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1 Problem 12

Definition 1. We define Schwartz class as S(Rn) := {ϕ ∈ C∞ : qN (ϕ) <
∞, for N = 0, 1, 2, . . .}, where qN (ϕ) := supx∈Rn,|α|≤N (1 + |x|2)N |Dαϕ(x)|.

We have:

d/dt(uε, uε) = 2(∂tuε, uε) = 2

(

JεLJεuε, uε

)

+ 2

(

Jεg(Jεuε), uε

)

(1)

Since Jε is self-adjoint, we get: 2

(

JεLJεuε, uε

)

= 2

(

LJεuε, Jεuε

)

.

Now, we shall use [1, eq. (1.11), page 415] , plug α = 0 into [1, eq. (1.11),
page 415] to get:

2

(

LJεuε, Jεuε

)

≤ C‖Jεuε‖
2
L2 (2)
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Now, we shall use Young’s inequality for convolution on the RHS of (2), i.e:

‖Jεuε‖L2 = ‖jε ∗ uε‖L2 ≤ ‖jε‖L1‖uε‖L2 ≤ C‖uε‖L2 (3)

Now we shall estimate the second term in (1), we are using lemmas 1.6 and
1..5 from the previous file:

2
(
g(Jεuε), Jεuε

)
≤

from Cauchy- Schwartz
C‖g(Jεuε)‖L2‖Jεuε‖L2

≤ C‖Jεuε‖L2 sup
|v|≤c‖u‖

Hk

|g′(v)|‖Jεuε‖L2

≤
since |g′| ≤ C

C‖Jεuε‖
2
L2

≤
we use eq. (3)

C‖uε‖
2
L2

(4)

Combine (4), (2) and (3), to get: d/dt‖uε‖2
L2 ≤ C‖uε‖2

L2 .
For d/dt‖∇uε‖2

L2 ≤ C‖∇uε‖2
L2 We have:

d/dt
(
∇uε,∇uε) = 2

(
∇∂tuε,∇uε

)
= 2

(

∇JεLJεuε,∇uε

)

+ 2

(

∇Jεg(Jεuε),∇uε

)

(5)
Notice that:

2

(

∇Jεg(Jεuε),∇uε

)

=
Jε commutes with ∇

2

(

Jε∇g(Jεuε),∇uε

)

=
Jε is self-adjoint

2

(

∇g(Jεuε), Jε∇uε

)

= 2

(

g′(Jεuε)Jε∇uε, Jε∇uε

)

≤
Cauchy-Schwartz inequality

C‖Jε∇uε‖L2‖g′(Jεuε)Jε∇uε‖L2

≤ C‖Jε∇uε‖
2
L2 sup

v
|g′(v)|

≤
we used |g′| ≤ C , and (3)

C‖∇uε‖
2
L2

(6)

In eq. (5), the first term becomes: 2

(

∇(JεLJεuε),∇uε

)

= 2

(

∇(LJεuε), Jε∇uε

)

=

2

(

LJε∇uε, Jε∇uε

)

+ 2

(

[∇, L]Jεuε, Jε∇uε

)

.
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The first term is bounded by C‖∇u‖2
L2 , as can be inferred by the next ref-

erence [1, eq. (1.11), page 415].
The second term can be seen to be bounded by the same bound, by the next
equation:

([∇, L]Jεuε, Jε∇uε) =
∑

j

(∇Aj∂j(Jεuε), Jε∇uε)

=
∫ ∑

j

∑

i,k

∑

m

(Jε∂m(uε)i)(∂maj
ik)∂j(Jε(uε)k)

(7)

So we get by Cauchy-Schwartz that this is less or equals to:
C‖∇Jεuε‖2

L2 where the constant C depends on bounds on derivatives of
entries of the matrix Aj which are smooth functions. Now we know from
the fact that Jε commutes with ∇ we have: ‖∇Jεuε‖2

L2 = ‖Jε∇uε‖2
L2 , and

from (3) it follows that this is less than: C‖∇uε‖2
L2 .

From the two inequalities: d/dt‖uε‖2
L2 ≤ C‖uε‖2

L2 and d/dt‖∇uε‖2
L2 ≤

C‖∇uε‖2
L2 , now add both inequalities to get: d/dt‖uε‖2

H1 ≤ C‖uε‖2
H1 .

