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Since 1943 oblique shock reflection has become an increasingly important topic
of study. The overall plan of this thesis is to begin with the Euler equations build
up the knowledge and techniques to tackle the calculation of the shape of the Mach
stem near the triple point and the shape of the contact discontinuity downstream of
the triple point.

The thesis is essentially split into two parts, the first part introduces the basic
theory of supersonic flow for an perfect gas incorporating 2D characteristics for steady
flow, the Rankine-Hugoniot equations for an oblique shock for both perfect gas and
solids obeying the shock equation of state US = a+ bup, Shock polars for both equa-
tions of state, Mach reflection which includes direct and indirect Mach reflection at
the criteria for the transition from regular reflection to Mach reflection, the numerical
method used to solve the Euler equations and an examination of the results.

The second part is split up into two chapters, the first calculates the shape of the
downstream asymptote of the contact discontinuity using von Mises variables and the
last chapter derives an equation for the pressure in the subsonic region. A numerical
solution to this equation shows that there is a singularity in the pressure at the triple
point and so a polar co-ordinate system is set up here and an analytical expression
for the stem shape is calculated in a region of the origin. For a perfect gas, the shape
of the stem near the triple point is:

f(y) = − 2p4

π
√

1 −M2
4

[

2γ

γ + 1
+

2

(γ + 1)M2
4

]

−1

(y log y − y). (1)
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Chapter 1

Supersonic Flow

The defining property of supersonic flow is that the flow speed is greater than the

local speed of sound. The Mach number defined by:

M =
V

a
, (1.1)

where a is the local speed of sound. The condition for a flow to be supersonic in

terms of the Mach number is M > 1

In subsonic flow at low Mach number the viscosity and heat conduction are nor-

mally important effects as the timescale is relatively long; a supersonic flow however,

the timescales are much shorter and these effects are usually ignored. Also in sub-

sonic flow M << 1, density effectively remains constant, this is not so in supersonic

flows as can be seen in experiment. In 2D supersonic flow there is another important

quantity called the Mach angle defined next.

1.1 Mach’s Construction

Consider a point source moving in a fluid at a supersonic speed V which is emitting

sound waves at a speed a at regular intervals. Suppose at time t = 0 the point

source emits a sound wave and at a time t later the point source will have moved a

distance V t whilst the sound wave will have travelled a distance at. In this time the

point source will have emitted other sound waves, which are represented by smaller

12



CHAPTER 1. SUPERSONIC FLOW 13

circles than the original sound wave. The key point to note is that the point source

is constantly outside the region of disturbance caused by the sound waves. A straight

line can be drawn from the point source which is tangent to the family of circles; this

line is called a Mach line. The angle this makes with the direction of motion of the

point source is called the Mach angle ϑ. The Mach angle can be easily calculated,

at

V t

Figure 1.1: Mach’s Construction

sinϑ =
at

V t
=

a

V
=

1

M
.

So

ϑ = sin−1 1

M
.

Signals can only be propagated within this cone.

1.2 Equation’s of Motion for Supersonic Flow

As was mentioned at the start of the chapter, the timescale is relatively small for

viscosity and heat conduction to develop and the terms in the Navier-Stokes equations

corresponding to these phenomena can be ignored. The resulting set of equations are

called the Euler equations. In two dimensions they are written as:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (1.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
(1.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
. (1.4)

The Euler equations are a set of quasi-linear partial differential equations in ρ, u, v

and p. There are only three equations for four unknowns, the final equation comes

from the condition of constant entropy and will be discussed in the next section.
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1.3 Thermodynamics of a Perfect Gas

1.3.1 Derivation of the Entropy Conservation Law

The ideal gas law states that:

p = ρRT, (1.5)

where p is pressure, R is called the gas constant, ρ is the density and T is the

temperature. The first law of thermodynamics states that:

de = TdS − pdν, (1.6)

where e is internal energy per unit mass, S is the entropy and ν is specific volume.

Equation (1.6) represents the change in internal energy, the term −pdν is the work

done by the system and the term TdS is the change in heat for a reversible system.

So (1.6) represents the interplay of work and heat of a system. The gas consant R

is the difference of the heat capacity at constant pressure, cp and the heat capacity

at constant volume, cv. The relationship between the internal energy per unit mass

and the temperature is given by e = cvT . Inserting these expressions in the ideal gas

law results in:

e =
1

γ − 1

p

ρ
, (1.7)

where γ is cp/cv. Inserting (1.5) and (1.7) into (1.6) S is found for a perfect gas:

dp

p
=
dS

cv
+ γ

dρ

ρ
. (1.8)

Integrating (1.8) and re-arranging for S gives:

S

cv
= log

(

p

ργ

)

+ constant. (1.9)

1.3.2 Speed of Sound

The speed of sound, a is defined to be:

a2 =
∂p

dρ

∣

∣

∣

∣

∣

S=constant

. (1.10)
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If S = constant, then it follows from (1.9) the pressure is a function of density only

via:

p = kργ , (1.11)

with k being a constant. Using (1.11) in (1.10) gives:

a2 =
γp

ρ
. (1.12)

In regions where shocks are not present the entropy is a constant. This applies for

any equation of state, so:

DS

Dt
= 0. (1.13)

There is another form of (1.13) which is useful:

Dp

Dt
= a2Dρ

Dt
. (1.14)

This is particularly interesting result as it states that linear perturbations for solids

and gases are the same. Equation (1.14) completes the set of equations for all the

variables. The problem studied is a problem in two dimensional steady flow and so

(1.2)-(1.4) and (1.14) become:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0 (1.15)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
(1.16)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
(1.17)

u
∂p

∂x
+ v

∂p

∂y
=

γp

ρ

(

u
∂ρ

∂x
+ v

∂ρ

∂y

)

(1.18)

1.3.3 A Different Form of the Energy Equation

Working directly with the first law of thermodynamics (1.6) and setting dS = 0 shows

that:

de = −pdν, (1.19)

which in turn gives:

De

Dt
=

p

ρ2

Dρ

Dt
(1.20)
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The case most of interest is that of steady flow, where (1.20) reduces to:

u · ∇e =
p

ρ2
u · ∇ρ, (1.21)

here u = (u, v) is the velocity vector. Using (1.7) in (1.21) and re-arranging yields:

u
∂p

∂x
+ v

∂p

∂y
+ γp

(

∂u

∂x
+
∂v

∂y

)

= 0 (1.22)

This form of the energy equation is most suited when solving the Euler equations

with the method of characteristics which is discussed in the next section.

1.4 Method of Characteristics

The idea of this section is to develop a method of solving the following set of first

order quasi-linear partial differential equations:

A(x, y,u)
∂u

∂x
+ B(x, y,u)

∂u

∂y
= c(x, y,u), (1.23)

where A and B are n × n matrices and c is a column vector of length n. The

geometrical interpretion is to find n surfaces ui(x, y)

1.4.1 Cauchy Data

Suppose that Γ is a curve in the (x, y) plane parameterized by s ∈ [s1, s2]; Cauchy

data is the prescription of u on Γ. So geometrically, the surfaces ui(x, y) all have to

pass through these lines. Such boundary conditions can be written in the form:

u = u0(s), x = x0(s), y = y0(s). (1.24)

1.4.2 Characteristics

Differentiating u0(s) along Γ gives:

u′

0 = x′0
∂u

∂x
+ y′0

∂u

∂y
. (1.25)
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Combining (1.25) and (1.23) the partial derivatives (∂xu, ∂yu) are then uniquely

defined if:
∣

∣

∣

∣

∣

∣

A B

x′0I y′0I

∣

∣

∣

∣

∣

∣

6= 0 s ∈ [s1, s2]. (1.26)

With y′0 = λx′0, (1.26) reduces to:

det(B − λA) 6= 0. (1.27)

In the case where A and B are scalar functions of x and y the condition (1.27) is

sufficient to ensure well-posedness of the problem. Define a characteristic to be a

curve where the partial derivatives are not uniquely defined. With this definition,

the characteristic of:

A(x, y,u)
∂u

∂x
+ B(x, y,u)

∂u

∂y
= c(x, y,u) (1.28)

is a curve (x(t),y(t)) such that the left-hand sides of (1.28) and

ẋ
∂u

∂x
+ ẏ

∂u

∂y
= u̇ (1.29)

are linearly dependant. So a curve in the (x, y) plane is a characteristic if:

det(ẋB − ẏA) = 0, (1.30)

where dy/dx = ẏ/ẋ = λ. In general (1.29) will be a polynomial of degree n. A

hyperbolic system is where all the solutions λ are non-zero real numbers.

