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§111.3.7 Twistors, Spinors and the Einstein Vacuum Equations
by G.A.J. Sparling'

Abstract. A link is established between twistor theory and the structure of Einstein’s
equations.

Whilst studying the twistor theory of hypersurfaces in space-time, the author discovered
a symmetric covariant tensor of rank two on a three-sphere bundle over space-time,
which, when restricted to a hypersurface gave the Fefferman conformal structure of the
twistor C.R. structure of that hypersurface (see below, for definitions) (Sparling 1982,
§111.3.6). Whilst writing up that work, the author suddenly realized that the symmetric
tensor was but the symmetric part of a naturally defined tensor of rank two, whose skew
part controls the Einstein equations and explains the origin of the Witten argument for
positive energy (Witten 1981). The tensor is analogous to the Kahler tensor of Kahlerian
complex manifold, whose symmetric part gives the Kihler metric and whose skew part
gives the Kahler symplectic structure. A discussion of its definition and basic properties
follows.

Let M be a smooth four-manifold with smooth Lorentzian metric g. Over M, form
the principal bundle K of orthonormal frames of M, §;, where i = 0,1, 2, 3. Take §; to
be null and the §; to have scalar products with g, g;; = 9(4;,4;); goa = gao = —gn1 =
—g22 = 1; gij = 0 otherwise. Indices are lowered with g;;, raised with its inverse g'
and the Einstein summation convention is used.

On K, construct the canonical form 8 and a connection form 8,7 = —,. 6' links the
abstract bundle K with the tangent geometry of M. 6.7 represents a metric preserving
connection for M (Kobayashi and Nomizu 1963). The Lie algebra of the Lorentz group
acts on K, giving six vertical vector fields, D,/ = —D’,. Denote by D; the four horizontal

connection vector fields. Then &', HH - D,-j and D; obey the relations:

(6', D;) = 8i,(6', D) =0, (1)
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(07, Dm) = 0,07, D2y = 5(5,6,3 — 9ima), 2)
dg' + 0 A0 = 0 A O™ Ry, (3)

do; + 6, A8* = 6" AO™ Rynj', (4)

(D, DY = —[&g.,,nﬂjuafnf ~¢'Di + 6.2 D,Y), (5)
(D7, D] = -(6.,"De - g D), (6)

[Di, Dj] = =2R;;. D* — 2R;* D (7)

Here { ,) denotes the canonical pairing of a one form with a vector field, d is the
exterior derivative, A the exterior product of forms and [,] denotes the Lie bracket of

vector fields. 8,7 is the Kronecker delta. Rin' and Rim;‘ represent, respectively, the

torsion of curvature of the connection determined by Ej‘.

Define on K a second rank covariant tensor system 5;, which will be named the

Feflerman tensor, given by:
1 m
5 = —E.r__-,:;mil:ﬂ':r @ 0" % (8)

where £;;im is totally skew and £9y23 = 1. Denote by F; the symmetric part of 5; and
by L; the skew part of 5, so S5; = P; + Li and L; is the two-form:

1

L.‘-_—E

Eijkm(® AG*™). (9)

The goal of this work is to discuss P; and L;. First take the exterior derivative of
L;. One finds, from equations (3) and (4):

1 . i} [Ee] ] T Fi m ] ] L
dLi = Feijem[~0; AO" A" +67 NG NO*" +67 AOTA*™ Ry I — 67 AO NOTR, ™). (10)

Now 0/ AGP AG? = 9P E, B, = Lep el AG AG". So

Eijkm® AOP ABTR, ™ = €ijame’ P E, R ™
= 2(8,P8, 76,5 +6,"6,P8,3 + 6,965,760 ) R, ™
= AEmBRix*™ + i Rkrm™™ + ExRmi™™)
= —4G;" L,

(11)
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where G;™ = R,™* - %Rjkj kd",-'" 1s, in the absence of torsion, the Einstein tensor.
Define
E.'E—%E;j*m{ﬂj Y ﬂ&nm—ﬂ"ﬂﬂ"jhﬂkm}. (12)

Then (10) now reads, using (11),
1 .
dL; = E; + Es.-j,,,,.ﬂr ABI NG R, +2G,"E,,. (13)
Einstein’s vacuum equations for a connection preserving the metric are
R, =0, G™=0. (14)

So from (13), one finds that E; is closed (and exact), if Einstein’s vacuum equations
hold. This motivates one to calculate dE;. From equations (12), (3) and (4) one finds
that the terms of dE; not explicitly involving the torsion or the curvature identically
cancel. The residual terms give:

dE; = *%s,-jg.,,{ﬂ" AOTAR LS 0 AO™ 07 AE*™)
+E; A" Rpgn 0™} + 25, A GG,

(15)

From (15) one sees that if dE; vanishes, then first ij must vanish so g™P¥" R,,.,.....j must
vanish by a Bianchi identity, so the remaining term must vanish also: ;" = 0. This
proves the theorem:

The Einstein vacuum equations hold if and only if E; 15 closed. E; 1s then eract and
E; =dL;.

