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Abstract. Using Regge calculus, we construct a Regge differential equation for

the time evolution of the scale factor a(t) in the Einstein-de Sitter cosmology

model (EdS). We propose two modifications to the Regge calculus approach: 1) we

allow the graphical links on spatial hypersurfaces to be large, as in direct particle

interaction when the interacting particles reside in different galaxies, and 2) we assume

luminosity distance DL is related to graphical proper distance Dp by the equation

DL = (1+ z)
√−→

Dp ·
−→
Dp, where the inner product can differ from its usual trivial form.

The modified Regge calculus model (MORC), EdS and ΛCDM are compared using

the data from the Union2 Compilation, i.e., distance moduli and redshifts for type

Ia supernovae. We find that a best fit line through log

(
DL

Gpc

)
versus log z gives a

correlation of 0.9955 and a sum of squares error (SSE) of 1.95. By comparison, the

best fit ΛCDM gives SSE = 1.79 using Ho = 69.2 km/s/Mpc, ΩM = 0.29 and ΩΛ =

0.71. The best fit EdS gives SSE = 2.68 using Ho = 60.9 km/s/Mpc. The best fit

MORC gives SSE = 1.77 and Ho = 73.9 km/s/Mpc using R = A−1 = 8.38 Gcy and

m = 1.71× 1052 kg, where R is the current graphical proper distance between nodes,

A−1 is the scaling factor from our non-trival inner product, and m is the nodal mass.

Thus, MORC improves EdS as well as ΛCDM in accounting for distance moduli and

redshifts for type Ia supernovae without having to invoke accelerated expansion, i.e.,

there is no dark energy and the universe is always decelerating.
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1. Introduction

The problem of cosmological “dark energy” is by now well known[1][2][3][4][5][6].

Essentially, redshifts and distance moduli for type Ia supernovae indicate the universe

is in a state of accelerated expansion when analyzed using general relativistic

cosmology[7][8][9]. Specifically, the distance moduli increase with increasing redshift
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faster than predicted by general relativistic cosmology using matter alone. Until this

discovery in 1998, the so-called “standard model of cosmology” was general relativistic

cosmology with a perfect fluid stress-energy tensor and an early period of inflation.

Since this leads to a decelerating expansion (except during the short, early inflationary

period), something ‘exotic’ seemed to be required to account for the unexpectedly large

distance moduli at larger redshifts, viz., dark energy that causes the universe to change

from deceleration to acceleration at about z = 0.752 [9]. The new “standard model of

cosmology,” i.e., that with the most robust fit to all observational data (ΛCDM), simply

adds a cosmological constant Λ to the Einstein-de Sitter cosmology model (ΩM+ΩΛ = 1)

and Λ then provides the mechanism for accelerated expansion, i.e., it provides the

dark energy. The “problem” is that our best theories of quantum physics tell us the

cosmological constant should be exactly zero[10] or something hideously large[11], and

neither of these two cases holds in ΛCDM. Thus, one of the most pressing problems

in cosmology today is to account for the unexpectedly large distance moduli at larger

redshifts observed for type Ia supernovae[6].

The most popular attempts to explain the apparent accelerating expansion of

the universe include quintessence[11][12][13] and inhomogeneous spacetime[1][2][3][4][14]

(there are even combinations of the two[15][16]). Although these solutions have

their critics[17], they are certainly promising approaches. Another popular attempt

is the modification of general relativity (GR). These approaches, such as f(R)

gravity[18][19][20][21][22][23], have stimulated much debate[24][25][26], which is a

healthy situation in science. Herein, we propose a new approach to the modification of

GR via its graphical counterpart, Regge calculus.

Specifically, we construct a Regge differential equation for the time evolution of the

scale factor a(t) in the Einstein-de Sitter cosmology model (EdS), then we propose

two modifications, both motivated by our work on foundational issues[27][28][29].

First, we allow spatial links of the Regge graph to be large (as defined below) in

accord with 1) our form of direct particle interaction between sources in different

galaxies and 2) the assumption that Regge calculus is fundamental while GR is

the continuous approximation thereto. Of course, direct particle interaction in its

original form would require a modification to general relativistic cosmology in and of

itself[30][31][32][33][34][35]. We are not concerned with saving direct particle interaction

in its original form and, indeed, one needn’t accept our version thereof to consider the

modifications of GR proposed herein, i.e., empirical motivations suffice. Second, we do

not assume that luminosity distance DL is trivially related to graphical proper distance

Dp between photon receiver and emitter as it is in EdS, i.e., in EdS DL = (1 + z)dp
where dp is proper distance between photon receiver and emitter. There are two reasons

we do not make this assumption. First, in our view, space, time and sources are co-

constructed, yet Dp is found without taking into account EM sources responsible for DL.