1.4.3 Riemann Invariants

There is more information which can be extracted from (1.28). Suppose the ℓT is a

left eigenvalue corresponding to the root λ, so that ℓT (A−1B−λI) = 0T . Multiplying

(1.28) by ẋ and using (1.29) gives:

u̇ + ẋ(A−1B − λI)
∂u

∂y
= ẋA−1c. (1.31)

Multiplying both sides of this equation by ℓT on the left gives:

ℓT u̇ = ℓT ẋA−1c. (1.32)

The integral of (1.32) yield functions which are constant along the corresponding

characteristic, such functions are called Riemann invariants.
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1.4.4 2D Gas Flow

As an example of how this theory works, the characteristics of the steady two-

dimensional Euler equations will be calculated. The first task is to write the Euler

equations in the form of (1.28), the relevent matrices and column vectors are:

A =



















u ρ 0 0

0 u 0 1/ρ

0 0 u 0

0 γp 0 u



















, B =



















v 0 ρ 0

0 v 0 0

0 0 v 1/ρ

0 0 γp v



















. (1.33)

Calculating det(B − λA) = 0 yields:

(v − λu)2(((u2 − a2)λ2 − 2uvλ+ v2 − a2) = 0. (1.34)

Which gives the eigenvalues to be:

λ1,2 =
v

u
, λ3,4 =

−uv ± a
√
u2 + v2 − a2

a2 − u2
. (1.35)

It follows from (1.35) that the first two characteristics (corresponding to λ1,2) coincide

with the streamlines. In order to have a clear understanding the geometrical meaning

of the third and fourth characteristics it is convenient to use the Euclidian norm of

the velocity vector V and directional angle θ . Write u = V cos θ, v = V sin θ and

a = V sinϑ, the characteristics become:

λ3,4 =
−V 2 sin θ cos θ ± V 2 sin ϑ sinϑ

V 2 sin2 ϑ− V 2 cos2 θ
=

sin θ cos θ ∓ sinϑ cos ϑ

cos2 θ − sin2 ϑ

=
sin 2θ ∓ sin 2ϑ

cos 2θ + cos 2ϑ
=

sin(θ ∓ ϑ) cos(θ ± ϑ)

cos(θ + ϑ) cos(θ − ϑ)
= tan(θ ∓ ϑ) (1.36)

This shows that the projection of the characteristic onto the (x, y) plane coincides

with the corresponding Mach line. The next task is to calculate the left eigenvectors

of A−1B; The matrix of A−1B is given by:

A−1B =



















v
u

ρv
a2−u2 − ρu

a2−u2 − v
u(a2−u2)

0 − uv
a2−u2

a2

a2−u2

v
ρ(a2−u2)

0 0 v
u

1
ρu

0 ρa2v
a2−u2 − ρua2

a2−u2 − uv
a2−u2



















. (1.37)
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θ

C−
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V

Figure 1.2: Illustration of Left and Right Running Characteristics

Writing the left eigenvector as (l1, l2, l3, l4), the four equations are:

l1v − uλl1 = 0 (1.38)

ρvl1 − (uv + λ(a2 − u2))l2 + a2ρvl4 = 0 (1.39)

−ρul1 + a2l2 + (a2 − u2)(
v

u
− λ)l3 − ρua2l4 = 0 (1.40)

−v
u
l1 +

v

ρ
l2 +

a2 − u2

ρu
l3 − (uv + λ(a2 − u2))l4 = 0. (1.41)

Examining the eigenvalue λ = v/u first of all as the Riemann invariants from these

characteristics will be valid on the streamlines gives two different Riemann invariants.

For the first invariant take l2 = l3 = 0 and to see that:

l1 = −a2l4. (1.42)

Choosing l1 = 1 which in turn gives l4 = −a−2. Inserting this into (1.32) gives:

ρ̇− ρ

γp
ṗ = 0. (1.43)
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Integrating this up gives the Riemann invariant for the characteristic (which in this

case on the steamlines). In this case the Riemann invariant is given by:

R1 = log

(

p

ργ

)

. (1.44)

Which is just the entropy up to a multiplicative factor. To calculate the other Rie-

mann invariant, set l1 = 0 and this immediately gives:

l2 = ρul4. (1.45)

Taking l2 = u, this gives l4 = 1/ρ. Inserting these into any other of the linear

equations shows that l3 = v. Inserting these into (1.32) gives:

uu̇+ vv̇ +
ṗ

ρ
= 0 (1.46)

Integrating this equation leads to the second Riemann invariant:

R2 =
u2 + v2

2
+

∫

dp

ρ
, (1.47)

which is just the Bernoulli equation for a compressible medium. The other charac-

teristics are given by:

λ =
−uv ± a

√
u2 + v2 − a2

a2 − u2
. (1.48)

Immediately, it can be seen that l1 = 0 for both of these characteristics. Likewise a

simple relation can be derived relating l2 and l4 which is:

∓
√
u2 + v2 − a2l2 + ρavl4 = 0. (1.49)

Taking:

l4 =
1

ρva
, (1.50)

gives l2 and l3 to be:

l2 = ± 1√
u2 + v2 − a2

(1.51)

l3 = ∓ u/v√
u2 + v2 − a2

. (1.52)

Inserting these into (1.32) results in:
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± u̇√
u2 + v2 − a2

∓ u/v√
u2 + v2 − a2

v̇ +
ṗ

ρav
= 0. (1.53)

As the Bernoulli equation (1.47) can be applied throughout the flow region, it can be

used to reduce (1.53) to an equation in u̇ and v̇ only. Doing this yields:

(±av − u
√
u2 + v2 − a2)u̇+ (∓au− v

√
u2 + v2 − a2)v̇ = 0. (1.54)

The equation can be re-arranged as follows:

dv

du
=

±av − u
√
u2 + v2 − a2

±au+ v
√
u2 + v2 − a2

. (1.55)

Multiplying the numerator and denominator on the RHS of (1.55) by ±au+v
√
u2 − v2 − a2

gives:

dv

du
=
uv ±

√
u2 + v2 − a2

a2 − v2
. (1.56)

Again write u = V cos θ and v = V sin θ, then:

du = −V sin θdθ + cos θdV, dv = V cos θdθ + sin θdV. (1.57)

Inserting these into (1.56) and re-arranging gives:

(a cos θ ±
√
V 2 − a2 sin θ)(aV dθ ∓

√
V 2 − a2dV ) = 0. (1.58)

The first multiplier is zero if and only if:

tan θ = ± 1√
M2 − 1

, (1.59)

which corresponds to the Mach angle. By rotation of the co-ordinate system this can

be avoided. Therefore:

aV dθ ∓
√
V 2 − a2dV. (1.60)

In order to integrate (1.60), the Bernoulli equation is used. For a perfect gas it has

the form:

1

γ − 1
a2 +

1

2
V 2 =

1

γ − 1
a2
∞

+
1

2
V 2
∞
, (1.61)

where the subscript ∞ denotes the free stream value. Taking out a factor of V 2/2

from the LHS gives:

V 2

2

[

1 +
2

(γ − 1)M2

]

=
1

γ − 1
a2
∞

+
1

2
V 2
∞
. (1.62)
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Taking the log of both sides and differentiating gives:

dV

V
=

1

1 + γ−1
2
M2

dM

M
. (1.63)

Combining (1.63) with (1.60) yields:

dθ ∓
√
M2 − 1

1 + γ−1
2
M2

dM

M
= 0. (1.64)

It remains to perform the integration which yields to a conclusion that along the

third and fourth characteristics

R3,4 = θ ∓ ν(M), (1.65)

where

ν(M) =

√

γ + 1

γ − 1
tan−1

[

√

γ − 1

γ + 1
(M2 − 1)

]

− tan−1
√
M2 − 1 (1.66)

is referred to as the Prandtl-Meyer function. In general the Riemann invariant will be

different for different characteristics. So 2D steady supersonic flow in characteristic

form is written as:

pρ−γ = const. on dy
dx

= v
u

(u2 + v2)/2 +
∫

ρ−1dp = const. on dy
dx

= v
u

θ + ν(M) = const. on dy
dx

= tan(θ − ϑ)

θ − ν(M) = const. on dy
dx

= tan(θ + ϑ)

The crossing of the two Riemann invariants in figure (1.3) indicates a point in the

2D gas flow.

