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Abstract

Solutions to problems 12 and 13 in chapter 16 of volume 3 of PDE
textbook by Michael Taylor.
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1 Problem 12

Definition 1. We define Schwartz class as S(R") := {p € C*® : gn(p) <
oo, for N =0,1,2,...}, where gn(¢) := Supgern joj<n (1 + |z|2)N| D% ().

‘We have:

d/dt(ue, ue) = 2(Opue, ue) = Q(JGLJGUG,m) + 2<J€g(J€u€)7u€> (1)

Since J, is self-adjoint, we get: 2 (JGLJEUG,UE> = 2<LJ€uE, J€u€>.

Now, we shall use [, eq. (1.11), page 415] , plug o = 0 into [I, eq. (1.11),
page 415] to get:

2<LJEUE, J) < C||Jeue 22 (2)



Now, we shall use Young’s inequality for convolution on the RHS of (B), i.e:
[ Jeuellr2 = llje * el L2 < lljellprllucllrz < Cllucl|r2 (3)

Now we shall estimate the second term in (II), we are using lemmas 1.6 and
1..5 from the previous file:

Q(Q(Jeue)w]eue) < C”g(JGuE)HL2HJEuEHL2

from Cauclgl— Schwartz

< CllJeuellrz  sup  |g" ()|l Jeue| 2

[ol<cllull gk
5 (4)
< C||Jeue||L2
since |¢'| < C
< Cluellz

we use eq. (B)

Combine (8), (B) and (B), to get: d/dt|ucl|2, < Clluc|/2..
For d/dt||Vuc|3, < C|Vue||3, We have:

d/dt(Vue, Vue) = 2(Vatu€, Vue) =2 (VJeLJeue, Vu€> +2 (VJeg(Jeue), Vu€>
(5)

Notice that:

2 (VJeg(JeuE), Vue) = 2 <J€Vg(JEue), Vue)

Je commutes with V

Je is sel_f-adjoint

2<Vg(,]€u6), J6Vu€>

=2 (g'(Jeug)JEVue, JEVUE>

< CHJEVUEHLZ||g/(Jeu6)JEVU6HL2

Cauchy-Schwartz inequality
< CHJEVUEH%? Sgp g’ (v)]
< C||Vue||%2
we used |¢/| < C , and (@)
(6)
Ineq. (B), the first term becomes: 2 <V(J€LJEUE), Vu6> =2 (V(LJeue), JGVUG> =

2 (LJEVue, JeVu€> +2 ([V, L]Jcue, JEVuE> .



The first term is bounded by C||Vu||3,, as can be inferred by the next ref-
erence (I, eq. (1.11), page 415].

The second term can be seen to be bounded by the same bound, by the next
equation:

(IV, L] Jcte, J-Vue) = Z(VA i (Jeue), JVue)

/ZZZM 4e)i) (O} )0 (Je(ue)r)

ik m

(7)

So we get by Cauchy-Schwartz that this is less or equals to:

C||VJeue||?, where the constant C' depends on bounds on derivatives of
entries of the matrix A; which are smooth functions. Now we know from
the fact that J. commutes with V we have: HVJeuEH%Q = HJeVu€||%2, and
from (B) it follows that this is less than: C||Vucl|3..

From the two inequalities: d/dt|ucl|?, < Clluc||?, and d/dt|Vuc|2, <
C||Vuel|,, now add both inequalities to get: d/dt|uc|3,, < Clluel3:.
Thus, [|ucl|2; < Aexp(Ct) for a positive constant A.

