The Heisenberg Uncertainty Principle

A brief introduction and experimental verification for light
Chris Hamilton, Blundell’s School

Perhaps one of the most fundamental concepts of quantum mechanics is complementarity. "Bohr's principle of
complementarity is the most revolutionary scientific concept of this century and the heart of his fifty-year search for the
full significance of the quantum idea."" This keystone concept underpins much of the core elements of quantum theory,
such as wave particle duality, as we can view an electron, for example, as a wave or a

particle, but not both simultaneously. These two characteristics of the electron are

mutually complementary — the closer we come to complete knowledge of either

theories, the more complete the uncertainty of its counterpart is. A good analogy that

demonstrates this concept is the well-known figure-ground vase (Fig. 1). We can view

this famous figure as a vase, or two people, but not both at the same time. The

complication arises because it s both. In the same sense that an electron 7s both a wave Fig. 1 — Rubin’s Vase, or the

. . . . . . figure-ground vase.
and a particle in different situations, we cannot understand and observe this gures
complementarity®. The basic understanding behind this report and indeed the beginnings of quantum mechanics is this

inherent inability to explain and observe the existence of matter in these two defined states, but the understanding that it is

in this mutually complementary state.

The Heisenberg uncertainty principle is a quantified case of this concept of complementarity. It is the mutual
complementarity of the position, x, and momentum, p, of a particle, whereby the more complete knowledge we have of

one of the quantities, the more complete uncertainty we have of the other. This relationship is defined as follows, where f
= h/2n:

h
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This uncertainty relationship was first observed by Shull for neutrons in 1969°, and it is widely considered that this
uncertainty relationship will remain robust for all isolated matter. The most commonly observed case where this principle
comes into play is with single slit diffraction, whereby a restricting slit is slowly closed, therefore reducing Ax, and this
results in a momentum transfer to move the particles to the first order minimum in the diffraction pattern, therefore

increasing Ap,. This ensures that the above relationship is held for each particle.

With this basic understanding of complementarity in Ap,

quantum mechanics and the uncertainty relationship above, I T - .

wanted to verify the relationship quantitatively for light. The Ax J' - Tw ~—

apparatus used is outlined in Fig. 2. However, the particular ~——— il y -
Laser -

relationship as shown above only applies to particular |

particles, or wave packets, considering the wave theory that Adjustable Single Sit

leads to this phenomenon. An example of a group of particles
. . . Intensity Pattern on Screen
that adhere to the above relationship are those following the

Fig. 2 — Apparatus — a laser with wavelength 632.8E-9m

Gaussian normal distribution. For this application, therefore, I
is diffracted by the slit.

had to derive the new uncertainty relationship relevant to

photons. Starting with the de Broglie wavelength equation
relevant to photons and the diffraction grating equation (whereby the velocity vector is calculated due to the momentum
transfer through the angle required to move a photon to the first order minimum), the wave and particle theories of light

can be combined to obtain this uncertainty relationship. This clearly provides evidence to support the complementarity of
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the two theories — this experiment demonstrates both the diffraction and particle nature of light, and the combination of
the two effects is mathematically verified. We can only observe one effect happening at a given moment, but this proves

that the two effects are happening simultaneously, which is quite remarkable if only as a thought experiment.

The full derivation from these two equations is as follows:

1. D % (de Broglie) 2. sina; = %A (diffraction grating)

Using trigonometry, and letting 7=1, as first order minima are considered only:

3. Apy = %Sin aq and 4. sina, = %
Combine to give:
hA
Apx =73
h
5 Apy = q

So therefore, for light:

7. Ap,Ax=h

To quantitatively prove this relationship, however, a1 will need to be found, and this can be calculated as follows, where s

is the distance between first order minima:

arctan(a,) = 5/72

So, using the uncertainty relationship derived previously (3. and 7.):

_hg 42
s/2 Ap, = - sin(arctan " )

8. %sin(arctandT/Z) d=h

y Dividing by h:

d; /2, _
9. - sin(arctan S )y=1

So to verify the uncertainty principle for light experimentally, data points well into the quantum regime of the experiment

(i.e. they act according to the basic uncertainty principle whereby AP, increases as Ax decreases), should adhere to the



above equation and equal 1. Alternatively, the relationship can be verified by substituting values into the second above

equation® and h should be the product.