1.5 Prandtl-Meyer Flow

1.5.1 Basic Set-up

Prandtl-Meyer flow deals with supersonic flow around a smooth bend of a rigid body

contour.
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Figure 1.3: Polar Plot in (M, θ) plane of Riemann Invariants for 2D Gas Flow

The method of characteristics is applied to this scenario, the characteristic equations

are given by:

θ + ν(M) = ξ on dy/dx = tan(θ + ϑ) (1.67)

θ − ν(M) = η on dy/dx = tan(θ − ϑ). (1.68)

Characteristics which satisfy (1.67) will be called positive characteristics and charac-

teristics which satisfy (1.68) will be called negative characteristics.

The flow is unperturbed everywhere upstream of the characteristic AA′ on the

first characteristic originating from point A where the wall begins to bend, this is a

positive characteristic as the gradient will be always positive. Consider an arbitrary

point B on the curved bend, and consider a positive characteristic originating from

it. There will be a negative characteristic which connects the two regions as shown

in (1.4). The parameter ξ can be easily calculated by noting that for the undisturbed

flow θ = 0 and ν(M) = ν(M∞) and so:

θ + ν(M) = ν(M∞) on dy/dx = tanϑ =
1√

M2 − 1
(1.69)
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Figure 1.4: Flow Around a Bend

The velocity vector at B makes an angle −θB with the tangent of the bend at B and

the x-axis, so the Mach number may be found from:

−θB + ν(MB) = ν(M∞). (1.70)

In order to analyse the flow, consider a positive characteristic BB′ shown in (figure

1.4), along this characteristic:

θ − ν(M) = ξ. (1.71)

Solving (1.69) and (1.71) together gives at point C:

θ =
1

2
(ν(M∞) + ξ), ν(M) =

1

2
(ν(M∞) − ξ). (1.72)

As the quantity ξ does not change as the point C moves along BB′, then the Mach

number and angle does remain constant along BB′ and coincide with their values

along the boundary. As M is constant this also shows that the that the dimen-

sional velocity is also constant along BB′ (via the Bernoulli equation with one of the

states taken to be the free stream flow). Then using the Bernoulli equation and the

conservation of entropy, shows that both ρ and p are also constant along BB′.
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The shape of the physical characteristics are governed by:

dy

dx
= tan(θ + ϑ). (1.73)

Consider the characteristics BB′ again, as the Mach number M is constant then the

Mach Angle:

ϑ = sin−1

(

1

M

)

, (1.74)

will also be constant along BB′, the velocity direction is also constant on BB′ and

so this shows that the characteristic will be a straight line.

1.5.2 Small Angle Approximations

If the slope angle of the corner is small then it is possible to obtain analytical expres-

sions for the pressure and the modulus of the velocity in the following way. Consider

the Riemann invariant:

dθ +
√
M2 − 1

dV

V
= 0. (1.75)

Then writing dθ = θ and dV = V − V∞, (1.75) becomes:

θ +
√

M2
∞
− 1

V − V∞
V∞

= 0. (1.76)

Re-arranging this gives:

V = V∞ − V∞
√

M2
∞
− 1

θ. (1.77)

From the Bernoulli equation

γ

γ − 1

p

ρ
+

1

2
V 2 =

γ

γ − 1

p∞
ρ∞

+
1

2
V 2
∞
. (1.78)

Writing p = p∞ + △p, ρ = ρ∞ + △ρ and V = V∞ + △V (1.78) reduces to:

γ

γ − 1

(

− p∞
ρ2
∞

△ρ+
△p
ρ∞

)

+ V∞△V = 0. (1.79)

Using the previous notation, the entropy conservation law:

pρ−γ = p∞ρ
−γ
∞

(1.80)

reduces to:

△p =
γp∞
ρ∞

△ρ. (1.81)
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Substituting for △ρ from (1.81) into (1.79) gives:

△p
ρ∞

+ V∞△V = 0. (1.82)

Substituting for △V in (1.82) using (1.78) gives:

p = p∞ + ρ∞V
2
∞

θ
√

M2
∞
− 1

(1.83)

1.6 Weak Solutions and Shocks

Consider a set of equations in the form:

∂P

∂x
+
∂Q

∂y
= c. (1.84)

Suppose there is a discontinuity in the fluid dynamic quantities somewhere in the flow

field, such discontinuities are called shock waves. In order to study them consider a

small box around the shock (fig 1.5): Multiply (1.84) by a smooth test function ψ

A

B

Figure 1.5: Weak Solutions

and integrate over the box shown, this gives:

∫∫

box

P
∂ψ

∂x
+Q

∂ψ

∂x
− cψ =

∮

c

ψ(Qdx− Pdy). (1.85)

As the box is shrunk to the shock the sides of the box are shrunk to zero length, so

only the integrals from A to B matter. Denote the values of P and Q on either side

of the shock by ±. Then:

∫ B

A

Q+dx− P+dy +

∫ A

B

Q−dx− P−dy =

∫ B

A

[Q]+
−
dx− [P ]+

−
dy = 0. (1.86)

Which gives:

dy

dx
=

[Q]+
−

[P ]+
−

. (1.87)
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This is in general called a Rankine-Hugoniot equation and is valid across the shock

front. Discontinuities can occur across characteristics, in general however the discon-

tinuities occur along curves called shocks, which are not characteristics.

However, the solutions need not be unique. There are however ways to obtain

unique solutions from weak solutions by adding extra information. There are a num-

ber of ways to do this, one way is via the entropy. Across a shock the entropy must

increase. Entropy increase will normally give a unique solution to the conservation

equations.



Chapter 2

Oblique Shock Waves

The equations of fluid mechanics admit both continuous and discontinuous solutions;

shock waves represent discontinuities in solutions of the general fluid flow equations.

The shock wave is (mathematically) a surface across where the field variables are

discontinuous.

The fluid variables like density, pressure, internal energy, and entropy may be discon-

tinuous across a shock but certain functions of these variables are not discontinuous.

These functions are:

• Mass flux

• Momentum flux

• Energy flux

So this will give a starting point for the investigation of shock waves.

2.1 Rankine-Hugoniot Relations

This section will explore in more depth the conservation of the mass flow, momentum

flow and energy to derive the Rankine-Hugoniot Equations which are the basic set of

equations used in shock physics.

28
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Figure 2.1: Oblique Shock Wave

2.1.1 Conservation of Mass

Consider the mass flow across an area A of the shock wave. The mass flow rate, Ṁ

is given by:

Ṁ = ρunA. (2.1)

The mass flow is the same on both sides of the shock, hence: ρ1u1nA = ρ2u2nA which

gives the first equation:

ρ1u1n = ρ2u2n. (2.2)

The convention is to use the index ′1′ for quantities in advance of the shock and the

index ′2′ for quantities in rear of the shock (see figure 2.1).

2.1.2 Conservation of Momentum

For a mass M of fluid passing through a shock in a time δt, Newton’s second law

states:

P2 − P1

δt
= F2 − F1.