Thus, ‖uε‖2
H1 ≤ A exp(Ct) for a positive constant A.

Since ‖uε‖2
H1 ≤ A exp(Ct), the bound exists for all time t, thus also our

solution uε ∈ H1 exists for each time, t.This follows from the ODE contin-
uation theorem, which says that a solution to an ODE exists as long as the
norm of the solution is finite. So we need to show that ‖F (u)‖L2 ≤ h(‖u‖L2)
for some continuous function h.

‖F (uε)‖L2 = ‖JεLJεuε + Jεg(Jεuε)‖L2

≤ ‖JεLJεuε‖L2 + ‖Jεg(Jεuε)‖L2

(8)

In (8), we know that ‖Jεg(Jεuε)‖L2 ≤ ‖jε‖2
L1 supv∈Rn |g′(v)|‖u‖L2 ≤ C‖u‖L2 .

As for the first term in the RHS after the inequality sign in (8): ‖JεLJεuε‖L2 ≤
‖jε‖L1‖LJεuε‖L2 . Now, we only need to estimate the second factor:

‖LJεuε‖L2 =

∥
∥
∥
∥
∑

k

Ak∂xk

( ∫
j(ε−1(∙ − s))ε−nu(t, s)ds

)
∥
∥
∥
∥

L2

=

∥
∥
∥
∥
∑

k

Ak

( ∫
jxk

(ε−1(∙ − s))ε−n−1u(t, s)ds
)
∥
∥
∥
∥

L2

≤
young’s inequality for convolution

∑

k

‖Ak‖L∞ε−1‖ε−njxk
(ε−1(∙))‖L1‖u‖L2

(9)

Note that
∫

Rn
dx

(1+|x|2)N = ωn

∫∞
0

rn−1

(1+r2)N dr < ∞, whenever N > n/2 (where

ωn is a constant that depends on n). Then, if N > n/2 and j ∈ S(Rn), then
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we get:

‖jxk
‖L1 ≤

∫

Rn

qN (j)(1 + |x|2)−Ndx

= CqN (j) < ∞
(10)

Thus, ε−1‖ε−njxk
(ε−1(∙))‖L1 ≤ C/ε.

Now, inserting this into (9), we get: ‖LJεuε‖L2 ≤
∑

k ‖Ak‖L∞C/ε ∙ ‖uε‖L2 .
So by combining everything together we get:

‖F (uε)‖L2 ≤
∑

k

‖Ak‖L∞C/ε ∙ ‖uε‖L2 + C‖uε‖L2 = h(‖uε‖L2) (11)

Now, we shall show Lipschitz criterion is satisfied. Take two points
t, s ∈ I = [t1, t2] , and estimate:

‖u(t, ∙) − u(s, ∙)‖L2 = ‖
∫ t

s
∂t′u(t′, x)dt′‖L2

=
∥
∥
∫ t

s
(JεLJεuε(t

′) + Jεg(Jεuε(t
′))dt′

∥
∥

L2

≤
∣
∣t − s

∣
∣ sup

t′∈I

∥
∥(JεLJεuε(t

′) + Jεg(Jεuε(t
′))
∥
∥

L2

=
∣
∣t − s

∣
∣ sup

t′∈I

(∥
∥(JεLJεuε(t

′)
∥
∥

L2 +
∥
∥Jεg(Jεuε(t

′))
∥
∥

L2

)

(12)
The first term inside the sup in (12), is less or equal C‖∇uε(t′)‖L2 , since
Aj is a bounded matrix and Jε as well is a bounded operator on L2 and
∇ includes all the spatial derivatives of L; and also from above we know
that:C‖∇uε‖L2 ≤ C0 exp(Ct′) for positive constants C,C0, and this is smaller
than C0 exp(Ct2). The second term is estimated as follows: from what
we’ve seen above it’s less than C‖g(Jεuε)‖2

L2 , which is again smaller than
C‖uε‖L2 sup |g′| ≤ C1 exp(Ct′), for C1, C positive constants, which is less
than C1 exp(Ct2).

From all of the above we’ll conclude that: ‖u(t, ∙)−u(s, ∙)‖L2 ≤ |t−s|c(I),
where c(I) is a constant that depends on the interval, I.

