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HEAT TRANSFER ASSOCIATED WITH THE MOTION OF A GAS THROUGH A
FIXED LOOSE PACKING WITH VARIABLE GAS TEMPERATURE AT THE INLET
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A solution is offered for the problem of the nonstationary temperature
field in a loose packing through which passes a flow of gas with va-
riable inlet temperature. An approximate method of calculating the
gas and packing temperatures is proposed.

The process of nonstationary heat transfer asso~
ciated with the motion of a gas or liquid through a
loose packing can be described by a system of two
linear partial differeuntial equations {1, 2]
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In constructing these equations the following as-
sumptions were made:

1. At any instant the temperature of a particle may
be assumed constant over its entire volume, convec-
tive heat transfer between the flow and the packing is
controlling; heat exchange by thermal conduction in the
axial direction and by radiation is small and may be
neglected; and the flow pressure remains constant
during motion through the packing.

2. The flow velocity is constant; the variation of
the density and thermophysical characteristics of the
flow and the packing with variation in temperature may
be neglected.

The problem of finding the temperatures of the gas
and the packing as functions of two independent vari-
ables (time and coordinate) has been solved by Anzelius
[1] and Schumann [2, 3] for the case of heating or cool~
ing of a bed of loose packingby a constant-temperature
gas flow with the following boundary conditions:

T30, ) =0, Ti(t, 0)=T,. )

The results of Schumann's calculations were ex-
tended by Furnas [4].

In the more general case considered in this paper
the temperature of the gas at the inlet to the bed is a
given function f&(t)of time, and the problem of finding
the temperature field reduces to solving system (1)
with the boundary conditions

g(f, 0) = f(2);
Tz(0, ) =T5(0, ) =To; f2(0) =T, ()
Problem (1)—(3) can be reduced to the solution of

two equations of hyperbolic type. The first of these is
written in the form

aV
Oyoz

—V=0 (4)

with initial data on the characteristics

V(O’ Z/) = 0,

V(s O)=expz-f (%)—S exp@f(fl—) 4t (5)
0

The second equation has the analogous form
U
Oyoz

—U=0 ®)

with initial data on the characteristics
U(Or y) = 0)
z

ve, 0)=eXPZ-f(~;—)+ S exp§f<ki) it M

1

The functions U(y, z) and V(y, z) are related with
the relative temperatures Tg and Tg as follows:

Ty =05+ V) exp(—y—2),
s =058(U—V) exp (—y—2). (8)

The relative temperatures Tgand Tgare expressed
in terms of the absolute temperatures of the gas and
the packing Tg and Tg in accordance with the for-
mulas :

Ty= (TZ — T )T, Ts :(T?" To)/To- (9)

Solving Eqgs. (4), (6) together with conditions (5),
(7) by the method of adjoint differential operators and
going over in accordance with formulas (8) to the un-
known functions, we obtain in explicit form the final
solution of problem (1)—(3), which is a generalization
of the Schumann problem (f(t) = const):

Ts=exp(—y—2)j‘ eXPE-f(—f ) Jo (2% V{E—BydE,
1
[¢]

i 1

Tg=6XP(—y)f(—;—) —exp(—y—2) f exg>§-f<—§—) X

% aJD(QilggZ~§)y) dE. (10)

Equations (10) were used to calculate the nonsta-
tionary temperature field for a step boundary function
equal to T3, = const on the interval 0 <t =t; and to
T, = const everywhere outside it. In this case as in
the relative temperatures of the gas and the packing it
is convenient to take the following ratios:

To—Tg

when Tg < T, (cooling) Ty = 2—2% T —
To—Ta

Ty —T2
To—‘TSD '
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Tz—T,

_Ti—T,
To—Ty °

when Tg > T, (heating) Ty= o
g 4o

Then boundary conditions (3) for system (1) are
written as
Te(0, x)=T,(0, x) =0, Tg(0, 0)=0;
Te(t, 0)=1 at 0 <<t

Tg(t, 0)=0 at ¢>1;. (11)

