
We intend to prove that the recurrence sequence

n1 = 1

n2 = 17

n3 = 241

ni = 15ni−1 − 15ni−2 + ni−3 , for i > 3

with values 1, 17, 241, 3361, 46817, ..., produces the only positive values of n such
that (3n− 1)(n + 1) is a square.

First, we will express this sequence in a different form. Given

a0 = −1

a1 = 1

ai = 4ai−1 − ai−2 , for i > 1

with values −1, 1, 5, 19, 71, 265, ..., and

b0 = 1

b1 = 1

bi = 4bi−1 − bi−2 , for i > 1

with values 1, 1, 3, 11, 41, 153, ..., we see that ni =
a2i + b2i

2
for i > 0: indeed,

n1 =
a21 + b21

2
=

12 + 12

2
= 1

n2 =
a22 + b22

2
=

52 + 32

2
= 17

n3 =
a23 + b23

2
=

192 + 112

2
= 241

and, for i > 3,

ni = 15ni−1 − 15ni−2 + ni−3

= 15 ·
a2i−1 + b2i−1

2
− 15 ·

a2i−2 + b2i−2

2
+

a2i−3 + b2i−3

2

=
15(4ai−2 − ai−3)

2 + 15(4bi−2 − bi−3)
2 − 15a2i−2 − 15b2i−2 + a2i−3 + b2i−3

2

=
225a2i−2 − 120ai−2ai−3 + 16a2i−3 + 225b2i−2 − 120bi−2bi−3 + 16b2i−3

2

=
(15ai−2 + 4ai−3)

2 + (15bi−2 + 4bi−3)
2

2

=
(4(4ai−2 − ai−3)− ai−2)

2 + (4(4bi−2 − bi−3)− bi−2)
2

2

=
(4ai−1 − ai−2)

2 + (4bi−1 − bi−2)
2

2

=
a2i + b2i

2



Now we need the following

Lemma 1:

If r, s, n are integers such that{
r2 + s2 = 2n
r2 − s2 = n− 1

then (3n− 1)(n + 1) is a square.

Proof: Adding the two equations in the above system produces 2r2 = 3n − 1,
and subtracting them yields 2s2 = n + 1. The product of both is

4r2s2 = (3n− 1)(n + 1)

which is a square (namely, the square of 2rs). �

Lemma 2:

The values ai and bi, from the sequences defined earlier, satisfy

3b2i − a2i = 2 for all i ≥ 0

3bibi−1 − aiai−1 = 4 for all i > 0

Proof: By induction on i. With i = 0, 3b20 − a20 = 3 − 1 = 2; and with i = 1,
3b21 − a21 = 3− 1 = 2 and 3b1b0 − a1a0 = 3 + 1 = 4.

For the induction step we assume, for k ≥ 2,

3b2k−1 − a2k−1 = 2

3b2k−2 − a2k−2 = 2

3bk−1bk−2 − ak−1ak−2 = 4

and try to prove the statements for i = k.

Indeed,

3b2k − a2k = 3(4bk−1 − bk−2)
2 − (4ak−1 − ak−2)

2

= 48b2k−1 − 24bk−1bk−2 + 3b2k−2 − 16a2k−1 + 8ak−1ak−2 − a2k−2

= 16(3b2k−1 − a2k−1)− 8(3bk−1bk−2 − ak−1ak−2) + (3b2k−2 − a2k−2)

= 16 · 2− 8 · 4 + 2 = 2

Also,

3bkbk−1 − akak−1 = 3(4bk−1 − bk−2)bk−1 − (4ak−1 − ak−2)ak−1

= 12b2k−1 − 3bk−1bk−2 − 4a2k−1 + ak−1ak−2

= 4(3b2k−1 − a2k−1)− (3bk−1bk−2 − ak−1ak−2)

= 4 · 2− 4 = 4 . �



Next, we prove that the values of ni make (3ni − 1)(ni + 1) a square.

We will proceed by proving a different statement: that, for all i > 0, the system{
a2i + b2i = 2c
a2i − b2i = c− 1

is satisfied by setting c = ni. As a consequence of Lemma 1, (3ni − 1)(ni + 1) will
be a square for all i > 0.

From the identity ni =
a2i + b2i

2
we know that c = ni satisfies the first equation,

a2i + b2i = 2ni

From Lemma 2 we know that, for all i ≥ 0,

3b2i − a2i = 2

Subtracting these two we obtain

2a2i − 2b2i = 2ni − 2

a2i − b2i = ni − 1

and c = ni satisfies also the second equation. �



Now, it remains to be proven that, if (3n − 1)(n + 1) is a square for some
positive integer n, then n is necessarily one of the values from the sequence ni.

A sketch in this direction (with two big holes) can be:

• n is an odd number; for, if n = 2k for some integer k, then

(6k − 1)(2k + 1) = 12k2 + 4k − 1

would need to be a square; but this quantity is congruent to 3 modulo 4,
while all squares are congruent modulo 4 to either 0 or 1.

• If n is odd, both (3k − 1) and (n + 1) are even; therefore we can write, for
some positive integers r, s,

3n− 1 = 2r

n + 1 = 2s

It would help to prove that r and s are coprime squares, and then have

3n− 1 = 2a2

n + 1 = 2b2

• At this point we could arrive at the Pell-like equation

a2 − 3b2 = −2

and it would help to know that the only positive solutions from this equation
come necessarily from the sequences ai and bi. The key to this may be the
fact that these two sequences appear in the continued fraction for

√
3:

√
3 = [1; 1, 2, 1, 2, ...]

where it is not hard to prove that the convergents
pk
qk

satisfy, for k odd ≥ 3,

p2n+1 = an for n ≥ 1

q2n+1 = bn