2 Problem 13

Definition 2. The space L∞(C,B), where C is a subset of R and B is a
Banach space, is defined as the set of all functions f : C → B which their
supremum norm is finite, ‖f‖L∞(C,B) := supx∈C ‖f(x)‖B < ∞;
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Lip(C,B) is the space of functions f : C → B which their Lipschitz’s norm
is finite, ‖f‖Lip(C,B) := supx,y∈C,x 6=y

‖f(x)−f(y)‖B

|x−y| < ∞.
When s ∈ Z+, M is a manifold and N is another manifold, we define the

space Cs(M ; N) as the space of functions f : M → N such that f, f ′, . . . , f (s)

are continuous functions; and C∞(M ; N) as the space of functions which are
differentiable in all orders inside M .

Theorem 2.1. Let Aj be a K × K matrix, smooth in its arguments and
symmetric, Aj = A∗

j . Suppose g is smooth in its arguments, with values
in RK s.t g(0) = 0, |g′(u)| ≤ C. Then there exists a unique solution u ∈
L∞

loc(R, H1(M))∩Liploc(R, L2(M)),(where M = Tn) to the PDE: ut = Lu+
g(u),and initial condition u(0) = f , where f ∈ H1(M), and the operator L
is defined by: L(t, x, u,Dx)u =

∑
j Aj(t, x) ∂

∂xj
u.

Proof. Suppose u1, u2 solve the PDE above, i.e ut = Lu + g(u), u(0) =
f . Take w = u1 − u2, then w satisfies: wt = Lw + h(w, u2), where
h(w(x, t), u2(x, t)) = g(w(t, x) + u2(t, x)) − g(u2(t, x)), w(0) = 0.
Since w(0) = 0 we must have ‖w(0)‖2

L2 = 0. Notice that

(h(w(t), u2), w(t)) ≤
Cauchy-Schwartz inequality

‖w(t)‖L2‖h(w(t), u2(t))‖L2

=
h(0, u2) = g(u2) − g(u2) = 0

‖w(t)‖L2‖h(w(t), u2(t)) − h(0, u2(t))‖L2

= ‖w(t)‖L2‖
∫ 1

0
w(t)hw(rw(t), u2(t))dr‖L2

≤ ‖w(t)‖L2‖w(t)‖L2‖
∫ 1

0
hw(rw(t), u2(t)dr‖L∞

≤ ‖w(t)‖L2‖w(t)‖L2 sup
v∈Rn,x∈M

|hw(v, u2(x, t))|

= ‖w(t)‖L2‖w(t)‖L2 sup
v∈Rn,x∈M

|g′(v + u2(x, t))|

≤ C‖w(t)‖L2‖w(t)‖L2

(13)
Notice the following: ∂t(w,w) = 2(wt, w) = 2(

∑
j Aj∂xjw,w)+2(h(w, u), w).

we get:2(
∑

j Aj
∂

∂xj
w,w) = −

∑
j

∫
w∗ ∙ ∂Aj

∂xj
∙wdx by the following calculation:

(Aj
∂

∂xj
w,w) =

∫
w∗ ∙ Aj ∙ ∂xjwdx =

integration by parts
−
∫

w∗
xj

∙ Aj ∙ wdx −
∫

w∗ ∙
∂

∂xj
Aj ∙ wdx

by the fact that the transpose of a number equals the number, we get that:
w∗

xj
∙Aj ∙w = (w∗

xj
∙Aj ∙w)∗ =

A∗
j =Aj

(w∗ ∙Aj ∙wxj ). Now, use the Cauchy-Schwarz
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inequality: 2(Aj∂xjw,w) ≤ 2
∑

j ‖Aj(t, ∙)‖C1 ≤ C(t)‖w(t)‖2
L2 , where we

used the fact that Aj(x, t) is C∞-smooth in its arguments x, t, the variables
x are defined on Tn which is compact; thus Aj(x, t) and its derivatives are
bounded by a function of t only. Gathering everything together we get:
∂t‖w(t)‖2

L2 ≤ C1(t)‖w(t)‖2
L2

********************
There isn’t any n anymore
********************
by integration and using Gronwall’s inequality lemma we get that ‖w(t)‖2

L2 ≤

‖w(0)‖2
L2 exp (

∫ t
0 C1(s)ds) =

since w(0) = 0
0; thus w(t) = 0 and we have unique-

ness.
Now, for the existence part.