An homogeneous ideal T of forms, on a manifold X, is said to be differential if it is
closed under exterior differentiation: d7 C 7. It is not difficult to show from equations
(13) and (15) that the following are equivalent:

1) E; generales a differential ideal;

2) E; and S5; generale a differential ideal;

3) g is conformal to a metric satisfying Einstein’s vacuum equations.

A tighter formulation is obtained if one passes from K to an associated bundle K/H
with fibre O(1,3)/H where H is a closed subgroup of O(1,3). H will be connected, with
Lie algebra h. The action of H on K gives a system of vector fields hon K corresponding
to h. Dividing out by the action of h gives the associated bundle K/H. The aim is to
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produce geometrical quantities on K that pass down to K/H. For example, a form on
K is the pullback of a form on K /H, if it is Lie derived by the action of H and its inner
product with any vector of h is zero. Consider the bundles K; = K/H;, i = 1,...,4,
where the h; are spanned by:

hy : Doy, Doz; ha : Doy, Doz, Dha;
ha : Doy, Doz, Dos; hy : Doy, Doz, D12 and  Dpa.

The fibres of the K; at a point = of M are four copies of, respectively, RP? x R,
$% x R, RP? and S%. K, and K, are, respectively, the bundles of null vectors and null
directions, regarded as either future or past pointing, with either of two orientations,
accounting for the four copies. Ky and K3 are Hopf fibred over K3 and K4, respectively,
with fibre the circle. The extra circular degree of freedom is that of (twice) the phase of
a spinor that is ignored when the spinor is represented as a null vector. So K; and Ka
are spinorial in nature, K» and K4 are not (when M has a spin structure, the bundle
W of non-zero Weyl spinors maps 2 : 1 to K, the spinor ¢ and —¢* mapping to the
same point of K;).

Consider now Dy, So = Py + Lo and Eg. Dy passes down to K;, K3, and, up to
proportionality, to K3 and K4. In each case it represents the null geodesic spray. Sp
passes down to K, and, up to scale, to Ks. Eq passes down to K.

One now obtains:

Einstein’s vacuum equations hold if and only if dEg = 0, if and only if Eq = dLg.
g is conformal to a solution of the vacuum equations if and only if Eg generates a
differential ideal, if and only if Ey and Lo generate a differential ideal.

Being formulated on Ky, the vacuum equations may therefore be regarded as spino-
rial in nature. More generally one has in Ky, dLy = Ey + G, where, in the case of
vanishing torsion, Gg is the form induced by 2G"E,,. If M has a spin structure, a
section ¢ of W induces naturally a section ¢ of K;. Restricting the forms Lo, Ep and
(rp Lo 1,5 and pulling pack to M, Ly becomes the two-form on M, used by Nester, whose
integral at infinity gives the energy momentum vector of the space-time, for suitable
boundary conditions on the space-time and on 3 (Nester 1981). Ey and Gy are then
three forms on M. If the strong energy condition holds, integrals of Gy over a spacelike
hypersurface have a definite sign. If suitable conditions are imposed on v, the integrand
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and integrals of Ey have the same sign. For example, if on a spacelike hypersurface,
t» obeys the Weyl neutrino equation and has zero normal derivative, then one recovers
Witten’s version of the positive energy theorem (Witten 1981).

An integral manifold of 7 on X is a submanifold ¥, of X, such that T, restricted
to Y, vanishes. In the analytic case, Cartan developed a general theory of differential
ideals and their integral manifolds (Cartan 1952-55). Applying this theory to analytic
space-times, the generic integral manifold of the generated by Ey on K is found to
be four dimensional. Generically, the integral manifold the defines, and is defined by a
solution ¢ of a nonlinear spinor equation on M. Using standard Dirac spinor notation
this equation is

YD) s (D) =0, ¥ =iv. (16)
Somewhat similar equations occur in reference (Harvey and Lawson 1982).

Finally, one may restrict K and K;, a priori, to a spacelike hypersurface, S, giving
N, Nj, respectively. Then, to formulate Sy, Lo, Fo, Ep restricted to N;, one requires
only the intrinsic metric and extrinsic curvature of S. One has:

The constraint equations on S, for Einstein’s vacuum equations, hold if and only if
d(Eg | N1) = 0 where Eg | Ny is the restriction of Eg lo N,.

On K3, Ly is defined up to proportionality and has Dy as its only zero eigenvector.
K3 is seven dimensional. Restricting K3 to 5 gives the six-dimensional manifold Nj.
Since Dg represents the null geodesic spray, Dy sticks out of N3 and Ly | N3 is non-
degenerate, giving a symplectic two form on N3, up to proportionality. Similarly Fp | N
gives a non-degenerate conformal metric of signature zero, defined up to the same factor
of proportionality as is Lo | V3.

It remains to interpret the symmetric part F; of S;. Actually a direct interpretation
will be given only to Fy. To explain Py, one needs the notion of a regular Cauchy-
Riemann (C.R.) structure of hypersurface type (Chern & Moser 1974).

