This example is going to be somewhat trivial since I'm going to try and keep the numbers
neat and tidy. Let
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be our hermitian matrix. Then we are to compute (AA*)l/2 = (4?) 12 First, since A is
hermitian we know it is diagonalizable via a unitary:
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This is just diagonalizing using eigenvectors and eigenvalues. For example, —3 is an eigenvalue
and [—i/v/2 1/\/§}T is a unit eigenvector. Now,
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Then, as was defined in the PhysicsForums post,
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Remember, this is where we take the nonnegative square roots. Thus, putting it all together:
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Now, we need the other half of our decomposition: the matrix U. But as was pointed out in
the PhysicsForums post, when A is nonsingular this is pretty easy:
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Again, this was a pretty trivial example, but hopefully you get the idea. However, it seems
that when A is hermitian itself, the polar decomposition takes on a very simple form. I'll let you
investigate why. :)

1/2

where

Therefore,



