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A solution is offered for the problem of the nonstationary temperature 
field in a loose packing through which passes a flow of gas with va- 
riable inlet temperature. An approximate method of calculating the 
gas and packing temperatures is proposed. 

The p roce s s  of nons ta t ionary  heat  t r a n s f e r  a s so -  
ciated with the motion of a gas or l iquid through a 
loose packing can be desc r ibed  by a sy s t em of two 
l i nea r  pa r t i a l  d i f ferent ia l  equat ions [1, 2] 

OTg OT_~e .+ v - -  k s (T~ -=- Ts), 
Ot Ox 

OTs = k I (Tg ~ Ts). (1) 
Ot 

In cons t ruc t ing  these equat ions the following a s -  
sumpt ions  were  made: 

1. At any ins tant  the t e m p e r a t u r e  of a pa r t i c l e  may 
be a s sumed  cons tant  over its en t i re  volume,  convec-  
rive heat  t r a n s f e r  between the flow and the packing is 
control l ing;  heat exchange by t he rma l  conduction in the 
axial  d i rec t ion  and by rad ia t ion  is smal l  and may be 
neglected;  and the flow p r e s s u r e  r e m a i n s  cons tant  
dur ing  motion through the packing. 

2. The flow veloci ty is constant ;  the va r i a t ion  of 
the densi ty and the rmophys iea l  c h a r a c t e r i s t i c s  of the 
flow and the packing with var ia t ion  in t e m p e r a t u r e  may 
be neglected.  

The p r o b i e m  of f inding the t e m p e r a t u r e s  of the gas 
and the packing as funct ions of two independent  v a r i -  
ables  (time and coordinate)  has been solved by Anzel ius  
[1] and Schumann [2, 3] for the ease  of heat ing or eooI-  
ing of a bed of loose packing by a c o n s t a n t - t e m p e r a t u r e  
gas flow with the following boundary condit ions:  

r~(0, x )=O;  T~(t, 0 ) = T  O . (2) 

The r e s u l t s  of Schumann ' s  ca lcu la t ions  were  ex-  
tended by F u r n a s  [4]. 

In the more  genera l  ease  cons idered  in this  paper  
the t e m p e r a t u r e  of the gas at the inlet  to the bed is a 
given f u n e t i o n f a ( t ) o f  t ime ,  and the p rob lem of f inding 
the t e m p e r a t u r e  field r educes  to solving sys t em (1) 
with the boundary  condit ions 

T~ (t, o) = p (t); 

T~(0, x ) = T a ( 0 ,  x) =T0;  p ( 0 ) = T 0 .  (3) 

P r o b l e m  (1)-(3) can be reduced to the solut ion of 
two equat ions of hyperbol ic  type. The f i r s t  of these  is  
written in the form 

aW 
~ - - - V = 0  (4) 
oyoz 

with ini t ia l  data on the c h a r a c t e r i s t i c s  

v ( o ,  v) = o, 

0 

The second equation has the analogous fo rm 

O~U 
- - - - U =  0 (6) 
OyOz 

with initial data on the characteristics 

U(0, Y) = 0, 

U(z, O)=expz . [ (~)+ ; exp~f (-~) d ~. (7) 

o 

The funct ions U(y, z) and V(y, z) are  re la ted  with 
the r e l a t ive  t e m p e r a t u r e s  Tg and T s as follows: 

Tg = 0.5(U + V) e x p ( - - g - -  z), 

T,=O.5(U--V) exp (--g--z). (8) 

The re la t ive  t e m p e r a t u r e s  Tg and T s a re  expressed  
in t e r m s  of the absolu te  t e m p e r a t u r e s  of the gas and 

a and a in accordance  with the f o r -  the packing Tg T s 
mu las  

Tg = (T~-- Te)/T o, Ts =(T~-- To)/T o. (9) 

Solving Eqs. (4), (6) together with conditions (5), 
(7) by the method of adjoint differential operators and 
going over in accordance with formulas (8) to the un- 
known functions, we obtain in explicit form the final 
solution of problem (1)-(3), which is a generalization 
of the Schumann problem (f(t) = const): 