That is to say, in Regge EdS (as in EdS) we assume that pressureless dust dominates

the stress-energy tensor and is exclusively responsible for the graphical notion of spatial

distance Dp. However, even though the EM contribution to the stress-energy tensor is
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negligible, EM sources are being used to measure the spatial distance DL. Second, in the

continuous, GR view of photon exchange, one considers light rays (or wave fronts) in an

expanding space to find DL = (1+ z)dp. In our view, there are no “photon paths being

stretched by expanding space,” so we cannot simply assume DL = (1+ z)Dp as in EdS.

Indeed, we find the trivial EdS relationship between luminosity distance and proper

distance holds only when Dp is small on cosmological scales. In order to generate a

relationship between DL and Dp, we turned to the self-consistency equation KQ = J in

our foundational approach to physics[28], where K is the differential operator, Q is the

‘field’‡ and J is the source. Since we want a relationship betweenDL andDp, the ‘field’ of

interest is a metric hαβ relating the graphical proper distance Dp, obtained theoretically

using no EM sources, to the luminosity distance DL, obtained observationally via EM

sources. The region in question (inter-nodal region between emitter and receiver) has

metric ηαβ given by ds2 = −c2dt2+ dD2
p, so the inner product of interest can be written

ηαβ +hαβ where the spatial coordinate is Dp and hαβ is diagonal. Since each EM source

proper is not “stretched out” by the expansion of space, the spatiotemporal relationship

between emitter and receiver is modeled per this inter-nodal region alone. Thus, unlike

EdS, we have no a priori basis in our form of direct particle interaction to relate DL

to Dp, so we begin with the assumption DL = (1 + z)
√−→
Dp ·

−→
Dp = (1 + z)Dp

√
1 + h11,

where
−→
Dp = (0, Dp).

The specific form of KQ = J that we used was borrowed from linearized gravity in

the harmonic gauge, i.e., ∂2hαβ = −16πG(Tαβ − 1
2
ηαβT ). We emphasize that hαβ here

corrects the graphical inner product ηαβ in the inter-nodal region between the worldlines

of photon emitter and receiver, where ηαβ is obtained via a matter-only stress-energy

tensor. Since the EM sources are negligible in the matter-dominated solution, we have

∂2hαβ = 0 to be solved for h11. Obviously, h11 = 0 is the solution that gives the trivial

relationship, but allowing h11 to be a function of Dp allows for the possibility that DL

and Dp are not trivially related. We have h11 = ADp +B where A and B are constants

and, if the inner product is to reduce to ηαβ for small Dp, we have B = 0. Presumably,

A should follow from the corresponding theory of quantum gravity, so an experimental

determination of its value provides a guide to quantum gravity per our view of classical

gravity. As we will show, our best fit to the Union2 Compilation data gives A−1 =

8.38 Gcy, so the correction to η11 is negligible except at cosmological distances, as

expected. Essentially, we’re saying the dark energy phenomenon is an indication that

A ̸= 0 so that one cannot simply assume the distance DL measured using EM sources

corresponds trivially to the graphical proper distance Dp even though the EM sources

contribute negligibly to the stress-energy tensor.

One might also ask about distance corrections per h00, i.e., as regards redshift,

but since redshift distances are fractions of a meter one wouldn’t expect h00 to be of

consequence here. Of course, there is the issue of origin of redshift in our approach, since

‡ The interested reader is referred to section 3 of reference [28] for an explanation of how our notion

of a “field” is consistent with our notion of direct particle interaction.
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typically cosmological redshift is understood to occur between emission and reception[36]

while clearly it must occur during emission and reception in our view. While we don’t

have photons propagating through otherwise empty space between emitter and receiver,

we do relate the reception and emission events in null fashion through the simplices

spanning the inter-nodal region between emitter and receiver. Using the metric in each

simplex ds2 = −c2dt2+dD2
p, as above, we have dDp = adχ, just as in EdS, although t is

not proper time for the nodal observers as it is in EdS. This difference in t is accounted

for in the computation of Dp where it has a small effect for the range of data in the

Union2 Compilation§. Likewise, we do not find that it leads to a significant difference

in scale factor at time of emission ae as a function of z for the data range in question.