CHAPTER 2. OBLIQUE SHOCK WAVES 30

The momentum, P is the product of mass and velocity. The velocity is a vector,

given by

u = unn̂ + utt̂, (2.3)

where n̂ and t̂ denote the unit normal and tangent vectors respectively. The mass is

given by

M = ρunAδt. (2.4)

The forces are due to pressure, which acts normal to the shock, accounting for direc-

tion the forces are:

F1 = p1An̂ F2 = −p2An̂. (2.5)

Inserting these into Newton’s second law then yields:

ρ2u
2
2nn̂ + ρ2u2nu2tt̂ − ρ1u

2
1nn̂ + ρ1u1nu1tt̂ = p1n̂− p2n̂. (2.6)

The normal component of this equation reads:

ρ2u
2
2n − ρ1u

2
1n = p1 − p2. (2.7)

Or, equivalently

p1 + ρ1u
2
1n = p2 + ρ2u

2
2n. (2.8)

The tangential component of (2.6) gives:

u1t = u2t. (2.9)

So the tangential velocity is conserved across a shock.

2.1.3 Conservation of Energy

Neglecting the heat transfer effects, the first law of thermodynamics states that a

change in the energy W of a mass equates to the work done by external forces

Applying this across the shock gives:

W2 −W1

δt
= F1 · u1 + F2 · u2. (2.10)
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The energy is made up from a mixture of internal energy per unit mass (denoted by

e) and kinetic energy. This is given by:

W = ρunAδt

(

e+
u2
n + u2

t

2

)

. (2.11)

Since F1 = p1n̂ and F2 = −p2n̂, then:

F1 · u1 + F2 · u2 = p1Au1n − p2Au2n. (2.12)

Substituting (2.11) and (2.12) into (2.6) yields

ρ2u2n

(

e2 +
1

2
(u2

2n + u2
2t)

)

− ρ1u1n

(

e1 +
1

2
(u2

1n + u2
1t)

)

= p1u1n − p2u2n; (2.13)

which in view of (2.2):

e1 +
p1

ρ1
+

1

2
u2

1n = e2 +
p2

ρ2
+

1

2
u2

2n. (2.14)

Combining (2.2), (2.8), (2.9) and (2.14) leads to the Rankine-Hugoniot relations:

u1t = u2t (2.15)

ρ1u1n = ρ2u2n (2.16)

p1 + ρ1u
2
1n = p2 + ρ2u

2
2n (2.17)

e1 +
p1

ρ1

+
1

2
u2

1n = e2 +
p2

ρ2

+
1

2
u2

2n. (2.18)

It should be noted that the derivation given here is for a completely arbitrary equation

of state. In order to derive the Rankine-Hugoniot equations for solids, the conserva-

tion of energy will be replaced by an experimental equation of state.

2.1.4 Solving the Rankine-Hugoniot Equations

For a perfect gas, the solution of the Rankine-Hugoniot equations are well known,

this section will go over their solution. The ideal gas law states that;

p = ρRT. (2.19)

The gas constant R = cp− cv, where cv is heat capacity at constant volume and cp is

the heat capacity at constant pressure. The internal energy per unit mass is related
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to the temperature by e = cvT , and if γ = cp/cv, then inserting these relations in the

ideal gas law yields:

e =
1

γ − 1

p

ρ
. (2.20)

So the conservation of energy becomes;

γ

γ − 1

p1

ρ1

+
1

2
u2

1n =
γ

γ − 1

p2

ρ2

+
1

2
u2

2n. (2.21)

Rearranging (2.16) gives:

u2n =
ρ1u1n

ρ2
. (2.22)

Inserting (2.22) into (2.17) and solving the resulting equation for p2 gives:

p2 = p1 + ρ1u
2
1n

(

1 − ρ1

ρ2

)

. (2.23)

Inserting this into (2.21) gives a quadratic in ρ−1
2 :

γ + 1

2(γ − 1)

ρ2
1u

2
1n

ρ2
2

− γ

γ − 1
(p1 + ρ1u

2
1n)

1

ρ2
+

γ

γ − 1

p1

ρ1
+

1

2
u2

1n. (2.24)

One solution of (2.24) is ρ2 = ρ1, which is the acoustic solution. Therefore by using the

expression for the product of the roots of a general quadratic equation, the following

holds:

1

ρ2ρ1
=

2γp1
ρ1

+ (γ − 1)u2
1n

(γ + 1)ρ2
1u

2
1n

. (2.25)

The speed of sound in an ideal gas is given by a2 = γp/ρ; the ratio of the speed to the

speed of sound is called the Mach number, denoted by M . This reduces the product

of the roots to be:

1

ρ2ρ1
=

2 + (γ − 1)M2
1n

ρ2
1M

2
1n

. (2.26)

Which gives the ratio of densities to be

ρ2

ρ1
=

(γ + 1)M2
1n

2 + (γ − 1)M2
1n

. (2.27)

Pressure behind the shock can be written in terms of the ratio of densities:

p2 = p1 + ρ1u
2
1n

(

1 − ρ1

ρ2

)

(2.28)
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Inserting (2.27) into (2.28) and rearranging yields:

p2

p1
= 1 +

2γ

γ + 1
(M2

1 sin2 −1) (2.29)

In order to calculate the Mach number behind the shock, use the notation:

[φ] = φ2 − φ1. (2.30)

Then the Rankine-Hugoniot equations can be written as:

[ρMa] = 0 (2.31)

[

(1 + γM2)ρa2
]

= 0 (2.32)
[(

1 +
γ − 1

2
M2

)

a2

]

= 0 (2.33)

Examining the quotient (2.32)2/((2.31)2(2.33), the Mach number is given to be:
[

(1 + γM2
n)

2

M2
n(1 + γ−1

2
M2

n)

]

= 0 (2.34)

Expanding (2.34) results:

(1 + γM2
1n)

2

M2
1n(1 + γ−1

2
M2

1n)
=

(1 + γM2
2n)

2

M2
2n(1 + γ−1

2
M2

2n)
(2.35)

Equation (2.35) can be re-arranged in a quadratic equation in M2
2n, as before one of

the solutions is M2
2n = M2

1n, and using the product of roots argument shows that:

M2
2n =

2 + (γ − 1)M2
1n

1 − γ + 2γM2
1n

. (2.36)

2.2 Prandtl’s Relation For An Oblique Shock

There is a very simple relationship between the values of the normal velocity of the

flow before and after the shock and the tangential velocity. The speed of sound a is

given by:

a2 =
γp

ρ
. (2.37)

This renders the conservation of energy (2.18) in the form:

a2

γ − 1
+

1

2
(u2

n + u2
t ) = constant. (2.38)
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It is possible to express (2.38) in terms of the fluid speed at a point where the flow

is sonic, i.e. v = a. This speed is the termed the critical velocity â. This gives:

a2

γ − 1
+

1

2
|u|2 =

â2

γ − 1
+

1

2
â2 =

1

2

(

γ + 1

γ − 1

)

â2. (2.39)

So across the shock:

a2
1

γ − 1
+

1

2
(u2

1n + u2
1t) =

a2
2

γ − 1
+

1

2
(u2

2n + u2
2t) =

1

2

(

γ + 1

γ − 1

)

â2. (2.40)

Subtracting1 1/2u2
t from (2.40) yields:

a2
1

γ − 1
+

1

2
u2

1n =
a2

1

γ − 1
+

1

2
u2

2n =
1

2

(

γ + 1

γ − 1

)

â2 − 1

2
u2
t . (2.41)

Divide (2.17) through by (2.16) to get:

p1

γρ1u1n

+ u1n =
p2

γρ2u2n

+ u2n. (2.42)

Using the critical velocity to get rid of the sound speed gives:

1

γu1n

[(

γ + 1

2

)

â2−γ − 1

2
(u2

1n+u
2
t )

]

+u1n =
1

γu2n

[(

γ + 1

2

)

â2−γ − 1

2
(u2

2n+u
2
t )

]

+u2n.

(2.43)

Multiplying through by γu1nu2n; (2.43) can be arranged into a quadratic in u2n

0 =

(

γ + 1

2

)

u1nu
2
2n −

−
[(

γ + 1

2

)

â2 −
(

γ − 1

2

)

(u2
1n + u2

t ) + γu2
1n

]

u2n +

+

(

γ + 1

2

)

â2u1n −
(

γ − 1

2

)

u2
tu1n.

