


The Path Integral Formulation
of Quantum Theory

We consider here an alternate formulation of quantum mechanics invented by
Feynman in the forties.f In contrast to the Schrodinger formulation, which stems
from Hamiltonian mechanics, the Feynman formulation is tied to the Lagrangian
formulation of mechanics. Although we are committed to the former approach, we
discuss in this chapter Feynman’s alternative, not only because of its aesthetic value,
but also because it can, in a class of problems, give the full propagator with tremend-
ous ease and also give valuable insight into the relation between classical and
quantum mechanics.

8.1. The Path Integral Recipe

We have already seen that the quantum problem is fully solved once the propa-
gator is known. Thus far our practice has been to first find the eigenvalues and
eigenfunctions of H, and then express the propagator U(¢) in terms of these. In the
path integral approach one computes U(¢) directly. For a single particle in one
dimension, the procedure is the following.

To find U(x, t; x', t'):

(1) Draw all paths in the x—¢ plane connecting (x', #') and (x, ¢) (see Fig. 8.1).
(2) Find the action S[x(7)] for each path x(¢).
() Ulx, t;x,0)=4 T IR (8.1.1)

all paths

where A4 is an overall normalization factor.

I The nineteen forties that is, and in his twenties. An interesting account of how he was influenced by
Dirac’s work in the same direction may be found in his Nobel lectures. See, Nobel Lectures—Physics,
Vol. 111, Elsevier Publication, New York (1972).

223




224
CHAPTER 8

(x,t)

A
(x!t) Figure 8.1, Some of the paths that contribute to the propagator. The
T T contribution from the path x(1) is Z=exp{iS[x(1)]/#}.

8.2. Analysis of the Recipe

Let us analyze the above recipe, postponing for a while the proof that it repro-
duces conventional quantum mechanics. The most surprising thing about it is the
fact that every path, including the classical path, x,(¢), gets the same weight, that
is to say, a number of unit medulus. How are we going to regain classical mechanics
in the appropriate limit if the classical path does not seem favored in any way?

To understand this we must perform the sum in Eq. (8.1.1). Now, the correct
way to sum over all the paths, that is to say, path integration, is quite complicated
and we will discuss it later. For the present let us take the heuristic approach. Let
us first pretend that the continuum of paths linking the end points is actually a
discrete set. A few paths in the set are shown in Fig. 8.1,

We have to add the contributions Z,=e"™ V" from each path x,(¢). This
summation is done schematically in Fig. 8.2. Since each path has a different action,
it contributes with a different phase, and the contributions from the paths essentially
cancel each other, until we come near the classical path. Since S is stationary here,
the Z’s add constructively and produce a large sum. As we move away from x4 (1),
destructive interference sets in once again. It is clear from the figure that U(¢) is
dominated by the paths near x (). Thus the classical path is important, not because
it contributes a lot by itself, but because in its vicinity the paths contribute coherently.

How far must we deviate from x before destructive interference sets in? One
may say crudely that coherence is lost once the phase differs from the stationary
value S[x (1)]/fi=Su/f by about x. This in turn means that the action for the
zoherence paths must be within %z of Sy. For a macroscopic particle this means a
very tight constraint on its path, since S, is typically ~1 erg sec~10""%, while for
an electron there is quite a bit of latitude. Consider the following example. A free
particle leaves the origin at /=0 and arrives at x=1 cm at =1 second. The classical
path is

x=1 (8.2.1)

Figure 8.2. Schematic representation of the sum ZZ,.
Paths near x. (¢) contribute coherently since S is station-
ary there, while others cancel each other out and may
be ignored in the first approximation when we calculate
ur).
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Figure 8.3. Two possible paths connecting (0, 0) and (1, ). The
action on the classical path x=r is m/2, while on the other, it is
2m/3.

-~y

Consider another path
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(8.2.2)

which also links the two space-time points (Fig. 8.3.)

For a classical particle, of mass, say 1g, the action changes by roughly
1.6 x 10°°#, and the phase by roughly 1.6 x 10* rad as we move from the classical
path x=t¢ to the nonclassical path x=¢*. We may therefore completely ignore the
nonclassical path. On the other hand, for an electron whose mass is ~107"" g, §S~
fi/6 and the phase change is just around a sixth of a radian, which is well within the
coherence range 6.5/ <m. It is in such cases that assuming that the particle moves
along a well-defined trajectory, x. (1), leads to conflict with experiment.

8.3. An Approximation to U(¢) for a Free Particle

Our previous discussions have indicated that, to an excellent approximation, we
may ignore all but the classical path and its neighbors in calculating U(7). Assuming
that each of these paths contributes the same amount exp(iS./#), since S is station-
ary, we get

U(t)=A' &5/" (8.3.1)
where A4’ is some normalizing factor which “measures” the number of paths in the
coherent range. Let us find U(r) for a free particle in this approximation and compare
the result with the exact result, Eq. (5.1.10).

The classical path for a free particle is just a straight line in the x—7 plane:

xc](z”)=x’+%(1”—z’) (8.3.2)

corresponding to motion with uniform velocity v=(x—x")/(¢—¢). Since ¥ =
mv~/2 is a constant,

(x—x")?

! 1
Scl=j Fdt"'=—m
o 2 t—ii
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