
8300 2003 Day 12, Tangent Spaces and Derivations 
 Just as a polynomial has a best linear approximation at each point, by its 
differential, so does an affine variety have a best linear approximation, by its 
tangent space.  Naturally, the tangent space TpX to a variety X at p, is defined 
by the best linear approximations at p of the polynomials defining X.  There are 
several other useful descriptions of the tangent space.  We will give 6 of them, 
beginning with a very simple intuitive geometric one, the union of all lines 
"touching" X at p. 
 Let X be a closed affine variety in Am, and assume 0 is a point of X.  Then 
any line through 0 must meet X at 0.  I.e. if v ≠ 0 is a non zero direction vector 
in Am, and g(t) = tv is a parametrization of the line L through 0 with direction 
v, and if f is any polynomial in the ideal I(X), then the "restriction" fog of f to L 
vanishes at t= 0.  We say the line L touches X at 0, or is tangent to X at 0, if 
this line meets X "twice" at 0 in the following sense. 
 
Definition: The line L = {g(t) = tv}, is tangent to X at 0 iff for all f in I(X), the 
composition fog vanishes at least twice at t=0, i.e. if and only if t2 divides the 
polynomial (fog)(t). 
 
 If the point p on X is not 0, we apply the same condition to a 
parametrization of form L: {g(t) = p+tv}.  Thus among all lines passing through 
p, we distinguish as tangent lines those that intersect X at p with multiplicity ≥ 
2.  In particular this includes all lines through p that are actually contained in X. 
 
Preliminary Definition:  If X is an affine subvariety of Am, not necessarily 
irreducible, and p a point of X, the (embedded affine) tangent space TpX to X at 
p, is the union of all lines through p in Am which are tangent to X at p.  
 
 Next we want to show the tangent space TpX is itself an affine algebraic 
subvariety of Am by giving equations for it.   
Definition:  If f is a polynomial in k[T1,...,Tm], we define the differential dfp of 
f at a point p = (p1,...,pm) of Am to be the linear polynomial dfp = ∑i=1,...,m 
(∂f/∂Ti)(p)(Ti-pi) = ∑i=1,...,m Dif(p)(Ti-pi), (homogeneous in Ti-pi, but not in Ti) 
where the partial derivative of the polynomial f is defined by the usual "power" 
rule. 
 
Remark:  dp is a linear map from k[T1,...,Tn] to itself, such that the 
fundamental rules of derivatives hold.  I.e. dp is a “derivation”. 



(0) dp(c) = 0, if c is in k. 
(i) dp(f+g) = dpf + dpg. 
(ii) dp(fg) = f(p).dpg + g(p).dpf. 
 
Note: ∑i=1,...,m Dif(p)(Ti-pi) is a polynomial in two sets of variables (p,T), and 
which is linear in T but not necessarily in p. 
 
Lemma: If X is an affine subvariety of Am, and p a point of X, the tangent 
space TpX is the common zero locus of the linear polynomials ∑i=1,...,m 
Dif(p)(Ti-pi) = dpf, for all f in I(X). 
proof:  For simplicity of notation we take p = 0.  Then expand each polynomial 
f in I(X) as usual f = f1 + f2 + ...+fd, where fj is the homogeneous term of f of 
degree j.  Then for any parametrized line g(t) = tv, the restriction (fog)(t) = 
(f1og)(t) + (f2og)(t) + ...+ (fdog)(t) is also decomposed into homogeneous 
terms, since (fjog)(t) = fj(tv) is a monomial of degree j in t.  Note that f1 = d0f, 
i.e. when p = 0, then dpf = f1, the homogeneous linear prt of f.  Thus t2 divides 
the terms (f2og)(t) + ...+ (fdog)(t), and hence t2 divides fog iff (f1og)(t) is 
identically zero, iff d0f is identically zero on the line L = {g(t) = tv}.   
 It follows that T0X is the union of all lines through 0 in the common zero 
locus of the differentials d0f for all f in I(X).  Since these polynomials are all 
linear, this common zero locus is a linear space, so it equals the union of the 
lines in it through 0.  Hence T0X is the common zero locus of the linear 
polynomials d0f for all f in I(X).  QED. 
 
Exercise:  Show it suffices in defining TpX to use only the differentials of a set 
of generators {få} for the ideal I(X). 
 
Remark:  It is important here that we use the full ideal I(X) of polynomials 
vanishing on X.  I.e. although to define TpX it is sufficient to take a set of 
generators f for I(X), it is not sufficient to use a non radical ideal with the same 
zero locus as I(X). 
 