Introducing the notation ¢@(x,y) = exp (—x ~ y)+
- J[2i(xy)}/?, we can transform the solution of prob-
lem (1), (11) as follows:

atz =z,
Ty(y, 2 =5 9 (x, y)dx, (12)
Tely, =Ty, )+, 2); (13)

at z >z,
T(y, 2 = f 9 (x, y)dx, (14)
Te(y, 9 =T (y, 2)+q>l(y, H—oly, z—z). (19)

Equations (14), (15) were used to calculate the tem-
perature field for a wide range of values of y and z at
z > zj. The calculations were made on an electronic
computer; the program consisted in solving integral
{14) by Simpson's method with forced choice of integra-
tion step depending on the required accuracy (four
correct places after the decimal point), The zero-
order Bessel function of the first kind was replaced
with its asymptotic approximation in accordance with
a formula giving seven correct places after the deci~
mal point at xy > 100 [5]:

exp (2¥ xy) (1 0.125  0.07
V&V 2Vxy  Axy

The maximum error due to replacing the Bessel
function with the approximate formula does not exceed
0.00005 over the entire range of computed values.

The results of the computations in dimensionless
form were tabulated for the sections Tg(z, y) and Tg(z,
Vo) at v from 30 to 2000 for values in the range z; =
= (0.05~0.40) -y, and also for the sections Tg(zo,y)
and Tg(zp,y) at zg from 100 to 2000 for values in the

_range z{ = 50-400. The function Tg(x,yo)—the tempera-
ture of the gas at the outlet from a bed of length y) as
a function of time—which is often used in applications,
is presented in graphic form in the figure. The outlet
temperature curves were constructed for values of
the parameter z;/y from 0.05 to 0.40.

It follows from (13) that for heating or cooling of
the packing with a flow of constant-temperature gas
the difference between the temperatures of the gas and
the packing is calculated in the explicit form

AT =T, —T,=0ly, 2). (17)
For the case of a pulsed stepwise variation of gas

temperature at the inlet the temperature difference
AT is found from Eq. (15) as follows:

72 Vi) = ) (16)

AT =9y, ) —e(y, 2—2z;) (18)
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Using the asymptotic approximation of the Begsel
function (Eq. (16)), for not too small values of the
length of the bed (y; > 10) we obtain an approximate
formula for the maximum value of the function

q)max (yO) Z) = 1/ V4n y0~

Below we give maximum values of the temperature
difference between the gas and the packing for heating
or cooling of the packing with a constant-temperature
flow:

(19)

¥, 100 400 800 1200 1600 2000
ATm. 0.028 0.014 0.010 0.008 0.007 0.006

In the case of a stepwise variation of the gas tem-
perature at the inlet (intermittent heating or cooling)
the temperature difference varies in time according
to a more complex law, but since the function ¢(y, z)
is positive, the absolute value of the temperature dif-
ference given by Eq. (18) does not exceed the maxi-
mum value of the analogous difference in the case of
simple heating (Eq. {17)).

For sections of the packing corresponding to a re-
duced length y, > 100 (the inlet region is not considered),
the modulus of the temperature difference for cases of
continuous and intermittent heating or cooling does
not exceed 0.03, i.e., 3% of the maximum gas tem-
perature drop at the inlet. For this reason in approx-
imate methods of caleculating the temperature field
used in the design of processes and equipment it is
not possible to distinguish between the temperature of
the gas and that of the packing, and to introduce the
similar temperature T.

It can be shown that at values of y =< z the integral
(12) can be approximated by

LoV 2)— (V2 —V ),
and the integral (14) by

L<o (Vy—V2eE—2))+0(V%Z—v3y). @1)

Estimates (20) and (21) are very close and the right
side of the inequalities can be used as formulas for de~
termining the temperature T,

Moreover, direct calculations have established that
the temperature T thus obtained is the arithmetic mean
of the temperatures of the gas and the packing, this
result being valid not only at y = z but at any values
of y, z, and z;. The deviations from this law do not
exceed the error of the calculations, namely, 0.0002.