One of the roots of this equation is known to be u1n and so using the product of the

roots arguments the solution is:

u2nu1n = â2 −
(

γ − 1

γ + 1

)

u2
t . (2.44)

1As u1t = u2t, the notation u1t = u2t = ut is used
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2.2.1 Relationship Between Flow Deflection Angle and Shock

Angle

An important part of oblique shock wave theory is to find the angle at which the flow

is deflected by given the shock angle and vice versa. Dividing (2.16) by (2.15) gives

(figure 2.1):

tan θ

tan(θ − ϕ)
=
ρ2

ρ1
. (2.45)

Using expression (2.27) for the ratio of the densities it is possible to obtain two

important relationships between the flow deflection angle and the shock angle. To

derive the flow deflection angle from the shock angle:

tanϕ = 2 cot θ
M2 sin2 θ − 1

2 +M2(γ + cos 2θ)
. (2.46)

To get from the flow deflection angle to the shock angle use the equations:

0 =

(

1 +
γ − 1

2
M2

)

tanϕ tan3 θ − (M2 − 1) tan2 θ +

+

(

1 +
γ + 1

2
M2

)

tanϕ tan θ + 1.

Plotting (2.46) for a given Mach number (figure 2.2) shows that for a given flow

deflection angle, there are two shock angles. This means the solution is not unique.

The same flow deflection angle can be obtained through two shocks which are termed

“strong” and “weak”. The flow speed after a strong shock is subsonic whereas the

flow after a weak shock can still be supersonic. Note that from the Mach Construction

given in chapter 1, the smallest possible angle for an oblique shock wave is the Mach

angle and likewise the largest possible angle it can be is just the normal shock. So

the range of shock angles is given by:

sin−1 1

M
≤ θ ≤ π

2
. (2.47)

Note that the maximum values of the shock angle corresponds to zero flow deflection

angle.
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Figure 2.2: Flow Deflection Angle vs Shock Angle

2.2.2 Oblique Shocks in Solids

It is usual in the theory of shock in solids to have the shock moving into undisturbed

material rather then having a stationary shock and have the fluid flow through the

shock. The notation is usually given as the speed of the shock being US and the

speed of the material in rear of the shock is given by up and is referred to as the

particle velocity. The next task is to relate these variables to the stationary shock

case. Assume that the shock is moving from right to left. Looking at the Rankine-

Hugoniot equations for stationary shock waves the interpretations of the particle
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velocities are the following:

u1 = velocity of the flow in advance of the shock relative to the shock

u2 = velocity of the flow in rear of the shock relative to the shock

However, as the shock was stationary, the particle velocities were also relative to the

laboratory. So if a moving shock wave moves into undisturbed air with speed US,

then US must have the interpretation of particle velocity of the medium in advance of

the shock. Likewise US−up has the interpretation of particle velocity of the medium

in rear of the shock relative to the shock.

So it is possible to make the following “substitutions”

u1 = US

u2 = US − up.

As a result the Rankine-Hugoniot equations become

ρ1US = ρ2(US − up)

p1 + ρ1U
2
S = p2 + ρ2(US − up)

2

e1 +
p1

ρ1

+
1

2
U2
S = e2 +

p2

ρ2

+
1

2
(US − up)

2.

The theory of oblique shocks in gases is well known, however there has been little

work examining the relevant equations for solids. The jump conditions for mass and

momentum follow through exactly as before the only difference is the equation of

state. It is well known experimentally that the shock speed US in a solid obeys the

relationship:

US = a + bup, (2.48)

where a is taken to be the bulk sound velocity and b is related to the second derivative

of the bulk modulus. An experimental fact is that at high pressures (GPa) solids act

as if they were fluids and so the hydrodynamic equations are appropriate for the

analysis. For an oblique shock the equation of state is refined to:

USn = a + bupn.
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Rearranging for upn gives:

upn =
USn − a

b
.

Inserting this into (2.16) makes the ratio of densities:

ρ2

ρ1

=
bUSn

a+ (b− 1)USn
.

However, USn = US sin θ, and therefore:

ρ2

ρ1

=
bUS sin θ

a+ (b− 1)US sin θ
. (2.49)

Inserting this into (2.45) gives:

tan θ

tan(θ − ϕ)
=

bUS sin θ

a + (b− 1)US sin θ
. (2.50)

Using the trigonometric identity:

tan(θ − ϕ) =
tan θ − tanϕ

1 + tan θ tanϕ
.

It is possible to deduce the following expression for the flow deflection angle:

tanϕ =
US sin θ − a

a tan θ + (b− 1)US sin θ tan θ + bUS cos θ
. (2.51)

Getting values for a, b, US and plotting (2.51) shows that there are two shock angles

for a given flow deflection angle, which correspond to the strong and weak solutions

of the Rankine-Hugoniot equations (figure 2.3). The graph also shows that there is

a maximum flow deflection angle which is also like the ideal gas case although (2.51)

is very different in structure. It may also be noted that it is possible to divide the

denominator and numerator by a which represents the sound speed in the material

and get the equation in terms of the Mach number M = US/a.

2.2.3 Deriving θ from ϕ

In this section equation (2.50) is re-examined. The goal of this section is to derive

an equation which enables the shock angle to be calculated from the flow deflection

angle. The method taken mirrors the ideal gas case, so the idea is to turn sin θ on

the RHS of (2.50) to tan θ via the equation:

sin θ =
tan θ√

1 + tan2 θ
.
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Figure 2.3: Shock Angle Vs Flow Deflection Angle

Inserting this into (2.50) gives after cancelling a tan θ:

1 + tan θ tanϕ

tan θ − tanϕ
=

bUS

(b− 1)US tan θ + a
√

1 + tan2 θ
. (2.52)

The idea now is to remove the square root by squaring, this gives:

a2(1 + tan θ tanϕ)2(1 + tan2 θ) = (US tan θ − bUS tanϕ− (b− 1)US tan2 θ tanϕ)2.

This may now be arranged into a polynomial in tan θ:

A tan4 θ +B tan3 θ + C tan2 θ +D tan θ + E = 0.

Where;

A = (a2 − (b− 1)2U2
S) tan2 ϕ

B = 2(a2 + (b− 1)U2
S) tanϕ

C = a2 − U2
S + (a2 − 2b(b− 1)U2

S) tan2 ϕ

D = 2(a2 + bU2
S) tanϕ

E = a2 − b2U2
S tan2 ϕ
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In general, there are four real solutions to the above quartic, the solutions can be

ordered in terms of size as (a1, a2, a3, a4). The first two solutions a1, a2 are negative

which is unphysical and can be ignored. This leaves the other two solutions a3 and

a4 which are the physical solutions and correspond to the weak and strong shocks

respectively.

2.2.4 Maximum Flow Deflection Angle

As with the ideal gas case equation (2.51) can be differentiated to give the shock

angle corresponding to the maximum flow deflection angle. The equation is:

0 = a2 sec2 θ − aUS sin θ + U2
S sin2 θ + (b− 2)aUS sec θ tan θ

− (b− 1)U2
S tan2 θ + US cos θ. (2.53)

Once this equation is solved, the value of θ would then be inserted into (2.51) to give

the maximum flow deflection angle. This is easily done numerically in the following

way. Choose a range of shock angles which satisfy:

sin−1 a

US
≤ θ ≤ π

2
.

Compute tanϕ by using (2.51) and find the maximum value in the array, this will

correspond to the maximum flow deflection angle.