; ( ~ )  J~ T s = exp (--  y - -  z) exp ~. f ~ -  

0 

T~=exp(--y)f ~ --exp(--y--z) expg.[ • 

0 

X og~ d~. (10) 
0~ 

Equat ions  (10) were  used to ca lcula te  the nons t a -  
t ionary  t e m p e r a t u r e  field for a s tep boundary  function 
equal to T}0 = const  on the i n t e rva l  0 < t _< t i and to 
T O = const  everywhere  outside it. In this  case as in 
the r e l a t ive  t e m p e r a t u r e s  of the gas and the packing it 
is convenient  to take the following ra t ios :  

when T~0 < To (cooling) Tg = To --T~ Ts T O --T~ 
To --7~0' To --r~0' 
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when T~o>To (heating) T e =  ~g- -T~ , T,=-- Tsa-T~ . 
7~0-- To ~ 0  - -  To 

Then boundary condit ions (3) for sys t em (1) a re  
written as 

T~(0, x) =T~(0, x)=O, Te(O, 0 ) = 0 ;  

T~(t, 0 ) = 1  at 0 < t ~ . ~ t i ;  

Tg(t, 0 ) = 0  at t > t  i. (11) 

In t roducing the notation cp(x, y) = exp ( -x  - y ) .  
�9 J0[2i(xy)l/2], we can t r a n s f o r m  the solut ion of p rob -  
lem (1), (11) as follows: 

atz<_ z. 
i 

Ts(y, z) = ; ~(x, y)dx, (12) 
0 

Tg(y, z)=T,(y, z ) + ~ ( g ,  z); (13) 

at z > z i 
z 

T,(V, z)= j ~(x, g)dx, (14) 
z - - z  i 

Tg(y, z)=Ts(y, z)+(p(y, z)--T(y , z--zi). (15) 

Equat ions (14), (15) were  used to ca lcula te  the t e m -  
pe ra tu r e  field for a wide range  of values  of y and z at 
z > z i. The ca lcu la t ions  were  made on an e lec t ron ic  
computer ;  the p r o g r a m  consis ted  in solving in tegra l  
(14) by Simpson'  s method with forced choice of i n t e g r a -  
t ion step depending on the r equ i r ed  accuracy  (four 
co r r ec t  p laces  a f te r  the dec imal  point), The z e r o -  
o rder  Besse l  function of the f i r s t  kind was rep laced  
with its asymptot ic  approximat ion  in accordance  with 
a fo rmula  giving seven co r r ec t  p laces  af ter  the dec i -  
mal  point at xy > 100 [5]: 

S'~i'"---" exp(2~/xy) / 0.125 ,L 0.07 ] .  olz Vxy)= _ ~ - . ~  1+ (16) 
V 4~ ]/xg ~ 2 V ~  4xy J 

The maximum e r r o r  due to r ep lac ing  the Besse l  
function with the approximate  fo rmula  does not exceed 
0.00005 over  the en t i r e  range  of computed values .  

The r e su l t s  of the computat ions  in d i m e n s i o n l e s s  
fo rm were  tabulated for  the sec t ions  Tg(z,  Y0)and T s (z, 

Y0) at Y0 f rom 30 to 2000 for values  in the range  z i = 
= (0.05-0.40)"Y0, and also for the sec t ions  Tg(z0, y ) 
and Ts(z0,y ) at z 0 f rom 100 to 2000 for values  in the 
range  z i = 50-400.  The function Tg(x, Y0)--the t e m p e r a -  
tu re  of the gas at the outlet f rom a bed of length Y0 as 
a function of time--which is often used in applications, 

is presented in graphic form in the figure. The outlet 

temperature curves were constructed for values of 

the parameter zi/y from 0.05 to 0.40. 
It follows from (13) that for heating or cooling of 

the packing with a flow of constant-temperature gas 
the difference between the temperatures of the gas and 

the packing is calculated in the explicit form 

A T = Tz -- T s = qo (V, z). (17) 

For the case of a pulsed stepwise variation of gas 
temperature at the inlet the temperature difference 
AT is found from Eq. (15) as follows: 

AT=(p(V, z)--(~(y, z--z~). (18) 