For a (2n + 1)-dimensional manifold X, a C.R. structure of hypersurface type is
given by a subbundle V', of the complexified tangent bundle of X, of dimension n,
such that V contains no non-zero real vectors and such that the Lie bracket [v, w],
of any sections v and w of V, is in V. The C.R. structure is termed regular if the
Hermitian form determined by iv, ], as v and & (the complex conjugate of w) vary,
computed modulo vectors of V and V, is invertible. C.R. structures of hypersurface type
model abstractly the structure naturally acquired by a hypersurface X from the complex
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structure of an ambient complex manifold. If, in local holomorphic co-ordinates, { :"},
i=0,...,n, X has defining equation r(z', ') = 0, where dr # 0, then V is spanned
by those linear combinations a'@/8z' tangent to X: a'0r/8:' = 0, when r = 0, and
the Hermitian form is determined by the quantities a'a’@*r/0:'0z7, as a' varies. The
trivial model is given by the hyperquadric @ : |:l|ir + .+ |:”"’1|"lt - l:"+2|? ————
|27+9+1 2 — 1 = 0 in €P*+9+! where the Hermitian form is invertible of signature |p— g].
More generally, one asks: how nearly does a given C.R. structure resemble the trivial
model? Chern, Moser and Webster solved this problem: a principal SU(p + 1,9 +
1)/ Zp4+q+2 bundle with connection, over X' may be construeted whose curvature £ must
vanish for X to be locally C.R. isomorphic to the trivial model (Chern & Moser 1974).
Remarkably, Fefferman managed to simplify drastically their construction: he produced
a circle bundle X over X, together with a conformal structure F' on X, whose Weyl
curvature vanishes if and only if £ vanishes (Fefferman 1976).

Recall that N5 is a circle bundle over Ny, Also Fy | N3 gives N3 a conformal
structure. Denote by U the subbundle of the complexified tangent bundle of K4 spanned
by Do, Dy 4+ 1D3 and Dsy + 1D3;, passed down to K. Denote by V the intersection of
U with the complexified tangent bundle of Ny. Then one has:

V defines a requiar C.R. structure of hypersurface type and signature zero, for Ny.
Po | N3 gives the Fefferman conformal structure of (Ny, V), provided 0,7 is torsion free.

In the analytic case, Ny may be embedded as a hypersurface in a three-complex
dimensional manifold, PT, such that V is given by those holomorphic vectors of PT
tangent to Ny.

PT is the hypersurface projective twistor space, defined by Penrose in reference (Pen-
rose 1975).

Even in the non-analytic case, one terms the C.R. structure of Ny the twistor struc-
ture, since many of the standard results of the analytic twistor theory still hold.

An essentially identical construction gives the C.R. structure of any hypersurface
in space-time. The construction being conformally invariant, it may be applied to
the asymptotic null infinity (scri) of asymptotically flat space-times. In each case the
Fefferman conformal structure is given by a suitable restriction of Fy. For seri, it
coincides with the restriction to null twistors of the Kahler metric of asymptotic twistor
space (Ko, Newman and Penrose 1977). In suitable co-ordinates the metric encodes the

Bondi shear; its Weyl curvature incorporates the gravitational radiation (Ko, Newman
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and Penrose 1977).

For a general spacelike hypersurface, the twistor C.R. structure encodes the confor-
mal data of the hypersurface: the intrinsic conformal metric and the trace-free part of
the extrinsic curvature of the hypersurface.

The conformal data represents data for conformally flat space-time if and only if the

Weyl curvature of the Fefferman conformal structure vanishes.

This Weyl curvature generalizes York’s conformal tensor, reducing to it, when the

trace-free part of the extrinsic curvature vanishes (York 1972).

The work outlined here should provide the basis of a new attempt to quantize gravity,
following the canonical approach. Wave functionals would be holomorphic functionals
of the whole conformal data rather then functionals of just the intrinsic conformal three
geometry. The concept of holomorphic is formulated by providing a complex structure
for small fluctuations in the geometry, about a given geometry. Here the geometry
is represented by a suitable first sheaf cohomology group. For geometries that are
asymptotically flat, splitting theorems of the type given by Andreotti and Hill should
suffice to split the deformations into ‘positive’ and ‘negative’ frequency parts (Andreotti

and Hill 1972). The complex structure is then given by multiplying the positive parts by
i, the negative by —i. In flat space, on any spacelike Cauchy hypersurface, this procedure
coincides with the usual quantization of spin two zero rest mass fields. For less global
geometries, there would remain some ambiguous deformations, which could neither be
classified as positive nor negative frequency. To handle these properly one might have
to bring in concepts of intuitionistic logic — the ambiguous deformations corresponding
to a non-trivial ‘excluded middle’. At the quantum level one would appear to need a
generalization of Fock space, including states that intrinsically are not combinations
of particles and antiparticles alone. Physically, they seem to represent deformations
with a length scale larger than the geometry under study. Particle detectors, which are
expressly designed to remove all ambiguities, seem to correspond to logical morphisms
taking intuitionistic to classical logic (Johnstone 1977).
The author thanks John Porter for many helpful discussions.
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