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height of the waves), that surface tension effects are not important,

and that water is incompressible.
¢) Find the group velocity of the wavefront and consider two limiting

cases A > d, A« d.

1.48 Suspension Bridge (Stony Brook)

A flexible massless cable in a suspension bridge is subject to uniform loading
along the z-axis. The weight of the load per unit length of the cable is w,
and the tension in the cable at the center of the bridge (at z = 0)is T, (see
Figure P.1.48).

i %X}

IA

PRt e e e S S P

Figure P.1.48

a) Find the shape of the cable at equilibrium.
b) What is the tension T'(z) in the cable at position z at equilibrium?

1.49 Catenary (Stony Brook, MIT)

A flexible cord of uniform density p and fixed length { is suspended from two
points of equal height (see Figure P. 1.49). The gravitational acceleration is
taken to be a constant g in the negative 2 direction.

a) Write the expressions for the potential energy U and the length [ for
a given curve z = z(x).

b) Formulate the Euler-Lagrange equations for the curve with minimal
potential energy, subject to the condition of fixed length.

c) Show that the solution of the previous equation is given by z =
A cosh(z/A) + B, where A and B are constants. Calculate U and
[ for this solution.
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c) The group velocity of the waves is

Bw NG ( kd )
= V9 (tanhkd+ $.1.47.13
T8 T 2/ktanhkd \ prerwl B )

Consider two limiting cases:

1) kd> 1, d > A—short wavelength waves. Then

1 1
U~ 5\/9/16 = 5\/9)\/27r

2) kd < 1, d < A—long wavelength waves. Then u = /gd.

1.48 Suspension Bridge (Stony Brook)

a) We use an elementary method to solve this problem. The conditions for
a static equilibrium are

T(x + dzx) - cosb(z + dz) — T(z) cosf(z) = Fr =0 (S.1.48.1)

T(x +dzx) -sinb(z + dz) — T(z)sinf(z) = wdz  (5.1.48.2)

(see Figure S.1.48). (S.1.48.1) and (S.1.48.2) can be rewritten in the form

% [T{(z)cosb(z)] =0 (S.1.48.3)
d .
i [T(z)sinf(z)] = wdz (S.1.48.4)
T(x+dx)
& (x+dx)
ds
8(x)

T(x)
Figure S.1.48
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Integrating (S.1.48.3) and (S.1.48.4), we obtain
T(z)sinf(z) = Cp + wzx (5.1.48.5)
T(z)cosb(z) = Cy (S.1.48.6)

Atz =0, § =0,s0 Cy =0; C; =Ty and dividing (S.1.48.5) by (S.1.48.6),

we have
dy w

dz Ty

From (S.1.48.7) we find the shape of the suspension bridge, which is parabolic

tané(z) = (S.1.48.7)

2

wr
Y=Y+ 2—To' (S5.1.48.8)

b) To find the tension T(z) at z # 0 (6 # 0), multiply (S.1.48.5) by
(S.1.48.6).

T?(z)sinf cos§ = Tywz (S.1.48.9)
tand
T} z) ————= = .1.48.
(:c)1 T tanZ Towz (5.1.48.10)

1 w To
2(z) = — V=1 el 20) e 2,.2
T(z) = Towzx (tan9+ tan0) oWT (T0x+ m) Iy +wz

So

T(z) = To/1 + (wz/Tp)? (S.1.48.11)

1.49 Catenary (Stony Brook, MIT)

a) Write the expressions for the length ! and potential energy U (see Figure
S.1.49) using

li— a0 —»!
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Figure S.1.49
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