Using the asymptotic approximation of the Bessel 

function (Eq. (16)), for not too small values of the 
length of the bed (Y0 > i0) we obtain an approximate 
formula for the maximum value of the function 

%nax (go, z) ~ 1/V-~-~ g0. (19) 

Below we give maximum values of the temperature 
difference between the gas and the packing for heating 
or cooling of the packing with a constant-temperature 
flow: 

Y0 100 400 800 1 2 0 0  1 6 0 0  2000 

ATma x 0.028 0.014 0.010 0.008 0.007 0.006 

In the case of a stepwise variation of the gas tem- 
perature at the inlet (intermittent heating or cooling) 

the temperature difference varies in time according 
to a more complex law, but since the function gP(y, z) 
is positive, the absolute value of the temperature dif- 
ference given by Eq. (18) does not exceed the maxi- 

mum value of the analogous difference in the case of 

simple heating (Eq. (17)). 
For sections of the packing corresponding to a re- 

duced length Y0 > i00 (the inlet region is not considered), 
the modulus of the temperature difference for cases of 
continuous and intermittent heating or cooling does 

not exceed 0.03, i.e., 3% of the maximum gas tem- 

perature drop at the inlet. For this reason in approx- 
imate methods of calculating the temperature field 

used in the design of processes and equipment it is 
not possible to distinguish between the temperature of 

the gas and that of the packing, and to introduce the 

similar temperature T. 
It can be shown that at values  of y _< z the in tegra l  

(12) can be approximated  by 

81 ~ (v ( V ~ ) -  r ( V ~ -  V~),  (20) 

and the in tegra l  (14) by 

I2 ~ .  ( V ~ - V ~ ) )  + r  (21) 

E s t i m a t e s  (20) and (21) a re  very  c lose  and the r ight  
side of the inequa l i t i e s  can be used as fo rmulas  for de-  
t e r m i n i n g  the t e m p e r a t u r e  T, 

Moreover ,  d i r ec t  ca lcu la t ions  have es tab l i shed  that 
the t e m p e r a t u r e  T thus obtained is the a r i t hme t i c  mean  
of the t e m p e r a t u r e s  of the gas and the packing, this  
r e s u l t  be ing valid not only at y _<_ z but at any values  
of y, z, and z i. The devia t ions  f rom this  law do not 
exceed the e r r o r  of the ca lcu la t ions ,  namely ,  0.0002. 

Thus, for the case of heating or cooling of the 

packing with a constant-temperature gas flow we have 

T = 0.5 (Tg + Ts) = (I) (V2yy) - -  m (V-~ - -  V ~ ) ,  (22) 

and for  the case  of i n t e r m i t t e n t  pulsed hea t ing  or cool-  
ing of the packing 

T --- 0.5 (Tg + Y,) = 

=r ( V ~ -  V 2 ~ )  + r ( V ~ -  V~). (23) 

In eng inee r ing  ca lcu la t ions ,  cons t ruc t ing  the outlet  
t e m p e r a t u r e  cu rves  and the t e m p e r a t u r e  d i s t r ibu t ion  
pa t t e rn ,  it is u sua l  to use  not more  than twenty points ,  
for example ,  va lues  of the r e l a t ive  t e m p e r a t u r e  at 
i n t e rva l s  of 0.05. 
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At values of y > i0 the function ~(2y) I/2 -~ 0.5 and, 
on the basis of Eq. (22), the outlet temperature curve 
T(z,y0) can be calculated for simple heating or cool- 
ing of a packing of length Y0 by means of the very sim- 
ple formula 

at T 4 0 . 5  z = 0 . 5 ( ] / T y  o - a )  2, 

at T > 0 . 5  z----0.5(]/~yy0+a) 2, (24) 

where  the coeff ic ient  a is de t e rmined  f rom the follow- 
ing data: 

exact ly with z; this  is a lso apparen t  f rom the graphs .  
Consequent ly,  the d i m e n s i o n l e s s  veloci ty of the heat  
t r a n s f e r  f ront  in the sect ion with t e m p e r a t u r e  T = 0.5~ 
de t e rmined  as the ra t io  of the reduced length of the 
path t r a v e r s e d  to the reduced t ime,  is equal  to uni ty .  
In d i me ns i ona l  quant i t ies  we have 

h~ 
v T = w. (29) h~(l --f)  

