1− 2m

r

)−1

ṙ2 + r2φ̇2

}
dτ.(1)

Using ξ = ∂t and ξ = ∂φ in Proposition 1, we obtain two conserved quanti-
ties:

E =
(

1− 2m
r

)
ṫ(2)

L = r2φ̇,(3)

which we call the energy and the angular momentum of γ respectively. If the
angular momentum is zero, it follows that φ = constant. These geodesics,
called radial geodesics, will be studied in Section 4. The last conserved
quantity is obtained from the condition g(γ̇, γ̇) = constant:

−
(

1− 2m
r

)
ṫ2 +

(
1− 2m

r

)−1

ṙ2 + r2φ̇2 = −ε,(4)

where

ε =

{
0 if γ is null;
1 if γ is timelike.

Substituting from (2) and (3) into (4), we obtain:

ṙ2 +
(

1− 2m
r

)(
L2

r2
+ ε

)
= E2.(5)

This is equivalent to the equation of motion for a particle of mass 1 and
energy E2 on a one-dimensional line in the effective potential V = (1 −
2m/r)(L2/r2 + ε). The qualitative analysis of these geodesics will be done
in Section 5 for null geodesics ε = 0, and in Section 6 for timelike geodesics
ε = 1.
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4. Radial Geodesics

For radial geodesics, Equation (5) reduces to:

ṙ2 + ε

(
1− 2m

r

)
= E2.(6)

For null geodesics ε = 0, we are free to rescale the affine parameter τ so
that E = 1, and we obtain ṙ = ±1. Thus, after adjusting the origin of the
affine parameter τ , we have r = ±τ . For outgoing null geodesics ṙ = 1, and
Equation (2) now yields:

t− t0 =
∫

dτ

1− 2m/τ
= τ + 2m log(τ − 2m).

The outgoing null geodesics thus have the equation:

t− t0 = r + 2m log(r − 2m).(7)

The incoming null geodesics can be obtained similarly, and have the equa-
tion:

t− t0 = −
(
r + 2m log(r − 2m)

)
.(8)

Note that all null geodesics reach r = 2m within finite affine parameter even
though Schwarzschild time t is infinite upon their arrival. Equations (7)
and (8) are important when discussing extensions of the Schwarzschild space-
time beyond its event horizon r = 2m.

We now turn to the timelike radial geodesics. In this case, Equation (6)
becomes:

ṙ2 +
(

1− 2m
r

)
= E2

It is interesting to note that the equation of motion in this case is r̈ = −m/r2
just as in the Newtonian case. The effective potential has no critical points,
and therefore the motion is very simple. If E2 < 1, then the orbit is a
crash orbit , i.e. r climbs to a maximum at which point it turns around
and decreases monotonically until r = 2m within finite affine parameter. If
E2 ≥ 1, then depending upon the initial direction, the orbit either escapes
or crashes. We call these crash/escape orbits.

The equations of motion can be integrated in terms of quadratures:

τ =
∫

dr√
E2 − 1 + 2m/r

t =
∫

E2dτ

1− 2m/r
.

Although, these integrals can be carried out explicitly, the resulting formulae
bear no particular interest.
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5. Null Geodesics and the Bending of Light

For null geodesics, we may as before, rescale the affine parameter to set
E = 1. Equation (5) then becomes:

ṙ2 +
L2

r2

(
1− 2m

r

)
= 1.

The equations of motion again can be integrated in terms of quadratures:
dτ

dr
=

1√
1− (L2/r2)(1− 2m/r)

(9)

dt

dτ
=

1
1− 2m/r

(10)

dφ

dτ
=
L

r2
.(11)

The effective potential has one critical point at r = 3m. This correspond
to an unstable circular orbit, a trapped ray . The potential has a maximum
of L2/27m2 at this critical point. Hence an orbit initially in r < 3m can
escape if and only if L2 < 27m2, and conversely and orbit initially in r > 3m
will be not get trapped if and only if L2 > 27m2.

Consider now an orbit coming in from infinity, i.e. with r → ∞ as
τ → −∞. Without loss of generality, assume that L > 0. Multiplying
Equation (11) by Equation (9), we obtain

dφ

dr
=

L

r2
√

1− (L2/r2)(1− 2m/r)
,(12)

from which it follows immediately that dφ/dr ≤ L/r2, and hence φ→ φ0 =
constant as τ → −∞. If L2 > 27m2, then the orbit will not get trapped,
and r →∞ also as τ →∞. Thus, φ→ φ1 = constant as τ → +∞. We wish
to compute the maximum deflection angle δ = φ1−φ0−π of the orbit from
a linear orbit in flat space. It is more convenient to introduce the variable
u = 1/r, and the parameter a = 1/L. This leads to the equation(

du

dφ

)
+ u2(1− 2mu) = a2.(13)

From the qualitative analysis, it is easily seen that the orbit will be sym-
metric about its perihelion where r will be at a minimum, say r0, and con-
sequently u at a maximum u0 = 1/r0. We point out that u0 is the positive
root of the cubic equation

a2 − u2 + 2mu3 = 0.(14)

In view of Equation (13), we now deduce that

δ + π = 2
∫ u0

0

du√
a2 − u2 + 2mu3

.(15)

This is an elliptic integral, and cannot be carried out explicitly. However,
we only need to compute the linear contribution of m to this integral. To
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this purpose, we make the substitutions v = u/u0 and µ = u0m in (15).
Then, noting that Equation (14) implies a2 = u2

0(1− 2µ), we find

δ =
∫ 1

0

dv√
1− 2µ− v2 + 2µv3

.