Arzela-Ascoli theorem states the following:

Theorem 2.2. Let F be an equicontinuous family of functions from a sep-
arable space X to a metric space Y . Let {fn} be a sequence in F such that
for each x ∈ X the closure of the set {fn(x) : 0 ≤ n < ∞} is compact.
Then there is a subsequence {fnk

} that converges pointwise to a continuous
function f , and the convergence is uniform on each compact subset of X.
[3, page 169]

uε is bounded in L∞(I,H1(M))∩Lip(I, L2(M)) (this follows from Prob-
lem 12), it has a weak limit point by Alaoglu theorem:

Theorem 2.3. (Alaoglu Theorem) For a real Banach space X, the closed
unit ball: D(X∗) = {f ∈ X∗ : ‖f‖ ≤ 1}, where X∗ is the dual to X, is
compact in the weak-* topology. [4]

(where X in this theorem is H1(M) which is a Banach space, we are
looking at this space since the function uε : I → H1(M); and the dual to
H1(M) is the space of bounded linear functionals F : H1(M) → R).

********************
predual??? Where did you get this “definition” from?
********************

********************
But the dual of L∞ is NOT L1.
********************
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So there exists u ∈ L∞
loc(I,H1(M)) ∩ Liploc(I, L2(M)) such that uε ⇀ v

Furthermore, by Arzela-Ascoli theorem, there’s a subsequence: uεk
→ u in

C(I, L2(M)),where in the theorem of Arzela-Ascoli we pick fn = uε, where
ε = ε(n), i.e ε depends on n, X = I and Y = H1(M). Since uεk

⇀ v
as well, we must have that v = u in L2(M).(The proof of the last claim
is a simple observation that if we take w ∈ L2(M) then < u − v, w >=∫
M (u − uεk

)w +
∫
M (uεk

− v)w, the second integral converges to zero since
uεk

⇀ v, and the first integral converges to zero as well since uεk
→ u, we

have |
∫
M (u − uεk

)w| ≤ supx∈M |u − uεk
| ∙ C ∙ ‖w‖L2(M) → 0.)

********************
What is the compact metric space X here, and how are the functions fn

from X to R defined in terms of uε?
********************

********************
1. The theorem is stated in a form that does not apply to the region used in
the problem, namely a rectangular region with periodic boundary conditions
since ignoring the boundary conditions, which the theorem does not make
use of, the region does not have a C1 boundary.

2. The theorem as stated does not apply in the case n = 2 since the
value of p used is 2 but the statement says that p must be less than n.
********************

********************
Put definitions in separate sentences.
********************

Definition 3. A sequence of functions fn in L2 is said to converge weakly
to a function f in L2 provided: limn→∞

∫
fng =

∫
fg ∀g ∈ L2

While ∂tuεk
⇀ ∂tu weakly, since

********************
Why is that “clear”? It seems that in the following you are trying to prove
it, which indicates that it is NOT clear at this point.
********************
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in our case here the sequence uε ∈ H1 so both uε,∇uε ∈ L2, the claim
that justifies that ∂tuεk

⇀ ∂tu weakly is since uεk
∈ L∞(I,H1(M)) ∩

Lip(I, L2(M)), we have ∂tuεk
is bounded in L∞(I, L2(M))∩Lip(I, L2(M)),(∂tuεk

is bounded since the weak derivative of a Lipschitz continuous function
(which is uεk

) is bounded, the bound on the weak derivative is the Lips-
chitz constant).(This last fact follows from Theorem 4 in [6, pages 294-295]
which we will adapt here for our case).

Theorem 2.4. (Characterization of W 1,∞) Assume U is bounded and ∂U
is Lipschitz. Assume that f : U → R, then:

f is loacally Lipschitz continuous in U

if and only if:
f ∈ W 1,∞

loc (U)

Proof. First suppose that f is locally Lipschitz continuous. Fix i ∈ {1, . . . , n},
then for each V ⊂⊂ W ⊂⊂ U , pick 0 < h < dist(V, ∂W ), and define
gh
i (x) := f(x+hei)−f(x)

h (x ∈ V ). Now, suph>0 |g
h
i | ≤ Lip(f |W ) < ∞. Then

according to weak compactness in Lp where 1 < p < ∞ we have: a sequence
hj → 0 and a function gi ∈ L∞

loc(U) such that:

g
hj

i ⇀ gi weakly in Lp
loc(U)

for all 1 < p < ∞. But if φ ∈ C1
c (V ), we have:

∫

U
f(x)

φ(x + hei) − φ(x)
h

dx = −
∫

U
gh
i (x)φ(x + hei)dx.