Not surprisingly, when we compute the redshift graphically we find it is equivalent to

the special relativity (SR) result, i.e., z + 1 =

√
(1 + Ve/c)(1 + Vr/c)

(1− Ve/c)(1− Vr/c)
where Ve is the

velocity of the emitter at time of emission in the (1+1)-dimensional inter-nodal frame

and Vr is the velocity of the receiver at time of reception. Using this form of redshift

in the EdS model and comparing the result to the use of cosmological redshift in EdS,

we find there is no significant difference between the two results for distance modulus

µ versus redshift z well beyond the range of the Union2 Compilation (z < 2, see Figure

2). Therefore, we use cosmological redshift ae =
1

1 + z
for the computation of Dp, since

cosmological redshift is far simpler than the graphical alternative.

While these modifications are motivated by our work on foundational issues, their

specific mathematical instantiations are herein aimed at explaining dark energy. Since

this is our first foray into modified Regge calculus (MORC), the specific approaches

required for explaining other GR phenomena, e.g., the perihelion shift of Mercury,

remain to be seen. A defense of MORC will not be undertaken here, interested readers

are referred to our earlier work cited above, but a couple comments are perhaps in

order. First, the graphical lattice used herein to obtain a(t) clearly violates isotropy

and is not to be understood as a literal picture of the distribution of matter in the

universe, e.g., galactic clusters, voids, etc. In a sense, the graphical lattice we use is

no coarser an approximation than the continuum counterpart it is designed to replace,

i.e., the featureless perfect fluid model of EdS where there is absolutely no structure.

Rather, the graphical lattice simply provides a ‘mean’ evolution for the scale factor

a(t) in the equation for Dp. Second, the goal of such idealized models is to attempt to

isolate ‘average’ geometric and/or material features of cosmology which broadly capture

kinematic properties of the universe as a whole. Only when such models show some

initial success are explorations into departures from their simplistic structure motivated,

e.g., the inhomogeneous spacetime models cited above. Thus, the model we present

herein was designed merely to test the possibility of replacing the continuous EdS

cosmology with a discrete, graphical counterpart based on our form of direct particle

§ There is another difference between dp and Dp as computed using dχ =
cdt

a
that must be considered.

This will be explained in section 2.
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interaction (again, for reasons unrelated to dark energy). Only upon some success of

this initial test, i.e., improving the EdS fit to the type Ia supernova data, should we

proceed to address the commensurate questions and implications of this approach (as

outlined briefly in section 4 of this paper). We believe the results presented herein

establish precisely “some initial success” and therefore justify further exploration into

this idea.

We begin in section 2 with an overview of Regge calculus and present our temporally

continuous, spatially discrete Regge EdS equation for the time evolution of the scale

factor a(t) and the commensurate equation for proper distance between photon emitter

and receiver Dp in a direct inter-nodal exchange. As we will see, the spatially discrete

Regge EdS equation for the time evolution of the scale factor a(t) reproduces that of EdS

when spatial links are small. Spatial links are “small” when the ‘Newtonian’ graphical

velocity v between spatially adjacent nodes on the Regge graph is small compared to

c, i.e.,
(v
c

)2
≪ 1. In that case the dynamics between adjacent spatial nodes is just

Newtonian and the evolution of a(t) in Regge EdS is equal to that in EdS. Deviations

in the evolution of a(t) between Regge EdS and MORC turn out to be small (see

Figure 6). Thus, the modification of Regge evolution plays a relatively minor role

in the MORC fits. Rather, as we will show, the major factor in improving EdS is

DL = (1 + z)Dp → DL = (1 + z)
√−→

Dp ·
−→
Dp. Since Regge EdS should give EdS when

used as originally intended[37], the proposed mechanism for EM coupling in MORC

differs from that in Regge calculus. When v ≈ 2c Regge EdS encounters the “stop

point” problem[38][39][40], i.e., the backward time evolution of a(t) halts, so a(t) has a

minimum and there is a maximum value of z for which one can find Dp. Of course, this

is not a real problem for Regge EdS if one is simply using it to model EdS, since one

can regularly check v in the computational algorithm and refine the size of the lattice

to ensure v remains small. However, in our case the graphical approach is fundamental,

so lattice refinements are not mere mathematical adjustments, but would constitute

new ‘mean’ configurations of matter. Of course, such refinements are certainly required

in earlier cosmological eras, but one would expect there exists a smallest spatial scale

(associated with a smallest nodal mass) so that eventually (evolving backwards in time)

v ≈ 2c could not be avoided and the minimum a(t) would be reached. Thus, there are

significant deviations from our use of Regge calculus and its (originally intended) use as

a graphical approximation to GR.