F r o m  (25) and (26) it follows that  the veloci ty of 
propagat ion of the t e m p e r a t u r e  waves through the pack-  

T 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

T 0.99 0.95 0.90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 

a 2.33 1.645 1.28 1.04 0.84 0.675 0.525 0.385 0.253 0.126 0.0 

The temperature distribution along the packing at 

an arbitrary instant of time z 0 is calculated from the 

equations 

at T < 0 . 5  y=o.5(V~o+a)< 
at T > 0.5 g ~- 0.5 ( ] /~0 - -  a ) E  (25) 

Fo r  a s tepwise  change in the gas t e m p e r a t u r e  at 
the inle t  dur ing  t ime z i the d i s t r ibu t ion  curve  for the 
t e m p e r a t u r e  T over  the length of the packing at t ime  
z 0 l ies  between the cu rves  cons t ruc ted  f rom Eqs. (25) 
and (26): 

at T-< 0.5 g = 0.5 (V'2(z,~ - -z i )  - -  a) 2, 

at T > 0 . 5  y=O.5(V~(Zo--Zi)+a)< (26) 

The m a x i m u m  t e m p e r a t u r e  at the ins tant  z 0 is 
reached in the sect ion y ~- z 0 - 0.5z i and is equal to 

T~a x (zo,g) ---r ( V ~  - -  

(27) 

The m a x i m u m  value of the t e m p e r a t u r e  T at the 
outlet  f rom a packing of reduced length Y0 is reached  
at the ins tant  z ~- Y0 + 0.5zi and is equal to 

Tma x (z, Y0) ~ H ( ] /~0  --  

V2-V-o (2s) 

Having the approx imate  fo rmulas  (22) and (23) for  
d e t e r m i n i n g  the a r i t hme t i c  mean  of the t e m p e r a t u r e  
of the gas and the packing with an e r r o r  not g r e a t e r  
than 0.0002 and the exact  fo rmulas  (17) and (18) for 
d e t e r m i n i n g  the d i f ference  of these  t e m p e r a t u r e s ,  
we can eas i ly  ca lcula te  the values  of the t e m p e r a t u r e s  
Tg and T s t hemse lves ,  The function r can be found 
f rom tables  [5] or by means  of approximate  fo rmula  
(16). 

I t  is c lear  f rom (22) that the value of the tempera-  
ture T = 0.5 is reached at a value of y that coincides 

ing is directly proportional to the linear gas flow vel- 

ocity and the ratio of the volume specific heats of gas 

and packing. As follows from (28), the amplitude of 

the temperature waves propagating through the packing 
decreases asymptotically with the length not more 
rapidly than the difference of the values of the error 
integral �9 of the arguments [(2y) J2 - (2y - zi) I/2] and 

[(2y) I/2 - (2y + zi)I/2]. 

NOTATION 

T is the t e m p e r a t u r e ,  x is  the coordinate ,  t is the 
t ime,  y is the d i m e n s i o n l e s s  length,  z is the d i m e n -  
s ion le s s  t ime,  k is the heat  t r a n s f e r  coefficient ,  h is 
the volume specif ic  heat,  v is the l i nea r  gas velocity,  
w is the f ic t i t ious  gas velocity,  f is the poros i ty ,  k 1 = 
= k/hs(1 - f);  k 2 = k /hgf ;  w = vf; y = k2x/v; z = kl(t - 

- x/v);  ~(x) = [1/(2~) I/2] ~ exp ( - t2 /2 )d t .  Subscr ip ts  
0 

and s u p e r s c r i p t s :  g s tands  for gas, s s tands  for pack-  
ing, a is  the absolute  ( tempera ture) ,  0 is the in i t ia l  
( t empera tu re ) ,  f is  the t ime  ( impulse) ,  du r ing  which the 
gas t e m p e r a t u r e  at the inlet  to the bed is d i f fe rent  f rom 
the in i t ia l  value.  
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