We set hj = h and let j → ∞ to get:
∫

U
fφxidx = −

∫

U
giφdx

Hence gi is the weak partial derivative of f with respect to xi for i = 1, . . . n
and thus f ∈ W 1,∞

loc (U).
Conversely, suppose f ∈ W 1,∞

loc (U). Let B ⊂⊂ U be any closed ball
contained in U . Then by properties of mollifiers we know that:

sup
0<ε <ε0

‖Df ε‖L∞(B) < ∞

for ε0 > 0 sufficiently small where f ε = ηε ∗ f is the usual mollification.
Since f ε ∈ C∞ we have f ε(x) − f ε(y) =

∫ 1
0 Df ε(y + t(x − y))dt ∙ (x − y) for
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x, y ∈ B; whence, |f ε(x)−f ε(y)| ≤ C|x−y|. The constant C is independent
of ε now as ε → 0 we get that |f(x)−f(y)| ≤ C|x−y|. Hence f |B is Lipschitz
continuous for each ball B ⊂⊂ U , and so f is locally Lipschiz continuous in
U .

********************
And if it is not differentiable?
********************

********************
You need to rewrite the above jumble of phrases into a sequence of sentences,
each of which expresses one and only one idea. In fact, you need to rewrite
the entire paper.
********************

so by Alaoglu theorem ∂tuεk
⇀ w weakly in L∞(I, L2(M))∩Lip(I, L2(M))

for some w

********************
The full sequence? or some subsequence? Maybe different subsequences
converge weakly to different limits? What happens then?
********************
and then by uniqueness of the limit ∂tuεk

⇀ w in L∞(I, L2(M)) (there is
uniqueness since L∞(I, L2(M) is a Hausdorff space)

********************
Uniqueness of what limit? Why is it unique?
********************
we get: w = ∂tu, since uεk

→ u in C(I, L2(M)) ). For the last assertion
we need to state the Dominated Convergence Theorem and prove another
claim which will prove our assertion that w = ∂tu.

Theorem 2.5. (Dominated Convergence Theorem) Let {fn} be a sequence
of real-valued measurable functions on a measure space (S, Σ, μ). Suppose
the sequence converges pointwise to a function f and is dominated by some
integrable function g in the sense |fn(x)| ≤ g(x) for all n and for all x ∈ S,
then f is integrable and limn→∞

∫
S fn(x)dx =

∫
f(x)dx. [5, page 26]
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Theorem 2.6. If {uεk
(t)} ⊂ L2(M) where M is a compact manifold, and

assume that the sequence converges uniformly in C(I, L2(M)) to u where
I ⊂ R is compact, assume also that ∂tuεk

(t) ⇀ w, then w = ∂tu.

Proof. We shall prove the claim (2.6). Take some v ∈ L2(M), write down:

< w−∂tu(t), v >=
∫

M
(w(x)−∂tuεk

(t))v(x)dx+
∫

M
(∂tuεk

(t)−∂tu(t))v(x)dx.

(14)
The first integral above in the RHS of (14) tends to zero as k → ∞ since
∂tuεk

⇀ w; as for the second integral we shall use the Dominated Con-
vergence Theorem. Since uεk

(t) → u(t) in C(I, L2(M)) we must have:∫
M ∂t(uεk

(t)−u(t))vdx = ∂t

∫
M (uεk

(t)−u(t))vdx; now since uεk
(t) is bounded

above by a constant that depends on t, this constant function is an integrable
function since our domain of integration is a compact manifold, namely M ,
we get by the Dominated Convergence theorem that

∫
M uεk

vdx →
∫
M uvdx

as k → ∞, where we have taken the measure to be vdx. In this case we get
by the next chain of equalities that the second integral in (14) tends to zero
as well:

lim
k→∞

∫

M
∂t(uεk

(t) − u(t))vdx = lim
k→∞

∂t

∫

M
(uεk

(t) − u(t))vdx

=∂t lim
k→∞

∫

M
(uεk

(t) − u(t))vdx

=∂t0 = 0

This ends the proof of the claim, since we get that < w − ∂tu, v >= 0 ∀v ∈
L2(M), thus w = ∂tu.