In section 3 we present the fits for EdS, MORC, and ΛCDM to the Union2

Compilation data, i.e., distance moduli and redshifts for type Ia supernovae[41] (see

Figures 4 and 5). We find that MORC improves EdS as much as ΛCDM in accounting

for distance moduli and redshifts for type Ia supernovae even though the MORC universe

contains no dark energy is therefore always decelerating. While we do not need to invoke

dark energy, we do propose modifications to classical gravity. Thus, it is a matter of

debate as to which approach (ΛCDM or MORC) is better.

Of course, the success of MORC in this context does not commit one to our
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Figure 1. (a) Tessellated sphere and (b) two “flattened” trapezoids (green) from the

sphere.

foundational motives. In fact, one may certainly dismiss our form of direct particle

interaction and simply suppose that the metric established by EM sources deviates

from that of pressureless dust at cosmological distances in a graphical approach to

gravity. Since motives are not germane to physics, we will not present arguments for our

foundational motives here. Abandoning our motives but keeping the MORC formalism

would simply result in a situation similar to that in ΛCDMwhere a cosmological constant

is added to EdS for empirical reasons. That is, one could simply view MORC as

a modification of Regge calculus for empirical reasons without buying into our story

about direct particle interaction and co-constructed space, time and sources. Motives

notwithstanding, we believe our MORC formalism may provide creative new approaches

to other long-standing problems, e.g., quantum gravity, unification, and dark matter.

We conclude in section 4 by briefly outlining future directions and challenges for this

research program.

2. Overview of Regge Calculus

Regge calculus is typically viewed as a discrete approximation to GR where the discrete

counterpart to Einstein’s equations is obtained from the least action principal on a 4D

graph[37][42][43][44]. This generates a rule for constructing a discrete approximation

to the spacetime manifold of GR using small, contiguous 4D Minkowskian graphical

‘tetrahedra’ called “simplices.” The smaller the legs of the simplices, the better

one may approximate a differentiable manifold via a lattice spacetime (Figure 1).

Although the lattice geometry is typically viewed as an approximation to the continuous

spacetime manifold, it could be that discrete spacetime is fundamental while “the usual

continuum theory is very likely only an approximation[45]” and that is what we assume.

Curvature in Regge calculus is represented by “deficit angles” (Figure 1) about any

plane orthogonal to a “hinge” (triangular side of a tetrahedron, which is a side of a
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Figure 2. Comparison of cosmological redshift (blue) and graphical special relativistic

redshift (red) using EdS. The two curves begin to be resolved at z = 6.

simplex∥), so curvature is said to reside on the hinges. A hinge is two dimensions less

than the lattice dimension, so in 2D a hinge is a zero-dimensional point (Figure 1).

The Hilbert action for a vacuum lattice is IR =
1

8π

∑
σi∈L

εiAi where σi is a triangular

hinge in the lattice L, Ai is the area of σi and εi is the deficit angle associated with σi.

The counterpart to Einstein’s equations is then obtained by demanding
δIR
δℓ2j

= 0 where

ℓ2j is the squared length of the jth lattice edge, i.e., the metric. To obtain equations

in the presence of matter-energy, one simply adds the matter-energy action IM to IR

and carries out the variation as before to obtain
δIR
δℓ2j

= −δIM
δℓ2j

[46]. The LHS becomes

δIR
δℓ2j

=
1

16π

∑
σi∈L

εi cotΘij where Θij is the angle opposite edge ℓj in hinge σi. One

finds the stress-energy tensor is associated with lattice edges, just as the metric, and

Regge’s equations are to be satisfied for any particular choice of the two tensors on the

lattice. The extent to which Regge calculus reproduces GR has been studied[47][48][49]

and general methods for obtaining Regge equations have been produced[50], but these

results are of no immediate concern to us because we simply seek the Regge counterpart

to a specific GR equation, i.e., a Regge differential equation for the time evolution of

the scale factor a(t) in EdS. Whether or not we obtain said equation will be clear by

virtue of its ability to track the analytic EdS solution in the proper regime, so we will

not have to delve into issues associated with the ‘accuracy’ of Regge calculus in general.