2.3 Solving the Rankine-Hugoniot Equations

It was found that the density ratio across a shock is given by (2.49), namely,

ρ2

ρ1
=

bUS sin θ

a+ (b− 1)US sin θ
. (2.54)

Another important quantity to calculate is the pressure. Using the conservation of

mass, the conservation of momentum can be written as:

p2 = p1 + ρ1U
2
Sn

(

1 − ρ1

ρ2

)

.
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Using further the equation (2.54) gives:

p2 = p1 + ρ1US sin θ

[

US sin θ − a

b

]

. (2.55)

It is usual in the theory of shocks in solids to assume p1 = 0 as this tends to be

atmospheric pressure. As the pressure in a shocked solid is of the order of GPa so

the initial pressure is usually neglected. Note that for an ideal gas the density varies

with the square of the Mach number whilst the expression for a solid only depends

on the shock speed, not the square of the shock speed. The same observation can be

applied to the pressure but there is also a quadratic term in the shock speed. This is

most likely due to the linear nature of the equation of state used as it does not take

into account that although the solid can be treated as a fluid under pressure, there

is still resistance to flow. Typically in experiments the shock speed is of the order of

103ms−1

2.4 Oblique Shock Reflection

2.4.1 Full Theory

Consider air flow down a channel with a wedge on one side. A shock will form at

the tip of the wedge to turn the flow parallel to the wedge surface. As the width of

the channel is finite the flow must be deflected back parallel to the opposite wall, the

physical mechanism for this is a second shock which starts at the point where the

first shock reaches the wall (figure 2.4). Unlike light, the angle of reflection is not

equal to the angle of incidence but for a weak shock, that is when the flow deflection

angle ϕ is small. There are three regions to consider in the diagram of the reflected

shock. Region 1 lies in front of the first shock, region 2 is the region in between the

incident shock and reflected and region 3 behind the reflected shock. To examine

this phenomenon, two sets of Rankine-Hugoniot equations are needed, one set for the

incident shock and one set for the reflected shock. The set of equations which deal
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Figure 2.4: Oblique Shock Reflection

with the incident shock are:

ρ1u1 sin θI = ρ2u2 sin(θI − ϕ) (2.56)

p1 + ρ1u
2
1 sin2 θI = p2 + ρ2u

2
2 sin2(θI − ϕ) (2.57)

γ

γ − 1

p1

ρ1

+
1

2
u2

1 sin2 θI =
γ

γ − 1

p2

ρ2

+
1

2
u2

2 sin2(θI − ϕ). (2.58)

The set of equations which deal with the reflected shock are:

ρ2u2 sin θR = ρ3u3 sin(θR − ϕ) (2.59)

p2 + ρ2u
2
2 sin2 θR = p3 + ρ3u

2
3 sin2(θR − ϕ) (2.60)

γ

γ − 1

p2

ρ2
+

1

2
u2

2 sin2 θR =
γ

γ − 1

p3

ρ3
+

1

2
u2

3 sin2(θR − ϕ). (2.61)

The incident shock deflects the flow toward the boundary and the reflected shock

deflects the flow parallel to the boundary again, which is the reason why the re-

flected shock exists. The equation which deals with the relationship between the flow

deflection angle ϕ and the shock angle θ is also used:

0 =

(

1 +
γ − 1

2
M2

)

tanϕ tan3 θ − (M2 − 1) tan2 θ +

+

(

1 +
γ + 1

2
M2

)

tanϕ tan θ + 1. (2.62)

To solve a shock reflection problem, equations (2.56) to (2.62) are analysed. It should

be noted that in an oblique shock reflection problem, the weak shock solutions should

be chosen and as such the flow will be supersonic throughout.
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In general the solution of a typical shock reflection problem must be studied

numerically. In the case of small flow deflection angle ϕ theoretical analysis can be

carried out.

2.4.2 Weak Shock Reflection

For linearised supersonic flow, the equation for pressure is written as2:

(M2 − 1)
∂2p

∂x2
− ∂2p

∂y2
= 0. (2.63)

The characteristics for the above equation are given by:

dy

dx
= ± 1√

M2 − 1
= ± 1

β
. (2.64)

Integrating (2.64) gives the characteristics; βy ± x = constant, where β =
√
M2 − 1.

The angles of the shock wave relative to the wall are also given by (2.64), and there-

fore, for weak shock waves, the angle will always be the Mach angle. Define the

characteristic co-ordindates by:

ξ = βy + x

η = βy − x.

One of these characteristics deals with the incident shock and the other deals with

the reflected shock; when describing the incident shock the portion of the solution

which represents the reflected shock can be ignored as it has no effect on the incident

wave . Writing (2.63) in terms of these new co-ordinates yields:

∂2p

∂ξ∂η
= 0. (2.65)

This can immediately be solved to get the general solution,

p(ξ, η) = f(ξ) + g(η). (2.66)

Consider air flow down a channel of width h with a wedge which decreases the width

of the channel and let this wedge be small enough so that if ϕ denotes the angle of

2The full derivation of this equation and other equations associated with linearised supersonic

inviscid flow will be carried out fully in chapter 7
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the wedge then tanϕ ≈ ϕ. Also from the linearised theory of inviscid compressible

flows:

β2 ∂p

∂x
= −ρ0u0

∂v

∂y
. (2.67)

The boundary conditions for this problem are:

∂yp(x, 0) = 0 (2.68)

∂yp(x, h) = 0 (2.69)

∂xv(x, 0) = ϕδ(x). (2.70)

where δ(x) is the Dirac delta function. Also from linear theory:

u0
∂v

∂x
= − 1

ρ0

∂p

∂y
. (2.71)

Hence, at y = 0,

u0
∂v

∂y

∣

∣

∣

∣

∣

y=0

= − 1

ρ0

∂p

∂y

∣

∣

∣

∣

∣

y=0

= −βf ′(x). (2.72)

Combining this with (2.70) shows:

u0δ(x)ϕ =
β

ρ0
f ′(x). (2.73)

Integrating the delta function gives the Heaviside function, so:

f(x, y) = −u0

β
ϕ(βy − x). (2.74)

Now the other part of the solution is brought in, write,

p(x, y) = −u0

β
ϕ(βy − x) + g(βy + x). (2.75)

Where g represents the reflected shock Using (2.69) shows that:

∂p

∂y

∣

∣

∣

∣

∣

y=h

= −u0ϕ
′(βh− x) + βg(βh+ x) = 0. (2.76)

Integrating (2.76) with respect to x gives:

g(βh+ x) = −u0

β
ϕ(βh− x). (2.77)

Re-labeling the argument shows that:

g(η) = −u0

β
ϕ(2βh− η), (2.78)
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and with this the full solution becomes:

p(x, y) = −u0

β
(ϕ(2βh+ x− βy) + ϕ(βy − x)). (2.79)



Chapter 3

Shock Polars and Pressure

Deflection Diagrams

The shock polar/pressure deflection diagram1 is the locus of all shocked states possi-

ble. The shock polar and pressure deflection diagram both do this in different ways.

It is usual in the literature for the pressure deflection diagram to be used for solids

instead of shock polars.

3.1 Shock Polars

From the conservation of energy:

1

γ − 1
a2 +

1

2
|V|2 = constant. (3.1)

Define the critical velocity, â to be the speed of the fluid at the flow location where

the local flow is sonic, so the conservation of energy (2.39) becomes

1

γ − 1
a2 +

1

2
|V|2 =

1

2

(

γ + 1

γ − 1

)

â2. (3.2)

Define the normalised velocity as:

ξ =
|V|
â
. (3.3)

1Also called a shock polar

46
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v2

v1

Figure 3.1: The new co-ordinates

Equation (3.2) can be written as:

|V|2
[

1

(γ − 1)M2
+

1

2

]

=
1

2

(

γ + 1

γ − 1

)

â2

or ξ2

[

2

(γ − 1)M2
+ 1

]

=

(

γ + 1

γ − 1

)

which gives ξ2 =
(γ + 1)M2

2 + (γ − 1)M2
. (3.4)

It is useful to write (3.4) in the form:

1

M2
=
γ + 1

2

1

ξ2
− γ − 1

2
. (3.5)

Now the ratio of densities across an oblique shock is given by equation (2.27):

ρ2

ρ1

=
(γ + 1)M2 sin2 θ

2 + (γ − 1)M2 sin2 θ
. (3.6)

From the conservation of mass across a shock (2.2):

ρ1u1n = ρ2u2n. (3.7)

So the ratio of normal velocities across a shock is given by:

u2n

u1n
=
ρ1

ρ2
=
γ − 1

γ + 1
+

2

(γ − 1)M2 sin2 θ
. (3.8)

Define new variables by: If ϕ is the flow deflection angle and u2 is the modulus of

the velocity behind the shock then:

v1 = u2 cosϕ

v2 = u2 sinϕ.