With this prior mathematics and theory, I could begin the experiment. I varied the size of the restricting slit (which was a

digital vernier caliper) from 0.00735m to 0.00005m, and recorded the distance between the two first order minima on a

screen at a distance of ¥ from the restricting slit, which was 2.911m. The results are summarized in Fig. 3 below.

Ax (d)/m s/m oi/rads Ap/kgms™ (E-31)
0.00735 0.01216 0.000826 0.9015
0.00635 0.01097 0.000794 1.0435
0.00535 0.00998 0.000795 1.2385
0.00435 0.00879 0.000763 1.5232
0.00335 0.00764 0.000737 1.9779
0.00235 0.00617 0.000656 2.8196
0.00135 0.00444 0.000531 4.9083
0.00100 0.00325 0.000386 6.6262
0.00080 0.00425 0.000593 8.2827
0.00070 0.00502 0.000742 9.4660
0.00060 0.00545 0.000833 11.043
0.00050 0.00736 0.001178 13.252
0.00040 0.00875 0.001434 16.565
0.00030 0.01071 0.001788 22.087
0.00020 0.01777 0.003018 33.131
0.00010 0.03692 0.006324 66.262
0.00005 0.06777 0.011631 132.52

The effect happening is demonstrated clearly in Fig. 4 below.

Fig. 3 — Experimental data obtained.

Fig. 4 — Photographs taken as the slit is restricted in size. The distance between minima decreases in the

classical regime (1-3), before suddenly increasing in the quantum regime (4-5). This is explained later.
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It is important to note at this stage that the uncertainty relationship only comes into play at a restricting slit size of
0.001m, as above this value the slit size is not comparable to the distances at which quantum effects are observed, so Ax is
effectively infinite in size at this macroscopic level’. This explains why the beam initially decreases in size, as the slit cuts
the sides of the beam, before suddenly expanding, as the uncertainty relationship derived above takes effect. With this 1
could display the above data graphically, firstly plotting the distance between minima against Ax, to identify this boundary
between the classical and quantum regimes, before plotting the final graph of Ap, against Ax. This clearly shows the
uncertainty principle, whereby as the slit closes, Ax decreases, so therefore Ap,, must increase. As p for a particular

wavelength is always the same, the direction must change, therefore increasing Ap,.. These two graphs are shown below in

Fig. 5 and Fig. 6.
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Fig. 5 — Initial graph to identify effect. The decreasing area from 0.001-Om (the

quantum regime) is extrapolated above to show the uncertainty relationship.

Experimental Verification of the Heisenberg Uncertainty Principle for Photons
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Fig. 6 — Final graph of Ap, against Ax.
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With this final graph plotted, I could verify the uncertainty relationship defined earlier, and therefore Heisenberg’s

uncertainty principle for light.

By taking a point on the graph and multiplying the two components, 4 should be the result. For example, the second point
on the graph (circled in Fig. 6), with the values substituted into the uncertainty relationship, results in 6.6262E-34, which

is indeed 4 to 5 significant figures. This is a quite remarkable level of accuracy considering the relatively imprecise nature of
the school laboratory equipment, and quite definitively confirms that light does indeed obey this core principle of

quantum mechanics.

Going back to the original concept if complementarity, this experiment clearly demonstrates and quantifies the idea. We
can observe the diffraction pattern that occurs around the central maximum, and this is a clear indication and proof of the
wave theory of light. However, this experiment not only identifies and demonstrates the particle nature of light, but also
shows that the two permutations are coexistent. The mathematical derivation shown above of the uncertainty principle is
founded on both theories, and its proved existence here shows the simultaneous state of both theories that we

fundamentally fail to understand.

Finally, possible options for further experimentation might involve up scaling the size of the incident particle, perhaps to
molecules such as fullerenes, to prove that this principle still holds with sufficiently isolated matter, as Olaf Nairz, Markus
Arndt and Anton Zeilinger researched in 2002.
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