We intend to prove that the recurrence sequence

ny =1

ng = 17

ng = 241

n; = 15n;,_1 — 15n;_9 +n;_3 , fori >3

with values 1, 17, 241, 3361, 46817, ..., produces the only positive values of n such
that (3n — 1)(n + 1) is a square.

First, we will express this sequence in a different form. Given

ap = —1
al = 1
a; =4a;-1 — a;_9 , fori>1

with values —1, 1, 5, 19, 71, 265, ..., and

bp=1
by =1
b =4b;_1 — b;—o , fori>1

. a? + b? . .
with values 1, 1, 3, 11, 41, 153, ..., we see that n; = % for ¢ > 0: indeed,

af+bf 12+17

ny = 9 9 1
2 b2 52 32

ng = “2; 2 _ ; —17
2402 1924112

ng = “3;“ 3 = ;L = 241

and, for ¢ > 3,

n; = 15n;_1 — 15n;_2 + n;_3
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225a7 o — 120a;a;—3 + 16a7_3 + 22507 5 — 120b;_2b; 3 + 1607 5
B 2
_ (15ai—2 + 4a;—3)* + (15bi—9 + 4b;_3)*
N 2
_ (4(4ai2 —ai3) — ai—2)* + (4(4bi—o — bi_3) — bi_2)*
2
_ (4aj—1 — ai—2)?® + (4bi—1 — b;—2)?
2
a% + bf
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Now we need the following
LEMMA 1:

If r, s,n are integers such that

r2 +s2=2n
r2—s2=n-1

then (3n — 1)(n + 1) is a square.

Proof: Adding the two equations in the above system produces 272 = 3n — 1,
and subtracting them yields 25> = n + 1. The product of both is

4r%s%* = (3n — 1)(n + 1)

which is a square (namely, the square of 2rs). B

LEMMA 2:

The values a; and b;, from the sequences defined earlier, satisfy

367 —a? =2 for all i >0
3b;b;_1 —a;a;_1 =4 for alli > 0

Proof: By induction on i. With ¢ = 0, 3b3 — ag =3—1=2; and with i = 1,
302 —a? =3 —1=2and 3biby —ajap =3 +1=4.
For the induction step we assume, for k > 2,
3bj_y — af_q =2
3bj_o — G = 2
3bg—1bg—2 — ag_1a52 =4

and try to prove the statements for ¢ = k.

Indeed,
307 — aj = 3(4by_1 — bp_2)* — (dag_1 — ap_2)?
= 48b7 | — 24b_1by_o + 3b7 o — 16a2_| + Saj_1a5_2 — ar_,
=16(3b7_1 —aiz_,) — 8(3bp_1bx_2 — ar_1ax_2) + (3b7_y — aj_,)
=16-2—-8-4+2=2
Also,
3brbr—1 — agap—1 = 3(4bg—1 — bp—2)bp—1 — (4ap—1 — ap—2)ax_1
=12b7_| — 3by_1bg_o — 4ai_| + ap_1ax_2
= 4(3()2_1 — az_l) — (Bbg—1bg—2 — ag_1aK—2)
=4-2—-4=4. 1



Next, we prove that the values of n; make (3n; — 1)(n; + 1) a square.

We will proceed by proving a different statement: that, for all ¢ > 0, the system

a?er?:Qc
a?—b}=c—1

is satisfied by setting ¢ = n;. As a consequence of Lemma 1, (3n; — 1)(n; + 1) will
be a square for all ¢ > 0.

2, 32
a’ ‘
From the identity n; = % we know that ¢ = n; satisfies the first equation,

a? + b2 = 2n;
From Lemma 2 we know that, for all i > 0,

367 —af =2
Subtracting these two we obtain

207 — 2b7 = 2n; — 2

2 32
a; — by =n;—1

and ¢ = n; satisfies also the second equation. H



Now, it remains to be proven that, if (3n — 1)(n 4+ 1) is a square for some
positive integer n, then n is necessarily one of the values from the sequence n;.

A sketch in this direction (with two big holes) can be:

e 1 is an odd number; for, if n = 2k for some integer k, then
(6k —1)(2k + 1) = 12k* + 4k — 1

would need to be a square; but this quantity is congruent to 3 modulo 4,
while all squares are congruent modulo 4 to either 0 or 1.

e If n is odd, both (3k — 1) and (n + 1) are even; therefore we can write, for
some positive integers r, s,

3n—1=2r
n+1=2s

It would help to prove that r and s are coprime squares, and then have
3n — 1 = 2d?
n+1=2b
e At this point we could arrive at the Pell-like equation
a® —3b* = —2

and it would help to know that the only positive solutions from this equation
come necessarily from the sequences a; and b;. The key to this may be the
fact that these two sequences appear in the continued fraction for v/3:

V3=[1;1,2,1,2,..]

where it is not hard to prove that the convergents Pk satisfy, for kK odd > 3,
dk

Pontl = an forn>1

Pn+1 = by



