
Green’s Function for Regular Sturm-Liouville Problems

We are interested in in solving problems like

Ly := (py′)′ − qy = f (1)

B1y = β1y(a) + γ1y
′(a) (2)

B2y = β2y(b) + γ2y
′(b). (3)

To this end we define the operator

Ly = (py′)′ − qy

under the assumption that λ = 0 is not an eigenvalue of L and where p, p′, and q are continuous on [a, b],

p(x) > 0 on [a, b] and |γj|+ |βj| 6= 0 for j = 1, 2, in the Hilbert space H = L2(a, b) with inner product

〈f, g〉 =

∫ b

a

f(x)g(x) dx

and the induced norm

‖f‖2 =

∫ b

a

|f(x)|2 dx.

To do this we first need a couple of basic results from the theory of ordinary differential equations.

One is a consequence of the fundamental existence uniqueness theorem for ordinary differential equations

which guarantees the unique existence of a solution to the following initial value problem

Ly = (py′)′ − qy = 0 (4)

y(a) = α1

y′(a) = α2

for any α1 and α2. Among other things this allows us to ensure that we can find two linearly independent

solutions to the equation (1) by taking functions u1 and u2 satisfying

Luj = (pu′j)
′ − quj = 0 (5)

uj(a) =

{
1 j = 1

0 j = 2

u′j(a) =

{
0 j = 1

1 j = 2

Now it is useful to rewrite equation (1) as follows. Expand the first term and divide by p to get

y′′ +
p′

p
y′ − q

p
y = 0
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Now let us denote P = p′/p and Q = q/p to get

y′′ + Py′ −Qy = 0. (6)

For this equation we derive the well known Abel formula for the Wronskian. Let yj j = 1, 2 be two

linearly independent solutions of (5). Then the wronskian is defined by

W (x) =

∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣ .
Then Abel’s formula is

W (x) = W (a) exp

(
−

∫ x

a

P (ξ) dx

)
(7)

To verify this we expand the Wronskian determinant and differentiate to obtain

W ′(x) = (y1y
′
2 − y′1y2)

′ (8)

= y1y
′′
2 + y′1y

′
2 − y′1y

′
2 − y1y

′′
2

= y1y
′′
2 − y1y

′′
2

= y1(−Py′2 +Qy2)− y1(−Py′1 +Qy1)

= −P (y1y
′
2 − y′1y2) = −PW (x).

Thus we consider the differential equation

W ′ = −PW

which is readily solved by separation of variables. At this point we also recall that P = p′/p We have

dW

W
= −dp

p

so that

ln |W | = − ln |p|+ C

which gives C = W (a)p(a) and we have

W (x) = W (a)
p(a)

p(x)
. (9)

Taking into account P = p′/p this is exactly what we get in (6).

Lemma 1. Under our assumption that λ = 0 is not an eigenvalue of L, it is always possible to find a basis

of solutions uj of Lu = 0 satisfying Bjuj = 0 and Biuj = 0 for i = 1, 2 and i 6= j.
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To see this we note that this assumption implies that we cannot find a function u 6= 0 such that B1u = 0

and B2u = 0. So we first choose the functions yj in (5) and note that every solution of Ly = 0 can then

be written in the form u = c1y1 + c2y2. Now we find c1, c2 so that B1u = 0. We have

0 = B1u = γ1(c1y
′
1(a) + c2y

′
2(a)) + β1(c1y1(a) + c2y2(a)) = γ1c2 + β1c1.

This is easily satisfied by γ1 = −β1 and c2 = γ2 so we obtain

u1(x) = −β1y1(x) + γ2y2(x).

Note that by our assumption B2(u1) 6= 0.

For u2 we need to do a bit more work. Once again we look for u in the form u = c1y1 + c2y2.

0 = B1u = γ2(c1y
′
1(b) + c2y

′
2(b)) + β2(c1y1(b) + c2y2(b))

= c1 [γ2y
′
1(b) + β2y1(b)] + c2 [γ2y

′
2(b) + β2y2(b)]

= c1(B2y1) + c2(B2y2)

Then, for example, we can set c1 = −B2y2 and c2 = B2y1 and we have

u2(x) = −(B2y2)y1(x) + (B2y1)y2(x).

A Green’s function for the problem (1)-(3) is a function satisfying

Definition 1. A Green’s function is a function g(x, ξ) for (x, ξ) ∈ [a, b]× [a, b] such that

1. The following hold

(a) g(·, ·) is continuous on [a, b]× [a, b],

(b)
∂g

∂x
(·, ξ) is continuous on [a, ξ)× (ξ, b], and,

(c)
∂g(x, ξ)

∂x

∣∣∣∣x=ξ+

x=ξ−
≡ ∂g

∂x
(ξ+, ξ)− ∂g

∂x
(ξ−, ξ) =

1

p(ξ)

2. for all ξ ∈ [a, b], g(x, ξ) solves L(g) = 0, x 6= ξ.