Since [[ucll3; < Aexp(Ct), the bound exists for all time ¢, thus also our
solution u. € H! exists for each time, t.This follows from the ODE contin-
uation theorem, which says that a solution to an ODE exists as long as the
norm of the solution is finite. So we need to show that ||F'(u)||z2 < h(]julz2)
for some continuous function h.

| F(ue)ll 2 = [JeLJeue + Jeg(Jeue)| 12 (8)
S| JeLJeuel 2 + | Jeg(Jeue) || 2

In (8), we know that || Jeg(Jeue) ||z < [l7ell7: supyern |9'(0)l|ull 2 < Cllul| 2.
As for the first term in the RHS after the inequality sign in (B): || JeLJeue|| 2 <
l7ell L1 || LJcuel| 2. Now, we only need to estimate the second factor:

|L ez = H ORIN [ = speute s)as)

.2
ZAk /jxk 1. —3))67"71u(t,3)ds) (9)
L2
N > Akl ey (e ) Ll 2
young’s inequality for convolution &

Note that |5, Mi% =wn [y° %dr < 00, whenever N > n/2 (where
wp, is a constant that depends on n). Then, if N > n/2 and j € S(R"), then



we get:
lmallo < /R an()(1 + [22) N de
= C’qN(j) < o0

Thus, €[l "o, (71 ()|l 2 < C/e.
Now, inserting this into (8), we get: ||LJcuc||pz < > 4 [[AkllzeC/e - |luel| 2.
So by combining everything together we get:

(10)

1F (el <) Awllz=Cle - lluellzz + Clluell 2 = h(llue] z2) (11)
k

Now, we shall show Lipschitz criterion is satisfied. Take two points
t,s € I = [t1,t2] , and estimate:

t
lult, ) — u(s, Yz = | / dyu(t', 2)dt'| 12

= H/ (JeLJeue(t') + Jeg(Jeuc(t')dt'||

< |t — s|sup ||(JeLJeue(t') + Jgg(Jeug(t’))HL2
t'el

= [t = s sup <|\<JeLJeu6(t’>HLz + HJeg(Jeue(t’))HLz>

(12)
The first term inside the sup in ([2), is less or equal C||Vu(t')|12, since
A; is a bounded matrix and J. as well is a bounded operator on L? and
V includes all the spatial derivatives of L; and also from above we know
that:C||Vue||r2 < Coexp(Ct') for positive constants C, Cp, and this is smaller
than Cpexp(Cts). The second term is estimated as follows: from what
we’ve seen above it’s less than C||g(Jeuc)||22, which is again smaller than
Cllue|| 2z sup |¢'] < Cyexp(Ct'), for Cy,C positive constants, which is less
than Cj exp(Cta).

From all of the above we’ll conclude that: ||u(t,-)—u(s, )|z < [t—s|c(]),
where ¢(I) is a constant that depends on the interval, I.

2 Problem 13

Definition 2. The space L>®°(C, B), where C is a subset of R and B is a
Banach space, is defined as the set of all functions f : C' — B which their
supremum norm is finite, || f[| (¢ ) := supzec | f(@)]| B < 005



Lip(C, B) is the space of functions f : C'— B which their Lipschitz’s norm

is ﬁnite, HfHLip(C,B) = Sup%yGC,.T;éy ”f(x‘);_fy(ly)HB < 00.

When s € Z;, M is a manifold and N is another manifold, we define the
space C*(M; N) as the space of functions f : M — N such that f, f/,..., f(®)
are continuous functions; and C°°(M; N) as the space of functions which are
differentiable in all orders inside M.

Theorem 2.1. Let A; be a K x K matrix, smooth in its arguments and
symmetric, A; = Aj. Suppose g is smooth in its arguments, with values
in RX st g(0) = 0, |¢/(u)| < C. Then there exists a unique solution u €
L2 (R,HY(M)) N Lipoe(R, L*(M)),(where M = T™) to the PDE: u; = Lu+

g(u),and initial condition u(0) = f, where f € H'(M), and the operator L
is defined by: L(t,z,u, Dy)u=3_; Aj(t,x)a%ju.

Proof. Suppose ui,us solve the PDE above, i.e uy = Lu + g(u), u(0) =
f. Take w = w; — ug, then w satisfies: w; = Lw + h(w,us), where
h(UJ(.%',t),MQ(.%',t)) = g(w(t,a:) + UQ(t,IB)) - g(u2(t7$>)7 U}(O) =0.