where v1 is the velocity component in the direction parallel to the velocity before

shock and v2 is the normal direction (figure 3.1).
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The idea is to shift the emphasis from a spacial Cartesian co-ordinates to a set of

co-ordinates based upon velocity, this is called a hodograph transformation. So:

u2n = u2 sin(θ − ϕ)

= u2(sin θ cosϕ− sinϕ cos θ)

= v1 sin θ − v2 cos θ

u1n = u1 sin θ,

where θ denotes the shock angle corresponding to the flow deflection angle. Taking

this into account, equation (3.8) may be written as:

v1

u1
− v2

tan θ
=
γ − 1

γ + 1
+

2

(γ − 1)M2 sin2 θ
. (3.9)

In order to remove θ from (3.9), note that the tangential part of the velocity is

conserved across a shock, so:

u1 cos θ = u2 cos(θ − ϕ)

= v1 cos θ + v2 sin θ. (3.10)

This gives:

tan θ =
u1 − v1

v2
, sin2 θ =

(u1 − v1)
2

v2
2 + (u1 − v1)2

(3.11)

Inserting these into (3.9) results in:

v1

u1

− v2
2

u1(u1 − v1)
=
γ − 1

γ + 1
+

2

γ + 1

v2
2 + (u1 − v1)

2

(u1 − v1)2

1

M2
(3.12)

Using (3.5), equation (3.12) can be written as:

v2
2 =

(u1v1 − â2)(u1 − v1)
2

â2 + 2
γ+1

u2
1 − u1v1

. (3.13)

Or in terms of the normalised velocity:

ξ2
2 =

(ξ1λ− 1)(ξ1 − λ)2

1 + 2
γ+1

λ2 − λξ1
, (3.14)

where λ is the normalised velocity before the shock, namely,

λ =
u1

â
(3.15)
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Figure 3.2: Shock Polar, M = 3, λ = 1.96

The limits of the graph are:

1

λ
≤ ξ1 ≤ λ. (3.16)

It is possible to plot additional information on the shock polar, that of the flow de-

flection angle. The flow deflection angle can be given as a constant ratio of vertical to

horizontal velocities after the shock, so the flow deflection angle will be a straight line

from the origin. As the shock polar is the locus of shock states, the intersection of the

flow deflection line and the shock polar will correspond shocked states corresponding

to the given flow deflection angle.

The flow deflection line will intersect the shock polar in two points αs < αw on

the ξ1 axis. The first point, αs corresponds to the strong shock solution where the

speed after the shock is subsonic. The second point αw corresponds to the weak

shock solution which is of interest in shock reflection.

There are three possible types of flow deflection line. The first type has already

been discussed, there are three points of intersection between the flow deflection line

and the shock polar. The second type, there is only one point of intersection, this is
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when the flow deflection line is tangent to the shock polar, a physical solution still

exists but there is only one. The third type is when the flow deflection angle is too

large and are no intersection points which means that there is no regular reflection

solutions.

Returning to the derivation of the shock polar, expanding u1t = u2t in terms of

the flow deflection angle and shock angle yields equation (3.10), dividing throughout

by cos θ and using the hodograph co-ordinates gives for points on the shock polar

results in:

tan θ =
u1 − v1

v2
. (3.17)

Dividing the numerator and denominator by the critical velocity â gives:

tan θ =
λ− ξ1
ξ2

, (3.18)

where (ξ1, ξ2) correspond to the points of intersection of the flow deflection line and

the shock polar. Consider a line which passes through the point (λ, 0) and the point

(ξ1, ξ2). The gradient of this line will be:

tanα =
ξ2

ξ1 − λ
. (3.19)

Note that tan θ tanα = −1, so this describes a new method of calculating the shock

angle from the flow deflection angle.

For a given Mach number before the shock, plot the shock polar and then plot

the flow deflection line. If ϕ is the flow deflection angle, solve the pair of equations:

ξ2
1 tan2 α =

(λξ1 − 1)(λ− ξ1)
2

1 + 2
γ+1

λ2 − λξ1

ξ2 = tanϕξ1

to find the points of intersection of the flow deflection angle and the shock polar.

Then calculate the gradient of the line, L from (λ, 0) to (ξ1, ξ2). The gradient of the

line from (0, 0) which is at right angles to L will be equal to tan θ, where θ is the

shock angle.
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Figure 3.3: Calculating the Shock Angle

3.2 Pressure Deflection Diagrams

3.2.1 Incident Shock

The shock polar represents information about the velocities before and after an

oblique shock. The pressure deflection diagram2 is a graph of pressure ratio across

the shock against flow deflection angle. The diagram can be plotted for both strong

and weak shocks for left and right going waves (figure 3.4 The relationship between

the flow deflection angle and shock angle gives a maximum shock angle for a given

Mach number, which in turn gives a maximum possible flow deflection angle. The

maximum possible flow deflection angle gives the maximum possible turning angle

for there to be an attached shock at the tip of the wedge turning the flow, if the flow

deflection angle is any larger than this then the resulting shock is detached from the

tip. The maximum flow deflection is where the tangent line to the pressure deflection

diagram is vertical (see figure 3.4).

When dealing with other materials, it is more usual to use a pressure deflection

2In some texts, a pressure deflection diagram is also called a shock polar
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Figure 3.4: Pressure Deflection Diagram for a Perfect Gas

diagram rather than a shock polar. Figure 3.5 shows a pressure deflection diagram

for a linear shock equation of state3. For solids it is customary to take the initial

pressure to be zero.

3.2.2 Reflected Shock

The physical set up is material flows over an impermeable wedge and creates an

incident shock at the wedge tip, the incident shock then hits another impermeable

wall and creates a reflected shock (figure 2.4). The reflected polar can also be plotted

on the same set of axes. The pressure deflection diagram can give information about

regular reflections, the “tip” of the reflected polar should lie on the incident shock.

For the case of the regular reflection, if the reflected polar crosses the p-axis then

the points at which it crosses will be the pressure after the reflected shock. There are

three possibilities for the reflected shock:

• The reflected polar intersects the p-axis in two places, corresponding to both

3The linear shock EoS is given by US = a + bup, where a and b are determined by experiment
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Figure 3.5: Pressure Deflection Diagram Linear Shock EoS

the strong and weak solutions to the Rankine-Hugoniot equations.

• The reflected polar is tangent to the p-axis, so there is only one point of contact

of the reflected polar and p-axis. Regular reflection still exists but for only one

single shock angle.

• There is no intersection of the reflected polar and the p-axis, there is no possible

regular reflection.
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Figure 3.6: Reflected Shock



Chapter 4

Mach Reflection

This chapter investigates when a regular reflection cannot happen and discusses when

such phenomenon called Mach reflection happen as a function of the initial Mach

number and shock/flow deflection angle.

4.1 Mach Reflection Configuration

It has been observed in experiments that for certain shock angles and for certain

Mach numbers, the following configuration of shocks exists (see figure 4.1).

M1 > 1

M2 > 1

M3 > 1

M4 < 1

Figure 4.1: Mach Reflection

There are then two questions which follow this observation: 1) Is it possible to model

55
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this phenomenon with a set of equations and 2) When is the transition from regular

reflection to Mach reflection. The second of these questions will be answered in the

second part of this chapter.

Consider an oblique incident shock in the laboratory frame of reference on a

surface, moving horizontally to the surface at a speed u1 (as shown in figure 4.2).

The incident shock gives rise to a reflected shock which moves horizontally to the

surface at a speed u2.

Incident Shock
Reflected Shock

u1 u2

Figure 4.2: Reflected Shocks

If u1 = u2 then the resulting shock pattern will be a regular reflection. If however

u1 < u2, then this means the reflected shock is moving faster than the incident

shock. The reflected shock will begin to merge with the incident shock forming a

single strong shock which meets the wall at right angles in order to keep the flow

tangential to the wall. The flow behind a strong shock is always subsonic so there

will be a dividing contact discontinuity between the subsonic flow and the supersonic

flow behind the reflected shock, which is shown as the dashed line in figure 4.1. The

pressure is the same on both sides of the contact discontinuity otherwise there would

be flow between regions 3 and 4 in figure 4.1 which isn’t possible.