∥ Our hinges are triangles, but one may use other 2D polyhedra.
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2.1. Regge EdS Equation and MORC

Following Brewin[51] and Gentle[52], we take the stress energy associated with the

worldlines of our particles to be of the form

12Gm

c2(ic∆t)

so our Regge equation is

12iR(an + an+1)

c∆t

π − cos−1

(
(R

c )
2
(

an+1−an
∆t

)2

2

(
(R

c )
2
(

an+1−an
∆t

)2
+2

)
)

− 2 cos−1

√
3(R

c )
2
(

an+1−an
∆t

)2
+4

2

√
(R

c )
2
(

an+1−an
∆t

)2
+2


√(

R
c

)2 (an+1−an
∆t

)2
+ 4

=
12iGm

c3∆t
(1)

Multiplying both sides of (1) by −ic∆t/12 and letting v = R(an+1 − an)/∆t gives

R(an + an+1)

(
π − cos−1

(
v2/c2

2(v2/c2+2)

)
− 2 cos−1

(√
3v2/c2+4

2
√

v2/c2+2

))
√

v2/c2 + 4
=

Gm

c2
(2)

If ∆t → 0, then v can be regarded as a ‘Newtonian’ velocity and R(an + an+1) can be

replaced by 2r, where r is the graphical proper distance between two adjacent vertices

on the lattice. Equation (2) then becomes

π − cos−1
(

v2/c2

2(v2/c2+2)

)
− 2 cos−1

(√
3v2/c2+4

2
√

v2/c2+2

)
√
v2/c2 + 4

=
Gm

2rc2
(3)

which we emphasize is unmodified Regge calculus. If v2/c2 ≪ 1, then a power series

expansion of the LHS of Equation (3) gives

v2

4c2
+O

(v
c

)4
=

Gm

2rc2
(4)

Thus, to leading order, our Regge EdS is EdS, i.e.,
v2

2
=

Gm

r
, which is just a Newtonian

conservation of energy expression for a unit mass moving at escape velocity v at distance

r from mass m. To better understand the relationship between Regge EdS and EdS,

we note that in EdS any comoving observer A can ask, “What is the proper time rate

of change of proper distance for comoving observer B at a proper distance r away from

me today?” The answer is precisely v given by the EdS equation
v2

2
=

Gm

r
, where

m is the mass contained inside the sphere of radius r centered on observer A. In EdS

the matter is distributed uniformly throughout space so the mass m inside sphere of

radius r goes as r3, thus v ∝ r on spatial hypersurfaces in the EdS equation, so there

is no limit to how large v is in this expression, it’s Newtonian. In Regge EdS, v is the

relative ‘Newtonian’ velocity of spatially adjacent nodes of mass m. In our view, photon
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exchanges occur in direct node-to-node fashion, but solving for a Regge graph between

all galaxies in the universe is of course unreasonable. Instead, we use Equation (3) to

provide a ‘mean’ a(t) for the computation of graphical proper distance Dp between any

two photon exchangers, as in EdS, i.e.,

proper distance = χe = c

∫ to

te

dt

a
= c

∫ 1

ae

da

aȧ
(5)

We then compute Dp as a function of z by using Equation (3) obtained from the

‘mean’ graph. However, before we continue there are two issues that we need to address

regarding Equation (5).

First, while it is true that cdt = adχ for a null path in a simplex and the null path

will cross all values of χ between emitter and receiver, the sum of dχ =
cdt

a
will not

equal χe, i.e., the radial coordinate of the emitter. That’s because the lines of constant

χ are tilted in the simplices (Figure 3), so there is a fraction of dχ (given by ∆ in

Figure 3) that is not accounted for by
cdt

a
. This ∆ is positive on the emitter’s side of

the simplex and negative on the receiver’s side, but the ∆ sum on the two sides won’t

cancel out exactly, since the extent of constant-χ tilt is reduced during the expansion.

The correct equation for the graph is

χe = c

∫ to

te

(
1 +

2V

c

(
χ(t)

χe

− 1

2

))
dt

a
(6)

where V is the SR velocity of the emitter or receiver as a function of time and relates

to our ‘Newtonian’ v per

V

c
=

v/2c√
1 + v2/4c2

(7)

To simplify the analysis and obtain an estimate of how much ∆ contributes, we use

EdS with z = 2 and Ho = 70 km/s/Mpc. From EdS we have a(t) =

(
t

to

)2/3

,

χ

χe

= 1 − 3ct
2/3
o

χe

(
t1/3 − t1/3e

)
, and

v

2c
=

χe

3ct
2/3
o t1/3

. For z = 2 and Ho = 70 km/s/Mpc

we have to = 9.31 Gy, te = 1.79 Gy, and χe = 11.81 Gcy. Using these values in Equation

(6) we find (iteratively) χe = 12.189 Gcy. This increases µ (Equation (13) below) by

0.069 at z = 2 where µ is slightly greater than 44 (Figure 5). This increase adds 0.0137

to log

(
DL

Gpc

)
in our curve fitting, which amounts to a 1.3 percent increase at z = 2.