********************
Even if the limit is unique, why must it equal ∂tu and not something else?
********************

********************
You claim above that various subsequences converge in various senses. Does
there have to be a single subsequence that converges in all the above senses?
If so, why? If not, which convergence will you use?
********************
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Jεk
uεk

converges in L2 norm to u, since we have: ‖Jεk
u − u‖L2 → 0 and

also ‖uεk
− u‖L2 → 0, by the triangle inequality we must have: ‖Jεk

uεk
−

u‖L2 ≤ ‖Jεk
uεk

− Jεk
u‖L2 + ‖Jεk

u − u‖L2 ≤ ‖jεk
‖L1‖uεk

− u‖L2 + ‖Jεk
u −

u‖L2 → 0 (since ‖jεk
‖L1 is bounded, and from the above we know that:

‖uεk
− u‖L2 → 0). To show this we need to show that ‖Jεk

u − u‖L2 → 0 is
fulfilled, for this we have the next claim to prove.

Theorem 2.7. Let ϕ ≥ 0 with
∫

Rn ϕ(y)dy = 1, ϕε(x) = 1/εnϕ(x/ε). Sup-
pose f ∈ Lp(Rn), 1 ≤ p < ∞. Then:

lim
ε→0

‖f ∗ ϕε − f‖Lp = 0

Proof. |f ∗ϕε − f | = |
∫

Rn(f(x− y)− f(x))ϕε(y)dy|. By Minkowski integral
inequality, which says the following:
Suppose (S1, μ1), (S2, μ2) are two measure spaces, and F : S1 × S2 → R is

measurable, then:
[ ∫

S2

∣
∣ ∫

S1
F (x, y)dμ1(x)

∣
∣pdμ2(y)

]1/p ≤
∫
S1

( ∫
S2

|F (x, y)|pdμ2(y)
)1/p

dμ1(x))
.

********************
You should state theorems in a separate sentence.
********************

‖f ∗ ϕε − f‖Lp ≤ ‖
∫

Rn

|f(x − y) − f(x)|ϕε(y)dy‖Lp

≤
∫

Rn

‖f(x − y) − f(x)‖Lp(dx)ϕε(y)dy

Set: I =
∫
|y|≤δ ‖f(x − y) − f(x)‖Lp(dx)ϕε(y)dy, and II =

∫
|y|>δ ‖f(x −

y)−f(x)‖Lp(dx)ϕε(y)dy. The translation operator y → f(x−y) is continuous
from Rn to Lp(Rn) for 1 ≤ p < ∞. So given η > 0 there exists δ > 0 s.t:

‖f(x − y) − f(x)‖Lp(dx) < η ∀|y| ≤ δ.

Thus with such a δ, I < η
∫
|y|≤δ ϕε(y)dy ≤ η

∫
Rn ϕε(y)dy = η. From

the fact that: ‖f(x − y) − f(x)‖Lp(dx) ≤ 2‖f‖Lp , it follows that: II ≤
2‖f‖Lp

∫
|y|>δ ϕε(y)dy = 2‖f‖Lp

1
εn

∫
|y|>δ ϕ(y/ε)dy = 2‖f‖Lp

∫
|y|>δ/ε φ(y)dy →

0 as ε → 0. Thus, ‖f ∗ ϕε − f‖Lp → 0.

Thus, we apply the theorem on p = 2 we must have ‖Jεk
u − u‖L2 → 0,

and from the above argumentation indeed ‖Jεk
uεk

− u‖L2 → 0. Since
the derivative of g, is bounded by C, we have a Lipschitz constant C ,s.t
|g(Jεk

uεk
) − g(u)| ≤ C|Jεk

uεk
− u|, we get that:‖g(Jεk

uεk
) − g(u)‖L2 ≤

11



C‖Jεk
uεk

− u‖L2 → 0; thus we have: g(Jεk
uεk

) → g(u) in C(R, L2(M))
norm.And also we have:

‖Jεk
g(Jεk

uεk
) − g(u)‖L2 ≤ ‖Jεk

g(Jεk
uεk

) − Jεk
g(u)‖L2 + ‖Jεk

g(u) − g(u)‖L2

≤‖jεk
‖L1‖g(Jεk

uεk
) − g(u)‖L2 + ‖Jεk

g(u) − g(u)‖L2 → 0
k→∞

Where in the above last chain of inequalities the first term converges to zero
as we have seen above it since ‖jεk

‖L1 < ∞ and ‖g(Jεk
uεk

) − g(u)‖L2 → 0
as shown above, and ‖Jεk

g(u) − g(u)‖L2 → 0 follows from theorem (2.7).