Since w(0) = 0 we must have [|w(0)||2, = 0. Notice that

(h(w(t), uz), w(t)) < lw(@)]] 2 1A (w(t), ua(t)) ] 2

Cauchy-Scthrtz inequality

= t h(w(t), us(t)) — h(0, ua(t
R SN 10 1 (I ORI R ) P2

1
= Ilw(f)llmll/0 w(t) by (rw (t), ua(t))dr|| 2

1
< !w(t)llmllw(t)\lm\/o ha (rw(t), ua (t)dr|| Lo

< w@®l2llw@lize sup  [he(v, ua(z, t))]
veER™ xeM

= lw®)|2llw@®)llzz  sup |g'(v +ua(z,1))]
vER™ xeM

< Cllw@)| 2llw (@)l L2
(13)
Notice the following: 0 (w,w) = 2(wy, w) = 2(3_; A; 0w, w)+2(h(w, u), w).
we get:2(3_; A; %w, w)=-3,/ w*~% -wdz by the following calculation:

0 0
Ai—w,w) = [ w*-A;- 0, wdz = —/w*.-A‘-wda:—/w*-—A-'wda:
( J 8$j ) / J i integration by parts i J 8x]’ J

by the fact that the transpose of a number equals the number, we get that:

wy - Ajw = (- Ajw)* e (w*-Aj-wy;). Now, use the Cauchy-Schwarz
7



inequality: 2(A;0,;w,w) < 237, (|4 )[cr < C(t)||lw(®)||22, where we
used the fact that A;(x,t) is C*°-smooth in its arguments x,¢, the variables
x are defined on T™ which is compact; thus A;(x,t) and its derivatives are
bounded by a function of ¢ only. Gathering everything together we get:

Olw®)7z < CLlt)w(®)]l7

>k 3Kk sk ok >k okosk sk sk skokosk sk sk kokoskoskok

There isn’t any n anymore
ook koK Rk k kK Rk ko

by integration and using Gronwall’s inequality lemma we get that ||w(t) H%Q <
|w(0)]|32 exp (fg Ci(s)ds) =, 0; thus w(t) = 0 and we have unique-

since w(0) =
ness.
Now, for the existence part.

Arzela-Ascoli theorem states the following:

Theorem 2.2. Let F be an equicontinuous family of functions from a sep-
arable space X to a metric space Y. Let {f,} be a sequence in F such that
for each x € X the closure of the set {f,(z) : 0 < n < oo} is compact.
Then there is a subsequence { f,,, } that converges pointwise to a continuous
function f, and the convergence is uniform on each compact subset of X.
[3, page 169]

ue is bounded in L (I, H*(M))N Lip(I, L?>(M)) (this follows from Prob-
lem 12), it has a weak limit point by Alaoglu theorem:

Theorem 2.3. (Alaoglu Theorem) For a real Banach space X, the closed
unit ball: D(X*) = {f € X* : || f|| < 1}, where X* is the dual to X, is
compact in the weak-* topology. [4]

(where X in this theorem is H'(M) which is a Banach space, we are
looking at this space since the function u, : I — H!(M); and the dual to
H'(M) is the space of bounded linear functionals F : H'(M) — R).

stk ok ok sk sk sk sk stk skokofok ok skok

predual??? Where did you get this “definition” from?
Sksk skoskoskosk sk skoskosk sk sk skoskoskosk sk skoskok

skoskosk sk skosk sk sk skosk ok skoskokoskokokokokok

But the dual of L>® is NOT L.

