Problem # 1(b) Find the general solution for the following equa-
tions by using the method of variation of parameters:

2y —dry + 6y =bz)=r'sinr or, ' Inz. (x> 0).

Solution: This is Euler equation Let @(t) = ylet), we have
[D(D — 1) — 4D + 6]a(t) = [(D — 3)(D — 2)]6(t) = 0.

We derive
i (t) = et dalt) = et
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41, ¥2 are linearly independent.

To find particular solution, we first write the equation

2" —dry’ + 6y ='sine, (r=0)
in the standard form:
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i — =y +—=y=xsinz, (x>=0).
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Letting y, = vy(x)y + v2(r)y2, we may derived that

yith +pry =0,
Y+ yhd = rlsine

With Cramers rule, we have

' 1 i +? —r'sinr
iy = T R . _—— =" x.
) Wiy | 22smz 2r — sin
and
() 1 2 0 ¥ sin ¥ :
U (F) = ——— . = = —rsin T
2 Wiyp.yz) | 328 risinr —d
Hence, we get
Mir) = fsiu:r.'f]:: = —Cos T
)= — frshu:f]_r = FCOsSTr—sEine.
Finally, we find
Yplx) = yp = vzl ta(riys = —Peosr+rcosr—risinr = —2'sinr.

The general solution is:

yle) = Chx* + Oy — 2l sinr.



