
7-11  A gyroscope consists of a wheel of radius 𝑟, all of whose mass is located on the rim.  The gyroscope 

is rotating with angular velocity 𝜃̇ about its axis, which is horizontal and is fixed relative to the earth’s 

surface.  We choose a coordinate system at rest relative to the earth whose 𝑧 axis coincides with the 

gyroscope axis and whose origin lies at the center of the wheel.  The angular velocity 𝜔 of the earth lies 

in the 𝑥𝑧 plane, making an angle 𝛼 with the gyroscope axis. 

Find the 𝑥, 𝑦, and 𝑧 components of the torque 𝑵 about the origin, due to the Coriolis force in the 𝑥𝑦𝑧 

coordinate system, acting on a mass 𝑚 on the rim of the gyroscope wheel whose polar coordinates in the 

𝑥𝑦 plane are 𝑟, 𝜃.  Use this result to show that the total Coriolis torque on the gyroscope, if the wheel has 

a mass 𝑀, is 

𝑵 = −
1

2
𝒋𝑀𝑟2𝜔𝜃̇𝑠𝑖𝑛𝛼 

This equation is the basis for the operation of the gyrocompass. 

 

The coordinate system in the rotating frame can be set up by defining a plane perpendicular to the radial 

direction in the region of interest with 𝒛̂ in the north direction and 𝒙̂ in the vertical direction, thus placing 

𝝎 in the 𝑥𝑧 plane.  The east direction perpendicular to the 𝑥𝑧 plane is designated by 𝒚̂ thus forming a 

righthand coordinate system. 

 

 

 

 

 

 

 

 

 

𝝎 = 𝜔(𝑠𝑖𝑛𝛼𝒙̂ + 𝑐𝑜𝑠𝛼𝒛̂) 

𝜽̇ = 𝜃̇𝒛̂ 

𝑹 = 𝑅𝒙̂ 

𝒈 = −𝑔𝒙̂ 

A mass 𝑚 in the 𝑥𝑦 plane has polar coordinates 𝑟, 𝜃.  The velocity of 𝑚 is 

𝒗𝑚 = 𝜽̇ × 𝒓 

𝒓 = 𝑟(𝑐𝑜𝑠𝜃𝒙̂ + 𝑠𝑖𝑛𝜃𝒚̂) 

𝒗𝑚 = 𝜃̇𝒛̂ × 𝑟(𝑐𝑜𝑠𝜃𝒙̂ + 𝑠𝑖𝑛𝜃𝒚̂) 
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𝒗𝑚 = 𝑟𝜃̇(𝑐𝑜𝑠𝜃𝒚̂ − 𝑠𝑖𝑛𝜃𝒙̂) 

The equation of motion in the moving frame is, from Eq. (7.43), 

𝑚
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𝑑𝑡
= 𝑚[𝒈 −𝝎× (𝝎 × 𝒓)] − 2𝑚𝝎×

𝑑∗𝒓
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The torque due to gravity is zero because it acts through the center of mass of the gyroscope and the rim 

lies in the 𝑥𝑧 plane.  The effective gravity is very small and can be ignored.  Therefore, the only 

significant force acting on the mass to produce a torque is the Coriolis force.  So, only this force is 

required. 
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𝑑𝑡
= −2𝑚𝝎× 𝒗𝑚 
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𝑑𝑡
= −2𝑚𝜔(𝑠𝑖𝑛𝛼𝒙̂ + 𝑐𝑜𝑠𝛼𝒛̂) × 𝑟𝜃̇(𝑐𝑜𝑠𝜃𝒚̂ − 𝑠𝑖𝑛𝜃𝒙̂) 

𝑭𝑚 = 𝑚
𝑑∗
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𝑑𝑡
= −2𝑚𝜔𝑟𝜃̇(𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛼𝒛̂ − 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛼𝒙̂ − 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛼𝒚̂) 