KKk sk sk >k skosk skosk skokok sk sk kokoskoskok



So there exists u € L{° (I, H'(M)) N Lipioe(I, L*(M)) such that ue — v
Furthermore, by Arzela-Ascoli theorem, there’s a subsequence: u., — u in
C(I,L?(M)),where in the theorem of Arzela-Ascoli we pick f,, = u., where
€ = €(n), i.e € depends on n, X = I and Y = HY(M). Since u,, — v
as well, we must have that v = u in L?(M).(The proof of the last claim
is a simple observation that if we take w € L?(M) then < u — v,w >=
Jo(u—ue )w + [3,(te, —v)w, the second integral converges to zero since
ue, — v, and the first integral converges to zero as well since u., — u, we

have | [ (u — e, )w| < supepr [u— ug,| - C - wllz2ar) — 0.)

>k 3Kk sk ok koK sk sk ok kokosk sk ok kokoskosk >k

What is the compact metric space X here, and how are the functions f,

from X to R defined in terms of u.?
Skoskoskosk sk skosk sk sk skeoskoskoskoskoskok skok sk

>k koK sk ok >k okosk sk sk kokosk sk sk kokoskoskok

1. The theorem is stated in a form that does not apply to the region used in
the problem, namely a rectangular region with periodic boundary conditions
since ignoring the boundary conditions, which the theorem does not make
use of, the region does not have a C! boundary.

2. The theorem as stated does not apply in the case n = 2 since the

value of p used is 2 but the statement says that p must be less than n.
Skoskoskosk sk skosk sk sk sk skoskoskoskoskok skok sk

>k 3Kk sk ok >k ok sk sk ok kok sk sk sk kokosk sk ok

Put definitions in separate sentences.
okt ko kSRR Rk Rk K Kk

Definition 3. A sequence of functions f,, in L? is said to converge weakly
to a function f in L? provided: lim,_. [ fng = [ fg Vg € L?

While 0,u., — 0yu weakly, since

>k 3kok ok ok >k ok ok sk ok kokosk sk ok kokosk sk ok

Why is that “clear”? It seems that in the following you are trying to prove

it, which indicates that it is NOT clear at this point.
KooKk ok koK R koskok R skokok kskok ko ksk



in our case here the sequence u. € H' so both u., Vue € L?, the claim
that justifies that dpu,, — Owu weakly is since u., € L®(I,H'(M)) N
Lip(I, L*(M)), we have Ozu,, is bounded in L>(I, L?(M))NLip(I, L*(M)), (0 ue,
is bounded since the weak derivative of a Lipschitz continuous function
(which is wu,) is bounded, the bound on the weak derivative is the Lips-
chitz constant).(This last fact follows from Theorem 4 in [B, pages 294-295]
which we will adapt here for our case).

Theorem 2.4. (Characterization of W) Assume U is bounded and U
is Lipschitz. Assume that f: U — R, then:

f is loacally Lipschitz continuous in U

if and only if:
€ Wi (U)

loc

Proof. First suppose that f is locally Lipschitz continuous. Fixi € {1,...,n},
then for each V. CcC W ccC U, pick 0 < h < dist(V,0W), and define
gt (z) == w (z € V). Now, sup, |92 < Lip(f|lw) < oo. Then
according to weak compactness in LP where 1 < p < oo we have: a sequence
h; — 0 and a function g; € L7 (U) such that:

gh] — g; weakly in LV (U)

for all 1 < p < co. But if ¢ € C1(V), we have:

/ flay AT 0 g / o (2)6( + hey)da,
U

We set h; = h and let j — oo to get:

/U Fbuda = — /U gitvd

Hence g; is the weak partial derivative of f with respect to z; fori =1,...n
and thus f € W'ZIO’COO(U).

Conversely, suppose f € W/llo’coo(U). Let B CcC U be any closed ball
contained in U. Then by properties of mollifiers we know that:

sup ||Df¢|| Lo (p) < 00
0<e <eg

for ¢g > 0 sufficiently small where f6 = 776 x f is the usual mollification.
Since f¢ € C* we have f¢(x) — f(y fo Df¢(y+t(x —y))dt- (x —y) for



z,y € B; whence, |f¢(x) — f(y)| < C|z—y|. The constant C' is independent
of e now as € — 0 we get that | f(z)— f(y)| < C|z—y|. Hence f|p is Lipschitz
continuous for each ball B CC U, and so f is locally Lipschiz continuous in
U.