This change is only 0.75 percent at z = 0.5 and 0.004 percent at z = 0.1. Thus, given

the scatter in the data, we will ignore this correction.

Second, in EdS, the scaling factor at emission is related to the redshift by

ae =
1

1 + z
. In EdS, this redshift is understood to occur while the radiation is in transit

between emitter and receiver[36]. This “cosmological” redshift can be understood in

the graphical picture to result from the fact that dt in EdS runs along lines of constant

χ and these lines are tilted away from the center of the simplex towards its nodal
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dt dΤ

D

dΧn

dΧn

Figure 3. Lines of constant χ are tilted away from midpoint of simplex towards

emitter and receiver.

worldlines as discussed above (Figure 3). That is, ∆ = 0 in EdS so χe =

∫ to

te

cdt

a
holds

exactly. Thus, two EdS null paths eminating from different points on a spatial link

have their proper distance of separation increase from simplex to simplex. However,

as explained above, our dt is perpendicular to the spatial links so the null paths of

successive emissions do not increase proper distance separation when traced through

the simplices, i.e., redshift occurs entirely at emission and reception. Thus, relating

successive events along the emitter’s worldline in null fashion to events on the receiver’s

worldline, it is not surprising that we find the time delay between successive reception

events as related to the temporal spacing of the emission events is that given by SR,

i.e.,

z + 1 =

√
(1 + Ve/c)(1 + Vr/c)

(1− Ve/c)(1− Vr/c)
(8)

where Ve is the SR velocity of the emitter at time of emission in the (1+1)-dimensional

inter-nodal frame and Vr is the SR velocity of the receiver at time of reception. Again,

these SR velocities relate to our graphical ‘Newtonian’ v per Equation (7). As above, we

simplify the analysis using the EdS equation for a(t) and find vr = χeHo and ve =
χeHo√

ae
where, again, χe is the comoving coordinate of the emitter with the receiver at the

origin. We need to find
√
ae as a function of z, then substitute into the equation for

proper distance between photon exchangers in EdS

dp =
2c

Ho

(1−
√
ae) (9)

Even with the simplifications, the process gets messy and ultimately was solved

numerically. Since ao = 1, we have dp = χe (as assumed in Equation 5). Let x =
χeHo

2c
and we find

√
ae = x

√
(A+ 1)2

(A− 1)2
− 1 (10)
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where

A =
(z + 1)2(

√
1 + x2 − x)√

1 + x2 + x
(11)

Thus, Equation (9) is x = 1− x

√
(A+ 1)2

(A− 1)2
− 1 and gives

A2 − 2A+ 1− 2xA2 + 4Ax− 2x+ A2x2 + x2 − 6Ax2 = 0 (12)

We then solve Equation (12) numerically for x as a function of z and compare with

the EdS version, i.e., x = 1 − 1√
1 + z

to obtain Figure 2 where we see that there is

no significant difference between the two results well beyond the range of the Union2

Compilation (z < 2).

Since these two differences between MORC and EdS do not result in any significant

difference in our fit to the data of interest, we simply use Equation (5) with ae =
1

1 + z
to compute Dp. However, there is one additional difference between dp and Dp when

using Equation (5) that we will not ignore. We will address this additional (simple)

correction in the following section where we fit EdS, MORC, and ΛCDM to the Union2

Compilation.

3. Data Analysis

The Union2 Compilation provides distance modulus µ and redshift z for each supernova.

In order to find µ versus z for each model, we first find proper distance as a function of

z, then compute the luminosity distance DL, and finally

µ = 5 log

(
DL

10pc

)
(13)

For EdS we have Equation (9) for dp, so the only parameter in fitting EdS is Ho. For

ΛCDM we have ȧ = Ho

√
ΩM

a
+ ΩΛa2 where ΩM +ΩΛ = 1. Plugging this into Equation

(5) we obtain

dp =
c

Ho
4
√
3 3
√
Ωm

6
√
ΩΛ

[
F

(
cos−1

(
3
√
Ωm −

(√
3− 1

)
3
√
ΩΛ

3
√
Ωm +

(√
3 + 1

)
3
√
ΩΛ

)∣∣∣∣∣ 2 +
√
3

4

)
−

F

(
cos−1

(
(z + 1) 3

√
Ωm −

(√
3− 1

)
3
√
ΩΛ

(z + 1) 3
√
Ωm +

(√
3 + 1

)
3
√
ΩΛ

)∣∣∣∣∣ 2 +
√
3

4

)]
(14)

where F (ϕ|m) =

∫ ϕ

0

(
1−m sin2 θ

)−1/2
dθ is the elliptic integral of the first kind. Thus

there are two fitting parameters for ΛCDM, Ho and either ΩM or ΩΛ. For MORC,

Equation (3) gives us a(ȧ) rather than ȧ(a), so we modify Equation (5) to read

Dp = R

∫ b1

be

f ′(b)

bf(b)