3. for all ξ ∈ (a, b), Bi(g) = 0.

Let us first construct the Green’s function and then we will show that it does indeed lead to a formula

for the inverse of L. One way to construct the Green’s function is to use the properties given in Definition

1. To do this we first construct the functions uj in Lemma 1.
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We then seek g in the following form

g(x, ξ) =

Au1(x), a ≤ x ≤ ξ

Bu2(x), ξ < x < b
.

In order to satisfy the Assumption 1 of Definition 1 (continuity) we need

Au1(ξ)−Bu2(ξ) = 0.

To satisfy the jump condition we would need

Bu′2(ξ)− Au′1(ξ) =
1

p(ξ
.

This gives a system of two equations in two unknowns with determinant of the coefficient coefficient given

by

∆ =

∣∣∣∣u1(ξ) −u2(ξ)
u′1(ξ) −u′2(ξ)

∣∣∣∣ = −W

(the Wronskian). Using Cramer’s rule we can find A and B as

A = − 1

W

∣∣∣∣ 0 −u2(ξ)
−1/p(ξ) −u′2(ξ)

∣∣∣∣ =
u2(ξ)

p(ξ)W (ξ)

and

B = − 1

W

∣∣∣∣u1(ξ) 0
u′1(ξ) −1/p(ξ)

∣∣∣∣ =
u1(ξ)

p(ξ)W (ξ)

We have computed g in the form

g(x, ξ) =
1

p(ξ)W (ξ)

u1(x)u2(ξ), a ≤ x ≤ ξ

u1(ξ)u2(x), ξ < x < b
.

Next we recall that using Abel’s formula (see (9)) we can simplify this formula since p(ξ)W (ξ) = p(a)W (a)

for all ξ, so we arrive at the final formula.

g(x, ξ) =
1

p(a)W (a)

u1(x)u2(ξ), a ≤ x ≤ ξ

u1(ξ)u2(x), ξ < x < b
. (10)

Theorem 1. The operator K on H defined by

Kϕ =

∫ b

a

g(x, ξ)ϕ(ξ) dξ

is a compact operator. Furthermore, it is self-adjoint since

g(x, ξ) = g(ξ, x).
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The proof of this result follows from a pair of Lemmas.

Lemma 2. The collection of functions

ϕk(x) = (b− a)−1/2 exp

(
2πik

(x− a)

(b− a)

)
, k = 0,±1,±2, · · ·

forms an orthonormal basis in L2(a, b). Furthermore, the functions

ψk,j(x, ξ) = ϕk(x)ϕj(ξ) k, j = −∞, · · · ,∞

form an othonormal basis for L2([a, b]× [a, b]). Indeed, if g(x, ξ) ∈ L2([a, b]× [a, b]) then

g(x, ξ) =
∞∑

k,j=−∞

ck,jψk,j(x, ξ)

where
∞∑

k,j=−∞

|ck,j|2 <∞

and

ck,j =

∫∫ ∞

−∞
ψk,j(x, ξ)g(x, ξ) dξdx.

Proof: After a change of variables mapping the interval [a, b] to the interval [0, 2π] the functions are

precisely the basis that gives the Fourier series for functions defined on [0, 2π]. We need only note that if

f ⊥ ϕk for all k implies that f = 0 since∫ b

a

f(x)ϕk(x) dx = (b− a)−1/2

∫ b

a

f(x) exp

(
2πik

x− a

b− a

)
dx =

∫ 1

0

e2πiksf(a+ (b− a)s) ds

where we have changed variables using s = (x − a)/(b − a). Let us denote g(s) defined on [0, 1] by

g(s) = f(a+ (b− a)s), then f ⊥ ϕk is equivalent to∫ 1

0

e2πiksg(s) ds = 0 k = 0,±1,±2, · · · .

By elementary Fourier series we know that g(s) = 0 a.e. and therefore f = 0 in L2(a, b). The second part

follows from a well know result on multivariable Fourier series and the fact that

L2([a, b]× [a, b]) = L2[a, b]⊗ L2[a, b].

2
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Lemma 3. If k(x, t) satisfies ∫ b

a

∫ b

a

|k(x, ξ)|2 dξdx <∞

then the operator K

Kϕ =

∫ b

a

k(x, ξ)ϕ(ξ) dξ

is a compact operator in L2(a, b).

Proof: Using Lemma 2 we have

k(x, ξ) =
∞∑

k,j=−∞

〈k, ψk,j〉ψk,j(x, ξ).

Furthermore, we have

kN(x, ξ) =
∑

|k|,|j|≤N

〈k, ψk,j〉ψk,j(x, ξ)

satisfies

‖kN − k‖L2(a,b) → 0 N →∞.

Since
∞∑

k,j=−∞

|〈k, ψk,j〉|2 <∞

for a given ε > 0 we can find N so that

|〈k, ψk,j〉| < ε for all |k|, |j| > N + 1.