O

skoskoskoskoskoskoskoskoskoskoskoskoskoskoskoskoskoskokok

And if it is not differentiable?
Skskskoskosk sk skosk skosk sk skoskoskok sk sk skoskok

>k kosk sk sk >k okosk sk sk skokosk sk sk skokoskoskok

You need to rewrite the above jumble of phrases into a sequence of sentences,
each of which expresses one and only one idea. In fact, you need to rewrite

the entire paper.
ok ko Rk Rk kK Rk Kk

so by Alaoglu theorem Oyue, — w weakly in L°°(I, L*(M))NLip(I, L*(M))
for some w

> Kook ok ok ok sk ok sk ok skokok ok sk kokok sk k

The full sequence? or some subsequence? Maybe different subsequences
converge weakly to different limits? What happens then?
R T L i

and then by uniqueness of the limit dyu., — w in L°°(I, L?(M)) (there is
uniqueness since L>°(I, L?(M) is a Hausdorff space)

KKk sk sk >k ok ok sk sk skokok skosk kokoskoskok

Uniqueness of what limit? Why is it unique?

ookt ok KRRk kK kKK

we get: w = Oyu, since u., — u in C(I,L?(M)) ). For the last assertion
we need to state the Dominated Convergence Theorem and prove another
claim which will prove our assertion that w = Jyu.

Theorem 2.5. (Dominated Convergence Theorem) Let {f,,} be a sequence
of real-valued measurable functions on a measure space (S, %, ). Suppose
the sequence converges pointwise to a function f and is dominated by some
integrable function ¢ in the sense |f,(z)| < g(z) for all n and for all z € S,
then f is integrable and lim,, o fS fo(z)dz = [ f(z)dz. [5, page 26]



Theorem 2.6. If {u, ()} C L?>(M) where M is a compact manifold, and
assume that the sequence converges uniformly in C(I, L?(M)) to u where
I C R is compact, assume also that dyu,, (t) — w, then w = dyu.

Proof. We shall prove the claim (E8). Take some v € L?(M), write down:

< w—0ou(t),v >= /

(w(x)—0rue, (t))v(a:)dw—i—/ (O, (t)—0pu(t))v(z)dx.
M

M

(14)
The first integral above in the RHS of ([d) tends to zero as k — oo since
Oiue, — w; as for the second integral we shall use the Dominated Con-
vergence Theorem. Since wu, (t) — u(t) in C(I,L?(M)) we must have:
Jas Ot (e, (t)—u(t))vdx = 9y [, (ue, (t)—u(t))vda; now since ue, (t) is bounded
above by a constant that depends on ¢, this constant function is an integrable
function since our domain of integration is a compact manifold, namely M,
we get by the Dominated Convergence theorem that [, ue, vdzx — [, uvdz
as k — oo, where we have taken the measure to be vdx. In this case we get
by the next chain of equalities that the second integral in (I4) tends to zero
as well:

lim Or(ue, (t) — u(t))vdx = lim O, /M(uek (t) — u(t))vdx

k—oo J 1 k—o0

=0; lim (te, (t) — u(t))vdx

k—oo Jr

=0,0=0

This ends the proof of the claim, since we get that < w — dyu,v >=0 Vv €
L2(M), thus w = dyu. O

>k 3Kk sk ok >k okosk sk ok kokosk sk ok kokosk sk >k

Even if the limit is unique, why must it equal 0;u and not something else?
okt ko Rk kK ok K ok

sokokskkofok koo ook ko okok ok ok

You claim above that various subsequences converge in various senses. Does
there have to be a single subsequence that converges in all the above senses?