Since clearly δ is only a function of µ, we have dδ = δµdµ = δµ(u0 dm +
mdu0). When m = 0, we find

δµ(0) = 2
∫ 1

0

(1− v3)
(1− v2)3/2

dv = 4,

and also dµ = u0 dm. Consequently, we obtain

dδ|m=0 = 4u0 dm.

Thus, to first order in m, a null orbit passing at a perihelion of r0 will
experience a deflection in its azimuthal angle of

δ ≈ 4Gm
c2r0

,

where G is the gravitational constant and c the speed of light. In cgs units
G = 6.67 × 10−8cm3/g sec2, and c = 3 × 1010cm/sec. With m = 2 × 1033g
and r0 = 7×1010cm the mass and radius of the sun respectively, one obtains
for an orbit which grazes the surface of the sun:

δ ≈ 0.85× 10−5,

or about 1.7 seconds of arc. This is within 1% of observed data.

6. Timelike Geodesics and Perihelion Precession

We now turn to the study of the timelike geodesics. Equation (4) now
has the form

ṙ2 +
(

1− 2m
r

)(
L2

r2
+ 1
)

= E2.

Thus, as before, this is identical to the motion of a particle of mass 1 on
a line in the effective potential V (r) = 1 − 2m/r + L2/r2 − 2mL2/r3. It
is interesting to note that the only difference with the Newtonian case is
the relativistic correction term −2mL2/r3. The qualitative analysis of this
potential depends on the ratio L2/m2.

If L2 < 12m2, then V has no critical points and just as in the radial case,
the analysis is simple: depending whether the energy E2 < 1 or E2 ≥ 1 the
orbit is either a crash or a crash/escape orbit.

If L2 = 12m2, the situation is the essentially the same, with the exception
that there is now an unstable circular orbit at r = 6m, and an exceptional
orbit with E2 = 8/9 which spirals into this orbit.

If L2 > 12m2, there are two critical points r1 < 6m < r2, the roots of
the equation mr2 −L2r+ 3mL2 = 0. We will not proceed further with this
analysis, but instead point out that the circular orbit at r = r2 is now a stable
circular orbit. Orbits with r initially close to r2 and energy E2 slightly larger
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than V (r2) will have r oscillating between rmin and rmax. When L2/m2 is
much larger than 12, than r2 will be large, hence those orbits will have r
large throughout and the relativistic correction term small. These orbit will
be nearly elliptical. Consider such an orbit, with perihelion at τ = 0 φ = 0,
r = rmin. The orbit will reach perihelion again at some proper time τ = τ0,
and φ = φ0 We now wish to compute the perihelion precession of such an
orbit, i.e. ψ = φ0 − 2π.

We can write

ψ = 2
∫ rmax

rmin

Ldr

r2
√
E2 − V (r)

− 2π.(16)

Introduce the variable u = 1/r, and the parameters umin = 1/rmin and
umax = 1/rmax. Then the integral in (16) can be rewritten as

ψ = 2
∫ α

1

du√
(E1 − 1)/L2 + (2m/L2)u− u2 + 2mu3

− 2π.(17)

Again, this is an elliptic integral, and cannot be evaluated explicitly. How-
ever, as before, it is sufficient to compute the linear contribution of m. For
this purpose, introduce the parameters a and e by:

rmin = a(1− e), rmax = a(1 + e),

and the variable v = au. In analogy with Newtonian mechanics, we call a
and e the eccentricity and semimajor axis of the orbit respectively. With
these substitution, the integral in (17) becomes

ψ = 2
∫ v2

v1

dv√
µ(v0 − v)(v − v1)(v2 − v)

− 2π,

where µ = 2m/a, v1 = 1/(1 + e), v2 = 1/(1 − e), and v0 + v1 + v2 = 1/µ.
It is clear from this formula that ψ is a function of e and µ. It is easy to
see that when ψ = 0 when µ = 0, hence ψe(0, e) = 0. Differentiating with
respect to µ at µ = 0, we find:

ψµ(0, e) =
∫ v2

v1

(v + v1 + v2)√
(v − v1)(v2 − v)

dv =
3π

1− e2
.

Therefore, we conclude that

dψ|µ=0 =
3π

1− e2
dµ.

Thus, for an orbit of ellipticity e and semimajor axis a, we have obtained to
first order in m a perihelion precession rate

ψ ≈ 6πGm
c2a(1− e2)

,

per revolution. For the orbit of Mercury around the sun, we have e = 0.206
and a = 5.79 × 1012cm, giving a perihelion advance ψ ≈ 5 × 10−7 per
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revolution. The period T of Mercury can be obtained from Kepler’s Third
law

T 2 =
4π2a3

Gm
= 5.7× 1013sec2,

i.e. a period of about 7.6×106sec or 88 days, with about 415 revolutions per
century. Thus, we get a perihelion precession rate of about 43 seconds of arc
per century. This is exactly the observed value, after taking into account
the Newtonian perturbations due to nearby planets. Einstein is quoted as
having said that when he discovered this result he felt as if “the universe
had whispered in his ear.”