Therefore, the finite rank operators

KNϕ(x) =

∫ b

a

kN(x, ξ)ϕ(ξ) dξ =
∑

|k|,|j|≤N

〈k, ψk,j〉〈ϕ, ϕj〉ϕk(x)

satisfy

‖(KN −K)(ϕ)‖2 =

∥∥∥∥∥∥
∑

|k,j|≥N+1

〈k, ψk,j〉〈ϕ, ϕj〉ϕk(x)

∥∥∥∥∥∥
2

=

〈 ∑
|k,j|≥N+1

〈k, ψk,j〉〈ϕ, ϕj〉ϕk(x),
∑

|k,j|≥N+1

〈k, ψk,j〉〈ϕ, ϕj〉ϕk(x)

〉
=

∑
|k|,|j|≥N+1

|〈k, ψk,j〉|2|〈ϕ, ϕk〉|2

< ε‖ϕ‖2
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and we have

‖KN −K‖ N→∞−−−→ 0,

and as a uniform limit of finite rank operators we see that K is compact. 2

An important feature of a Green’s function lies in the following. In order to solve

(L− λ)u = f, B1(u) = 0, B2(u) = 0

we want to find

u = (L− λ)−1f.

But then we see that finding (L− λ)−1 amounts to solving (L− λ)u = f, B1(u) = 0, B2(u) = 0 which is

a boundary value problem. Notice that the presence of λ is, on the one hand artificial, and on the other

hand quite important. Notice that we could eliminate the term involving λ by simply redefining q̃ = q+ λ

and the defining Lλ = (py′)′ − q̃y. The problem to solve then becomes

Lλu = f, B1(u) = 0, B2(u) = 0.

So what is the difference. Well remember the “small assumption” that zero is not an eigenvalue of L.

For general λ zero could be an eigenvalue of Lλ. Indeed, the set of all eigenvalues λ for L are extremely

important numbers in practical problems. Under the assumption that λ = 0 is not an eigenvalue of L what

we will show is that L−1 is compact and therefore has at most countable collection of eigenvalues µj whose

only accumulation point is zero. Then we see, from the spectral mapping theorem, that the eigenvalues of

L are precisely λj = 1/µj which tend to infinity.

We now turn to the main application of Green’s function in this section. Namely, we consider the

nonhomogeneous BVP.

Lλ(y) = (py′)′ − q(x)y + λy = f(x), a < x < b

B1(y) = 0, B2(y) = 0

where

B1y = β1y(a) + γ1y
′(a), B2y = β2y(b) + γ2y

′(b),

and k ∈ C1(a, b), p(x) > 0, x ∈ [a, b].

First we recall a classical formula whose general counterpart has far reaching consequences in the theory

of ordinary and partial differential equations and the theory of weak solutions. At this point we will only
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consider a very special case. Namely, given any two functions u and v, a straightforward calculation gives

the so-called Lagrange Identity:

vLλ(u)− uLλ(v) =
d

dx
P (u, v)

where

P (u, v) = p (u′v − uv′)

and we note that integration gives the so-called Green’s formula∫ b

a

[vLλ(u)− uLλ(v)] = P (u, v)|x=b
x=a

Let g(x, ξ) denote the green’s function for the homogeneous problem (1)-(3). From Lagrange’s identity,

for x 6= ξ

g(x, ξ)Lλ(y)− yLλ(g(x, ξ)) =
d

dx
[p(gy′ − yg′)]

which implies ∫ ξ−

a

gLλ(y)dx = p(gy′ − g′y)]ξ
−

a

and ∫ b

ξ+

gLλ(y)dx = p(gy′ − g′y)]bξ+ .

Hence ∫ b

a

gLλ(y)dx = p(gy′ − g′y)]ba − p(gy′ − g′y)]ξ
+

ξ− .

Note that our boundary conditions B1, B2 have the property that if u, v satisfy B1(u) = 0 = B2(v), then

[p(gy′ − g′y)]ba = 0

Thus we have ∫ b

a

gLλ(y)dx = − [p(gy′ − g′y)]
ξ+

ξ−

= p

[
∂g

∂x
(ξ+, ξ)− ∂g

∂x
(ξ−, ξ)

]
y(ξ)

= y(ξ).

Therefore if y satisfies L(y) = f , then we should have y(x) =

∫ b

a

g(x, ξ)f(ξ) dξ. Thus we have

∫ b

a

g(x, ξ)Lλ(y)(x)dx =

∫ b

a

Lλg(x, ξ)(y)(x)dx = y(ξ)
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which suggest that Lλg(x, ξ) = δ(x− ξ), i.e., the solution to

Lλ(y) = f

Bi(y) = 0

would be given by

y(x) =

∫ b

a

g(x, ξ)f(ξ)dξ

provided that λ is not an eigenvalue.
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