If so, why? If not, which convergence will you use?
Kook sk skosk sk skoskosk sk skokok skoskokokosksk

10



Jey U, converges in L? norm to u, since we have: ||Je,u — ul[;2 — 0 and
also ||ue, — ul|[f2 — 0, by the triangle inequality we must have: ||.J, uek -
ullze < ety — Jatulliz + eyt — i < el llue, — ulze + 1
ullpz — O (since ||je, ||z is bounded, and from the above we know that:
||tte,, — u||z2 — 0). To show this we need to show that ||Je, u —ul| 2 — 0 is
fulfilled, for this we have the next claim to prove.

Theorem 2.7. Let ¢ > 0 with [, o(y)dy = 1, ¢c(x) = 1/e"p(x/€). Sup-
pose f € LP(R™), 1 < p < co. Then:

lim I e = fllz =0

Proof. |fxwe— f| = fR” (f(z—y) — f(z))pe(y)dy|. By Minkowski integral
inequality, which says the following:
Suppose (S1, p1), (S2, pe) are two measure spaces, and F': S x Sy — R is

measurable, then: [ [y, | [, F(z.y)dpur ()" dua()] " < [y, (fy, |F @ p)lPdpa(y)) dpus ()

>k 3Kk ok ok koK ok sk ok >kokosk sk ok kokosk sk >k

You should state theorems in a separate sentence.
ok koK Rk kR ok Kok

I =Tl <1 [ 1@ =)= F@)lgclo)dyles
< [ 156 =9 - £@) o)y
RTL

Seti 1= [ 15 1 = 4) — F@)|ian pelw)dy, and 1T = [ £
Y)—f ()| Lr (da)Pe(y)dy. The translation operator y — f(x—y) is continuous

from R™ to LP(R™) for 1 < p < co. So given n > 0 there exists 6 > 0 s.t:

1f(z —y) = f@)|lLo(gey < VY| <6

Thus with such a 4, I < nfy <5 Pe(y)dy < N Jan @e(y)dy = 1. From

the fact that: | f(z —y) — f(2)lzr(az)y < 2I|fllze, it follows that: I <

20 fllee fiyss Pe@)dy = 20 flre g fiy55 2@/ €)dy = 20| fllzv fl,s/c dy)dy —
0 as e — 0. Thus, ||f * @ — f|lzr — 0. O

Thus, we apply the theorem on p = 2 we must have ||J,, u — ul/;2 — 0,
and from the above argumentation indeed |[J, ue, — ullrz — 0. Since
the derivative of g, is bounded by C, we have a Lipschitz constant C ,s.t
9(Jeyue,) — g(u)] < Cllgug, — ul, we get that:||g(Je,ue,) — g(u)llrz <

11



C||Jeptie, — ullzz — 0; thus we have: g(Je ue,) — g(u) in C(R,L?*(M))
norm.And also we have:

[erg(Jeyuer) = g2 < ([ 9(Jeyue,) = Jag(w)llzz + [ Je.g(w) = g(w)] L2
<ljellzrllg(Je,ua) = 9wl L2 + [Jepg(u) = g(u)llzz — 0

Where in the above last chain of inequalities the first term converges to zero
as we have seen above it since ||jc,||1 < oo and [|g(Je, e, ) — g(uw)| 2 — 0
as shown above, and ||J, g(u) — g(u)|| 2 — 0 follows from theorem (7).

Skoskosk sk skoskoskoskoskoskoskoskoskoskoskokoskoskoskok

Instead of saying: A is true because it is implied by B, which is true since it
is implied by C, etc, start with what you know and say C is true and there-
fore B is true, and since B is true then also A is true. Be sure to explain the

justifications in full detail.
okt koK kR Rk Rk ok ok

Definition 4. A continuous operator, T : A — A, at a point xg; where A is
a Banach space, is an operator that is continuous in some topology. There is
the strong continuity by the norm of A, i.e limg_4, || T(x)—T(z0)||4a = 0, and
there’s also weak-topology continuity, by the inner product, i.e: < T(x) —
T(zg),v >4— 0 Vv € A as © — xg.