The torque on this mass is 

𝑵𝑚 = 𝒓 × 𝑭𝑚 

𝑵𝑚 = −2𝑚𝜔𝑟2𝜃̇(𝑐𝑜𝑠𝜃𝒙̂ + 𝑠𝑖𝑛𝜃𝒚̂) × (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛼𝒛̂ − 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝛼𝒙̂ − 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛼𝒚̂) 

𝑵𝑚 = −2𝑚𝜔𝑟2𝜃̇(−𝑐𝑜𝑠2𝜃𝑠𝑖𝑛𝛼𝒚̂ − 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛼𝒛̂ + 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝛼𝒙̂ + 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝛼𝒛̂) 

𝑵𝑚 = −2𝑚𝜔𝑟2𝜃̇𝑠𝑖𝑛𝛼(𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝒙̂ − 𝑐𝑜𝑠2𝜃𝒚̂) 

The differential mass is 

𝑑𝑚 = 𝜆𝑟𝑑𝜃 

where 𝜆 is the linear mass density.  The total torque is 

𝑵 = ∫𝑑𝑵𝑚 

𝑵 = −2𝜔𝑟2𝜃̇𝑠𝑖𝑛𝛼∫(𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝒙̂ − 𝑐𝑜𝑠2𝜃𝒚̂)𝑑𝑚 

𝑵 = −2𝜔𝑟3𝜆𝜃̇𝑠𝑖𝑛𝛼∫ (𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝒙̂ −
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𝑵 = −2𝜔𝑟3𝜆𝜃̇𝑠𝑖𝑛𝛼 (
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𝑵 = −2𝜔𝑟3𝜆𝜃̇𝑠𝑖𝑛𝛼 (0𝒙̂ −
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𝑵 = 2𝜋𝜔𝑟3𝜆𝜃̇𝑠𝑖𝑛𝛼𝒚̂ 

𝑀 = 2𝜋𝑟𝜆 

𝑵 = 𝑀𝑟2𝜔𝜃̇𝑠𝑖𝑛𝛼𝒚̂ 

𝒚̂ = 𝒋 

𝑵 = 𝒋𝑀𝑟2𝜔𝜃̇𝑠𝑖𝑛𝛼  

This result does not agree with the given expression.  A check is to consider the angular momentum of the 

gyroscope and determine its rate of change due to the earth’s rotation.  Using the same coordinate system, 

𝑳 = 𝐼𝜃̇𝒛̂ 

𝐼ℎ𝑜𝑜𝑝 = 𝑀𝑟2 

𝑳 = 𝑀𝑟2𝜃̇𝒛̂ 

𝝎 = 𝜔(𝑠𝑖𝑛𝛼𝒙̂ + 𝑐𝑜𝑠𝛼𝒛̂) 

The relation between stationary and rotating derivatives is 

𝑑𝑳

𝑑𝑡
=
𝑑∗𝑳

𝑑𝑡
+ 𝝎 × 𝑳 

In the rotating frame the gyroscope is fixed.  So, 

𝑑∗𝑳

𝑑𝑡
= 0 

𝑑𝑳

𝑑𝑡
= 𝜔(𝑠𝑖𝑛𝛼𝒙̂ + 𝑐𝑜𝑠𝛼𝒛̂) × 𝑀𝑟2𝜃̇𝒛̂ 

𝑑𝑳

𝑑𝑡
= −𝑀𝑟2𝜔𝜃̇𝑠𝑖𝑛𝛼𝒚̂ 

This is the torque in the non-rotating coordinate system.  Therefore, in the rotating frame the Coriolis 

(inertial) torque is 

𝑑∗𝑳

𝑑𝑡
= 𝑀𝑟2𝜔𝜃̇𝑠𝑖𝑛𝛼𝒚̂ 

It is noticed the moment of inertia for a solid disk is 

𝐼𝑑𝑖𝑠𝑘 =
1
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𝑀𝑟2 



and this is likely the reason for the stated relation.  The reason for the sign difference is unclear and may 

have to do with the coordinate system orientation.  It appears the stated problem did not exactly define the 

conditions necessary to arrive at the given expression for the torque. 