Thus, for the case of heating or cooling of the
packing with a constant-temperature gas flow we have

T=05(T;+T)=0V2%)~0(VUW—V2),

and for the case of intermittent pulsed heating or cool-
ing of the packing
T=05(Tg+T,) =

=0 (V2y—VZEe—2z)) + 0V 22—V 2

In engineering calculations, constructing the outlet
temperature curves and the temperature distribution
pattern, it is usual to use not more than twenty points,
for example, values of the relative temperature at
intervals of 0.05.

(20)

(22)

(23)
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At values of y > 10 the function &(2y)Y/% = 0.5 and,
on the basis of Eq. (22), the outlet temperature curve
T(z,yy) can be calculated for simple heating or cool-
ing of a packing of length v, by means of the very sim~-
ple formula

at T7<05 z=0.5(12y,—a)?
at T>05 z=05( 2y, +a? (24)
where the coefficient ¢ is determined from the follow-

ing data:

T 0.01

a 2.33

The temperature distribution along the packing at
an arbitrary instant of time z; is calculated from the
equations

at T<05 y=05(V2+0F,
at T>05 y=0.5(92 —ar (25)
For a stepwise change in the gas temperature at
the inlet during time z; the distribution curve for the
temperature T over the length of the packing at time
z, lies between the curves constructed from Egs. (25)
and (26):
at T<05 y=05(2(z —2z,) —af,
at 7>05 y=05(/2(z—z;)+a (26)
The maximum temperature at the instant z, is
reached in the section y = zy— 0.5z; and is equal to

T s (20:9) 2O (V 22, —

—V2%—2) + 0V 2, —2—V2@E=2)). @7)

The maximum value of the temperature T at the
outlet from a packing of reduced length y, is reached
at the instant z = y, + 0.5z; and is equal to

Tonax (2 4g) = @ (V 290 —
—~V 2o —2,)— OV 25, — V3, + z; ). (28)

Having the approximate formulas (22) and (23) for
determining the arithmetic mean of the temperature
of the gas and the packing with an error not greater
than 0.0002 and the exact formulas (17) and (18) for
determining the difference of these temperatures,
we can easily calculate the values of the temperatures
Ty and Ty themselves. The function ¢ can be found
from tables [5] or by means of approximate formula
(186).

It is clear from (22) that the value of the tempera-
ture T = 0.5 is reached at a value of y that coincides

0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0.45
T 099 095 090 08 0.80 075 0.70 0.65 0.60 0.55
1.645 1.28 1.04 0.84 0.675 0.525 0.385 0.253 0.126
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exactly with z; this is also apparent from the graphs.
Consequently, the dimensionless velocity of the heat
transfer front in the section with temperature T = 0.5,
determined as the ratio of the reduced length of the
path traversed to the reduced time, is equal to unity.
In dimensional quantities we have
Uy = L T (29)
hs(1—1)

From (25) and (26) it follows that the velocity of

propagation of the temperature waves through the pack-

0.50
0.50
0.0

ing is directly proportional to the linear gas flow vel-
ccity and the ratio of the volume specific heats of gas
and packing. As follows from (28), the amplitude of
the temperature waves propagating through the packing
decreases asymptotically with the length not more
rapidly than the difference of the values of the error
integral & of the arguments [(2y)!/? - (2y — z;)'/% and
[2y)/? = @y +z0)'/2).

NOTATION

T is the temperature, x is the coordinate, t is the
time, y is the dimensionless length, z is the dimen~
sionless time, Kk is the heat transfer coefficient, h is
the volume specific heat, v is the linear gas velocity,
w is the fictitious gas velocity, f is the porosity, k, =
=k/hg(1 — f); k= k/hgf; W =iy = kox/v; 2 = ky(t -

~ x/v); ®(x) = [1/@m)1/? fexp {—t%/2)dt. Subscripts

and superscripts: g standg for gas, s stands for pack-
ing, a is the absolute (temperature), 0 is the initial
(temperature), i'is the time (impulse), during whichthe
gas temperature at the inlet to the bed is different from
the initial value.
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