> Kook ok ok ok k ok sk ok skokok sk sk kokok sk ok

— as what happens?
okt sk kR Rk ko kR ok K ok

L is a weak-topology continuous operator from the space H'(M) —
L*(M)

>k kook sk sk >k okosk sk sk skokok skosk kokoskoskk

No, it doesn’t even map H' to H'. Since it includes derivative operators L

only maps H' to L?.
Skoskosk sk skoskosk skoskosk sk skokok skoskokok sk

by the fact that L = 3. A;(¢,2)0;, we want to show weak convergence
of L operator, where u — ug . Take v € L? then: | < L(u) — L(ug),v > | =
| [ 30 A405(u —uo)v| < Ca(t) 32| < 95(u —up),v > | — 0 as u — wg in
H'(M). Where we used the fact that 4;(z, ) is smooth in its arguments in a

12



compact manifold T" and thus A; is bounded by a constant that depends on
t (just as in the uniqueness part of this problem); so by the weak convergence
of u — ug in HY(M) we have: | < 9;(u —ug),v > | — 0.

>3k sk sk >k ok ok skosk skokoskoskosk kokoskoskok

1. But the above definition said that the inner product has to converge for
ALL v in the space, not just for carefully selected v. 2. The above calcu-
lation uses the L? inner product, so if you correct that calculation it will
show that L is weakly continuous from what space X to what space Y7 Is

it strongly continuous as an operator from X to Y7
okt kSRR kK Rk K

Then by the weak continuity of L J, LJ., u,, — Lu weakly (since
LJe ue, — Lu = v weakly, and if we denote by: v, = LJ¢ ue, we also
have J¢, v, — Lu = v from what was proven above),

>k 3kosk sk ok >k ok sk sk ok >kokosk sk ok kokosk sk k

Are you trying to use something you claimed to prove above, or or you mak-
ing a claim that you are about to prove. In either case, only prove ONCE
that O;ue, — O, (that is the standard notation for weak convergence), and
prove it correctly and clearly, with a statement of a result (Assume that ...

then .. ) and a proof in complete sentences.
ok ko kSRR kK kK ok

Skoskosk sk skosk sk skoskoskoskoskoskoskoskoskoskoskoskok

Didn’t you state that theorem above. State it only once.

Kook sk skosk sk skoskosk sk skokok skoskok ko sksk

so by the fact that % = JLJeue + Jeg(Jeue), ue(0) = f and u,, is a subse-
quence of u. that satisfy the same PDE and gathering all the limits we get
that: Orue, — Opu weakly

>k 3Kk sk sk >k ok sk skosk skokosk sk sk kokoskoskok

Gathering all what terms? So far you have not shown that u satisfies any
equation so you can’t compare the equations satisfied by v; and u; to show
that each term of one tends to the corresponding term of the other. If you
do write a version with all the necessary terms then put them in numbered
equations so that you can say “Combining estimates ... we obtain ...”.

ok koK kSRR kK Rk K ok

s ey Lde e, — Lu weakly | Je, g(Je,ue,) — g(u) in L? norm,and thus by
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the fact that strong convergence implies weak convergence, we also have
here weak convergence:Je, g(J¢, ue, ) — g(u). By the uniqueness of the limit,
which means that since Oue, = Je, LJe, e, + Je, 9(Je, te, ) and Opue, — Opu
weakly; and also Je, LJe, te, + Je,g(Je te,) — Lu + g(u) weakly, thus we
must have equality between the limits, i.e, dyu = Lu + g(u).

And since u,, (0) = f in the weak limit

Skoskosk sk skoskoskoskoskoskoskoskoskoskoskoskoskoskoskosk

You mean to say: u, (0) = f.
skoskoskoskosk sk sk sk skoskoskoskoskoskoskokoskoskoskok

we have: f = u, (0) — u(0) = u(0) = f. O
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