√
1 +

b2

4
db (15)
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where b = Rȧ/c,

f(b) =

√
b2 + 4

2
[
π − cos−1

(
b2

2b2+4

)
− 2 cos−1

(√
3b2+4

2
√
b2+2

)] (16)

and b1 and be respectively solve

1 =
Gm

c2R
f(b1) and ae =

Gm

c2R
f(be)

The factor

√
1 +

b2

4
is the correction needed to adjust the time dt in Equation (5) to

proper time dτ of the nodal worldlines. [This is the “one additional difference between

dp and Dp when using Equation (5)” alluded to at the end of section 2.] Equation (5) is

then solved numerically for Dp and DL = (1 + z)Dp

√
1 + ADp as explained in section

1. There are three fitting parameters for MORC, the inter-nodal coordinate R on the

‘mean’ graph, the nodal mass m on the ‘mean’ graph, and A−1 from h11. Specifying m

and R is equivalent to specifying Ho in EdS, i.e., Ho =

√
8πGρ

3
in EdS with ρ given

by the graphical values of R and m per
4

3
πR3ρ = m. Thus compared to EdS, MORC

(as with ΛCDM) has one additional fitting parameter A−1, which presumably will be

accounted for ultimately by the corresponding theory of quantum gravity.

As mentioned above, we fit these three models to the Union2 Compilation data

(see Figures 4 and 5). In order to establish a statistical reference, we first found that

a best fit line through log

(
DL

Gpc

)
versus log z gives a correlation of 0.9955 and a sum

of squares error (SSE) of 1.95. EdS cannot produce a better fit than this best fit line.

The best fit EdS gives SSE = 2.68 using Ho = 60.9 km/s/Mpc. A current (2011) “best

estimate” for the Hubble constant is Ho = (73.8 ± 2.4) km/s/Mpc [53]. Both MORC

and ΛCDM produce better fits than the best fit line with better values for the Hubble

constant than EdS. The best fit ΛCDM gives SSE = 1.79 using Ho = 69.2 km/s/Mpc,

ΩM = 0.29 and ΩΛ = 0.71. This best fit ΛCDM is consistent with its fit to the WMAP

data using the latest distance measurements from BAO and a recent value of the Hubble

constant[54]. The best fit MORC (case 1, Table 1) gives SSE = 1.77 and Ho = 73.9

km/s/Mpc using R = A−1 = 8.38 Gcy and m = 1.71×1052 kg. Given the scatter in the

data, MORC and ΛCDM produce essentially equivalent fits, clearly superior to EdS.

The “stop point” value of z in the MORC best fit is only 2.05, so we expect the

Regge evolution deviates discernibly from the EdS evolution in this trial. To check

this, we compared the Regge model using the best fit parameters and h11 = 0 with

its EdS counterpart. As explained above, the EdS counterpart to a Regge graphical

result is obtained by using Ho =

√
8πGρ

3
in EdS with ρ given by the graphical values

of R and m per
4

3
πR3ρ = m. The top graph in Figure 6 shows there is in fact a

discernible difference between the Regge and EdS evolutions, and the EdS value of Ho

obtained per R and m in this trial is 68.5 km/s/Mpc, which is significantly lower than
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Figure 4. Plot of transformed Union2 data along with the best fits for linear regression

(gray), EdS (green), ΛCDM (blue), and MORC (red).

Ho = 73.9 km/s/Mpc found in MORC. In fact, the twenty trials with the lowest SSE

values (cases 1-20, Table 1) have “stop point” z less than 10, so Regge evolution, as

distinct from EdS evolution, does come into play. However, Regge evolution tracks EdS

evolution when “stop point” z is as small 9.98 (see bottom graph in Figure 6) as is

true in case 21 of Table 1. And, SSE = 1.78 for case 21 is still comparable to SSE

= 1.79 of the best fit ΛCDM. The only casuality in the higher “stop point” z trials

is Ho, which is lowered when Regge evolution tracks EdS evolution. However, the Ho

= 71.2 km/s/Mpc in case 21 is still comparable to Ho = 69.2 km/s/Mpc for the best

fit ΛCDM. Thus, the Regge evolution plays a relatively minor role in the MORC fits.