********************
Instead of saying: A is true because it is implied by B, which is true since it
is implied by C, etc, start with what you know and say C is true and there-
fore B is true, and since B is true then also A is true. Be sure to explain the
justifications in full detail.
********************

Definition 4. A continuous operator, T : A → A, at a point x0; where A is
a Banach space, is an operator that is continuous in some topology. There is
the strong continuity by the norm of A, i.e limx→x0 ‖T (x)−T (x0)‖A = 0, and
there’s also weak-topology continuity, by the inner product, i.e: < T (x) −
T (x0), v >A→ 0 ∀v ∈ A as x → x0.

********************
→ as what happens?
********************

L is a weak-topology continuous operator from the space H1(M) →
L2(M)

********************
No, it doesn’t even map H1 to H1. Since it includes derivative operators L
only maps H1 to L2.
********************

by the fact that L =
∑

j Aj(t, x)∂j , we want to show weak convergence
of L operator, where u ⇀ u0 . Take v ∈ L2 then: | < L(u) − L(u0), v > | =
|
∫ ∑

j Aj∂j(u − u0)v| ≤ C2(t)
∑

j | < ∂j(u − u0), v > | → 0 as u ⇀ u0 in
H1(M). Where we used the fact that Aj(x, t) is smooth in its arguments in a
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compact manifold Tn and thus Aj is bounded by a constant that depends on
t (just as in the uniqueness part of this problem); so by the weak convergence
of u ⇀ u0 in H1(M) we have: | < ∂j(u − u0), v > | → 0.

********************
1. But the above definition said that the inner product has to converge for
ALL v in the space, not just for carefully selected v. 2. The above calcu-
lation uses the L2 inner product, so if you correct that calculation it will
show that L is weakly continuous from what space X to what space Y ? Is
it strongly continuous as an operator from X to Y ?
********************

Then by the weak continuity of L Jεk
LJεk

uεk
⇀ Lu weakly (since

LJεk
uεk

⇀ Lu = v weakly, and if we denote by: vεk
= LJεk

uεk
we also

have Jεk
vεk

⇀ Lu = v from what was proven above),

********************
Are you trying to use something you claimed to prove above, or or you mak-
ing a claim that you are about to prove. In either case, only prove ONCE
that ∂tuεk

⇀ ∂t (that is the standard notation for weak convergence), and
prove it correctly and clearly, with a statement of a result (Assume that ...
then .. ) and a proof in complete sentences.
********************

********************
Didn’t you state that theorem above. State it only once.
********************
so by the fact that ∂uε

∂t = JεLJεuε + Jεg(Jεuε), uε(0) = f and uεk
is a subse-

quence of uε that satisfy the same PDE and gathering all the limits we get
that: ∂tuεk

⇀ ∂tu weakly

********************
Gathering all what terms? So far you have not shown that u satisfies any
equation so you can’t compare the equations satisfied by vt and ut to show
that each term of one tends to the corresponding term of the other. If you
do write a version with all the necessary terms then put them in numbered
equations so that you can say “Combining estimates ... we obtain ...”.
********************
, Jεk

LJεk
uεk

⇀ Lu weakly , Jεk
g(Jεk

uεk
) → g(u) in L2 norm,and thus by
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the fact that strong convergence implies weak convergence, we also have
here weak convergence:Jεk

g(Jεk
uεk

) ⇀ g(u). By the uniqueness of the limit,
which means that since ∂tuεk

= Jεk
LJεk

uεk
+ Jεk

g(Jεk
uεk

) and ∂tuεk
⇀ ∂tu

weakly; and also Jεk
LJεk

uεk
+ Jεk

g(Jεk
uεk

) ⇀ Lu + g(u) weakly, thus we
must have equality between the limits, i.e, ∂tu = Lu + g(u).

And since uεk
(0) = f in the weak limit

********************
You mean to say: uεk

(0) = f .
********************
we have: f = uεk

(0) ⇀ u(0) ⇒ u(0) = f .
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