Calculation of x’(q,w)

This is a sketch of the derivation of the leading term in the expansion of the transverse susceptibility
for the ferromagnetic Hubbard model. The constant factors involving the permeability, the Lande-g
factor etc. are all omitted (or set equal to unity).

The (Fourier transformed) transverse susceptibility is given by
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where

dw
°(q,w) = lZ/ JGT (k1,w1)GY (k1 — g,w1 — w) (2)
corresponds to the Feynman diagram:

K'a‘ﬂ' T

o wfie B
X (o ) o

Wl

At this level, no self-energy (magnon) corrections are being considered. The form of the Fourier
transformed time ordered Green’s function in general is
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where o =71 / |. Note that k¢, is defined as the solution to the equation E?(k) = EF, as shown in the
diagram.




Substituting the forms of the Green’s function for up-spin and down-spin into the expression for
x°(g,w) and observing that the contributions will come only from terms which have poles on different
sides of the real w’ axis, we get the expression
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But in case of a saturated ferromagnet where the down-spin band is completely above the Fermi
level Er, the variable kz% is complex as the down-spin band does not intersect the Fermi level. The
situation looks like this:
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The way to reconcile this seems to be to consider the limiting case of the down-spin band moving
up. The transition from real /cfp to complex kﬁ occurs through kr = 0 (I am assuming the minima
of the bands are at k = 0, as the bands are parabolic and aligned, and we can shift the k axis suitably.)

In other words, kiﬂ = 0 is the “last real value” that the system as it becomes a completely satu-

rated ferromagnet. In order to use the Green’s function in the form given in (3), it we can set k:ﬁ =0
and obtain the following expression for the down-spin Green’s function
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So, for a saturated ferromagnet,

dw
Xsat (4, w) = ZZ/ 1G0 (k1,w1)GY (k1 — kw1 — w)
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Again, by the reasoning used for the unsaturated ferromagnet, in such an expression, only the terms
containing poles on different sides of the w; axis will contribute. Hence, having picked a +in term for



the down-spin Green’s function, only the second term in the up-spin Green’s function contributes a
non-zero value, and we end up with
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Note that this expression could have been obtained directly from the expression for x°(q,w) for a
general ferromagnet (with kiﬁ =0). Using Ef = Ei + A and El = B, — A, we get
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The sum should be restricted to up-spin states with energy less than the Fermi energy Er, which is
already incorporated into this expression due to the f-function.