Since we used the cosmological redshift, χe =

∫ to

te

cdt

a
, and the Regge evolution played

a minor role in the MORC fits, we conclude that the major factor in improving EdS

is DL = (1 + z)Dp → DL = (1 + z)
√−→

Dp ·
−→
Dp. Again, given the scatter of the Union2

Compilation data, we consider any of the 35 MORC results in Table 1, where SSE ≤
1.78 and Ho ranges (69.9 → 75.3) km/s/Mpc, equivalent to the best fit ΛCDM.

4. Discussion

We have explored a modified Regge calculus (MORC) approach to Einstein-de Sitter

cosmology (EdS), comparing the result with ΛCDM using the Union2 Compilation

of type Ia supernova data. Our motivation for MORC comes from our approach to

foundational physics that involves a form of direct particle interaction whereby sources,

space and time are co-constructed per a self-consistency equation. Accordingly, since

EM sources are used to measure luminosity distance DL but are not used to compute

graphical proper distance Dp, we did not expect Dp to correspond trivially to the

luminosity distance DL, i.e., we did not assume DL = (1 + z)Dp. Rather, we assumed

a more general relationship DL = (1+ z)
√−→
Dp ·

−→
Dp where the inner product employed a
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Figure 5. Plot of Union2 data along with the best fits for EdS (green), ΛCDM (blue),

and MORC (red). The MORC curve is terminated at z = 1.4 in this figure so that the

ΛCDM curve is visible.

correction to the inter-nodal graphical metric, ηαβ → ηαβ + hαβ with spatial coordinate

Dp and hαβ diagonal, so that DL = (1 + z)Dp

√
1 + h11. The method used to find h11

was a form of our self-consistency equation KQ = J borrowed from the homogeneous

linearized gravity equation in the harmonic gauge, i.e., ∂2hαβ = 0. While h11 = 0 is the

solution typically used, we allowed h11 to be a function of Dp which gave h11 = ADp+B

where A and B are constants. Since we wanted the inner product to reduce to ηαβ for

small Dp, we set B = 0. Our best fit MORC (case 1, Table 1) gave A−1 = 8.38 Gcy, so

the correction to η11 is negligible except at cosmological distances, as expected.

We found that in the context of the Union2 Compilation data MORC improved

EdS as well as ΛCDM without having to employ dark energy. That is, the MORC

universe evolves per pressureless dust and is always decelerating yet it accounts for

distance moduli versus redshifts for type Ia supernovae as well as ΛCDM. Of course,

this does not commit one to our foundational motives. In fact, one may certainly dismiss

our form of direct particle interaction and simply suppose that the metric established

by EM sources deviates from that of pressureless dust at cosmological distances; we

did not present arguments for our foundational motives here. Abandoning our motives

while keeping the MORC formalism would simply result in a situation similar to that

in ΛCDM where a cosmological constant is added to EdS for empirical reasons, i.e.,

Regge calculus was modified to account for distance moduli versus redshifts in type Ia

supernovae. Motives notwithstanding, MORC’s empirical success in dealing with dark

energy gives us reason to believe this formal approach to classical gravity may provide

creative new techniques for solving other long-standing problems, e.g., quantum gravity,

unification, and dark matter.

In order to explore this possibility, we need to check MORC against the

Schwarzschild solution, where experimental data is well established and GR is well

supported. While tests of the Schwarzschild solution have been conducted on spatial
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Figure 6. Top graph shows Regge evolution (red) without h11 correction and EdS

evolution (green) for case 1 Table 1 where the “stop point” z is 2.05. The bottom

graph makes the same comparison for case 21 Table 1 where the “stop point” z is 9.98.

scales much smaller than the cosmological scales where we found a correction to EdS,

it has been shown that the simplices must be small in order to reproduce the GR

redshift and the perihelion precession of Mercury in the Schwarzschild solution[55][56].

Thus, we need to verify that MORC is consistent with the Schwarzschild solution per

observational data. We might refine our study of MORC cosmology, but we feel the

easiest way to test MORC is via the Schwarzschild solution where perhaps the issue of

dark matter can be addressed in a fashion similar to dark energy in EdS. If by chance

we are able to construct a MORC for the Schwarzschild solution that passes empirical

muster, we would then consider the more general issue of an action for modified Regge

calculus in order to consider new approaches to quantum gravity and unification. Given

the level of uncertainty involved in the next step alone, we won’t speculate further.
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