We need to find self-similar solutions for the following PDE:
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with -1 <x <1, t>0.
The initial condition is given by:
h(x,t) = 0.1+ 0.5(1 + cos(7mtx)) (2)

The goal is to find special solutions of the normalized evolution equation, with the property that the solutions
remain the same under a certain transformation of variables; these solutions are also referred to as “symmetry
solutions”. A very useful subclass of symmetry transformations involves a transformation of dependent and
independent variables by scaling. We impose the following scaled variables:
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Thus, we transform the original PDE to a PDE with new the variables:
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and we assume that the solution has the following form:
h(x,t) = t*H(n), (5)
where 7 is the similarity variable.
Inserting the new variables in the PDE gives:
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In order for Eq. 4 to hold true, it is required that &« = 1. One can now determine the form of the self-similar
ansatz by verifying that the ratio */t does not change:
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Note that the original PDE can be written in conservation law form with flux h(x, t) as:
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and we can therefore say that:



Using Eq. 9, we obtain the following:

and therefore, f = —1.

Thus, know that the solution has takes the following form:

h(x,t) = t‘lH(n)

We can now compute the terms in Eq. (1)) as:
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Plugging Eq. (12a) - (12q) into Eq. (I results in:
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