Example:  (i)  Consider the parabola X : {y-x2 = 0} in !2.  Then T0X is defined 
by y = 0, so T0X is the x - axis as expected. 
(ii)  If we use the polynomial (y-x2)2 = 0, which defines the same point set as 
the one above, but which is not square - free, the linear part of this polynomial 



is zero, so the tangent space would appear to be all of A2.    
 Later when we study schemes, and allow our schemes to be defined by 
non radical ideals, we will say that in this case the tangent space to the scheme 
defined by the ideal ((y-x2)2), at every point, is indeed all of A2. 
(ii i) In the case of the cuspidal curve {y2 = x3}fi!2, note that this time the 
tangent space at 0 in our sense is really all of !2, but not at any other point.  So 
for an affine plane curve defined by an irreducible polynomial f, the tangent 
space at a point p of the curve is one dimensional unless the gradient vector 
(∂f/∂x(p), ∂f/∂y(p)) = dpf at that point is zero. 
(iv) If X is a hypersurface in Am, hence defined by a square free polynomial f, 
then at p on X, TpX is defined by dpf = 0.  Thus the tangent space is either m 
dimensional if dpf is identically zero, or m-1 dimensional otherwise.  We claim 
the second case is more common. 
 
Lemma: If {f=0} is an irreducible equation for a hypersurface X in Am then the 
tangent space TpX, has dimension m-1 = dim(X) at least for a dense Zariski 
open subset of points p in X. 
proof:  The linear function defining the tangent space of X at p has coefficients 
given by the value at p of the partial derivatives of f.  So we must show that at 
some point p of X, some partial derivative Dif(p) of f does not vanish.  In 
characteristic zero, if the degree of f is d ≥ 1, then the degree of each partial 
derivative is d-1 ≥ 0.  Since I(X) = (f), the only polynomials that vanish 
identically on X are multiples of f, hence a partial derivative, being non zero and 
of lower degree than f, cannot be a multiple of f, hence cannot vanish identically 
on X.  In characteristic p > 0, if all partials are multiples of f, since this time they 
either have degree d-1 or are zero, they must all be identically zero.  Hence as 
argued before using the characteristric p binomial theorem, since k is 
algebraically closed, f would be a pth power, hence not irreducible, a 
contradiction. QED. 
 
Corollary:  If f is an irreducible polynomial in k[X,Y] and C:{f=0} is the 
corresponding irreducible plane curve, there are only a finite number of 
"singular" points of C, i.e. points at which the gradient  
(∂f/∂x, ∂f/∂y) is zero.  At all non singular points of C the tangent space of C is 
one dimensional, while at each singular point it is two dimensional. 

Exercise:(i) If C: {y2 = x3+x2}in A2 show (0,0) is the only singular point of C.  
I.e. the tangent space there is 2 dimensional, and at every other point it is one 



dimensional. 
(i i) If If S: {x3+y3+z3+w3 = 0} in P3, is the Fermat cubic surface and char(k) ≠ 
3, then S has no singular points.  E.g. in the open set w ≠ 0, the affine equation 
is {x3+y3+z3+1=0}, so the gradient (3x2,3y2,3z2) is zero only at (0,0,0) 
which is not a point of S. 
 
 We now have two equivalent definitions of the tangent space TpX, but 
there are several other definitions, each having some utility, so we give six of 
them next.  (Mumford gives two others, in terms of Kahler differentials, and 
“dual numbers”, and one can also describe the tangent space in terms of the 
maximal ideal of the completion of the local ring.)  Certainly we want Zariski's 
intrinsic definition 4), in terms of just the maximal ideal of the local ring of X at 
p.  We also want to emphasize how the equivalence of the embedded and the 
intrinsic definitions depends on the existence of a “universal derivation”. 
 
Theorem:  If X in An is a closed affine variety and p a point of X, the following 
definitions all define naturally isomorphic k - linear vector spaces, the “tangent 
space” to X at p. 
1) Tp(X) = the union of those lines in An which are tangent to X at p, i.e. which 
intersect X at p with multiplicity ≥ 2.  (The linear structure of the vector space 
TpX makes p the origin.) 
2) Tp(X) = {q: dpƒ(q) = 0, all ƒ in I(X)} = {q in An such that for all ƒ in I(X), 
∑i=1,...,n Diƒ(p)(qi-pi) = 0} , the common zero locus of the linear terms dpƒ, of 
the Taylor expansions at p of the elements ƒ of the ideal I(X) of X in An.  [Note 
that we take the linear terms of all elements in the full radical ideal I(X).] 
3) Tp(X) = Homk(M/M2, k) = (M/M2)*, where M is the maximal ideal in k[X] of 
the point p.  (This is intrinsic, in terms of the affine variety X, so isomorphic 
affine varieties have isomorphic tangent spaces at corresponding points.) 
4) Tp(X) = Homk(m/m2, k) = (m/m2)*, where m is the maximal ideal in Op,X of 
the point p.  (This definition is intrinsic and local on X, so the tangent space at p 
is determined by any neighborhood of p in X.) 
5) Tp(X) = Derp(k[X], k) =  all k linear mappings D: k[X] -->k, which satisfy the 
Leibniz rule at p, i.e. such that D(fg) = f(p)D(g) + g(p)D(f), for all f,g in k[X].  
(Intrinsic to X.) 
6) Tp(X)  = Derp(Op,X, k).  (Intrinsic and local on X.) 