Once the reflected shock catches up with the incident shock and merges with it

then there are two different types of Mach reflections configurations possible, usually

called direct and indirect Mach reflection. The difference between the two configura-

tions is the way the Mach stem bends upstream (figure 4.3), or downstream (figure

4.4). The flow deflection angle for region 4 (figure 4.7) for an indirect Mach reflection
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Indirect Mach Reflection Direct Mach Reflection

Figure 4.3: Types of Mach Reflection

is given by:

ϕ3 = ϕ2 + ϕ1 (4.1)

As can be seen by the pressure deflection diagram (figure 4.4), that there are two
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Figure 4.4: Indirect Mach Reflection

possibilities for shock reflection, the first is that of regular reflection as the reflected

polar crosses the p-axis, the final pressure is given at the intersection point of the

p-axis and the reflected polar. The other possibility is the indirect Mach reflection,

the pressure on the stem is calculated from the intersection of the reflected with the

strong branch of the shock polar as shown. It is an ongoing area of research to find out
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which shock configuration happens. With direct Mach reflection there are still two
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Figure 4.5: Direct Mach Reflection

shock configurations possible (figure 4.5) as the reflected polar crosses the p axis and

the portion of the reflected polar which denotes weak shocks intersects the portion

of the incident shock polar which denotes strong shocks. The latter scenario is the

direct Mach reflection. However if the flow deflection angle of the incident shock is

increased then there will be no regular reflection solution and only a direct Mach

reflection is possible. Again, the intersection of the reflected polar with the strong

branch of the incident shock will give the pressure in the subsonic region. The flow

deflection angle in region 4 for a direct Mach reflection (figure 4.7) is given by:

ϕ3 = ϕ2 − ϕ1 (4.2)

There is also the question of the transition from indirect Mach reflection to direct

Mach reflection. In this shock configuration the stem is a straight line, as is the

contact discontinuity. In terms of pressure deflection diagrams, the reflection polar

intersects the incident polar on the p-axis. The pressures will be equal in regions 3

and 4 (see figure 4.1 for definition of the regions) given by the pressure across the
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stem which is a normal shock.
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Figure 4.6: Indirect Mach Reflection

The usual method to analyse a Mach reflection is to assume that the contact

discontinuity is a straight line at some given angle to be calculated, so this gives a

well-defined shock angle to work with. Using this approximation, three shock theory

can be applied. Three shock theory applies the Rankine-Hugoniot equations across

the incident and reflected shock and the Mach stem.

The key fact to use is that the pressure of either side of the contact discontinuity

and so p3 = p4 and so:

p4

p1
=
p3

p1
=
p3

p2

p2

p1
. (4.3)

The shock angle is a function of the pressure ratio via:

sin2 θ =
1

M2

[

1 +
γ + 1

2γ

[

p

p0
− 1

]]

. (4.4)

Applying (4.4) and (4.3) to the shock angle on the stem gives:

sin2 θ3 =
1

M2
1

[

1 +
γ + 1

2γ

[

p3

p2

p2

p1

− 1

]]

. (4.5)
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Figure 4.7: Idealisation of Mach Reflection

The ratio of pressures p2/p1 can be expressed in terms of θ1 and M1. The Mach

number in region 2 is given by:

M2
2 =

1

sin2(θ1 − ϕ1)

2 + (γ − 1)M2
1 sin2 θ

1 − γ + 2γM2
1 sin2 θ1

(4.6)

as M1n = M1 sin θ and M2n = M2 sin(θ − ϕ). From (figure 4.7) the flow deflection

angles are related by the expression:

ϕ3 = ϕ1 − ϕ2. (4.7)

The shock and flow deflection angles are related by:

tanϕ3 = cot θ3
M2

1 sin2 θ3 − 1

2 +M2
1 (γ + cos 2θ3)

(4.8)

tanϕ2 = cot θ2
M2

2 sin2 θ2 − 1

2 +M2
2 (γ + cos 2θ2)

(4.9)

tanϕ1 = cot θ1
M2

1 sin2 θ1 − 1

2 +M2
1 (γ + cos 2θ1)

(4.10)

and the pressures across the shocks are given by:

p2

p1

= 1 +
2γ

γ + 1
(M2

1 sin2 θ1 − 1) (4.11)

p3

p2
= 1 +

2γ

γ + 1
(M2

2 sin2 θ2 − 1) (4.12)

p4

p1

= 1 +
2γ

γ + 1
(M2

1 sin2 θ3 − 1) (4.13)
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The value for p3 is calculated as the point of intersection of the strong shock part

of the shock polar for the Mach stem (as an incident shock) and the reflected shock.

Once this has been done, then the angles θ2 and θ3 can be calculated easily.

4.2 Transition from Regular Reflection to Mach

Reflection

A number of different criteria have been put forward for the transition from regular

reflection to Mach reflection and they will be discussed one by one.

4.2.1 Detachment Criterion

When computing the reflected polar, there are essentially two possible configurations,

when the reflected polar does and does not intersect with the p-axis. The limiting

case is where the reflected polar is tangent to the p-axis, this is called the detachment

criterion. (figure 4.8)
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Figure 4.8: Detachment Criterion
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There is one other possible shock configuration, that is where there is no reflected

shock, this is because the flow after the incident shock is subsonic, these criteria are

close to each other.

4.2.2 von Neumann Criterion

When the Mach stem forms, the following conditions should be satisfied. Firstly, the

pressure immediately above the contact discontinuity (in region 3) should coincide

with the pressure immediately below the contact discontinuity (in region 4. This is

written as

p3 = p4. (4.14)

Secondly, the velocity vector in regions 3 and 4 should be tangent to the contact

discontinuity, which gives:

ϕ3 = ϕ2 − ϕ1 = 0. (4.15)

The shape of the stem in a von Neumann reflection is a straight line as the von

Neumann reflection (figure 4.9) is the transition point between the indirect and direct

Mach reflection. The stem will be perpendicular to the wall because the flow has be

remain parallel to the wall.

Examining the points at which the reflection polar intersects the p axis (figure

4.9) yields two possible solutions, a Mach reflection and a regular reflection. The

point of intersection of the reflected polar and the incident polar gives the reflected

pressure equal to a normal shock:

preflected

p1

= 1 +
2γ

γ + 1
(M2

1 − 1) (4.16)

This also indicates that the stem is a straight line parallel to the wall. A graph of

shock angle vs initial Mach number can be plotted for both the detachment and von

Neumann criteria for γ = 1.4 (figure 4.11). It should be noted that before Mach

number 2.3 − 2.4 the detachment and von Neumann criteria are the same and they

start to diverge after this.
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Figure 4.9: Pressure Deflection diagram depicting the von Neumann Criterion

4.2.3 Sonic Criterion

This criterion depends upon signals generated at the tip of the wedge. The transition

from regular reflection to Mach reflection depends upon whether the signals at the

wedge catch up with the reflected wave. As long as the flow behind the reflected wave

is supersonic then the corner generated signals will not affect the reflected shock.

Note from the shock polar for the sonic criterion that the reflected polar crosses

the p-axis which indicates that theoretically that regular reflection is possible (figure

4.10). A comparison of the detachment and von Neumann conditions is given by figure

4.11, the sonic criterion is not added because the difference between the detachment

and sonic criteria is less than a degree, so it is not included in the graph.



CHAPTER 4. MACH REFLECTION 64

2

4

6

8

10

12

14

16

-30 -20 -10 0 10 20 30 40
ϕ (deg)

p/
p 0

Figure 4.10: Sonic Criterion
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Chapter 5

Numerical Results

In order to test the different criteria mentioned in the previous chapter, the Lax-

Wendroff method is applied to the Euler equations. The Lax-Wendroff method uses

the conservation form of these equations, i.e. they are written as:

∂A

∂t
+
∂B

∂x
+
∂C

∂y
= 0. (5.1)

5.1 Conservation form of the Euler Equations

The Euler equations are:

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (5.2)

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
, (5.3)

ρ
∂v

∂t
+ ρu

∂v

∂x
+ ρv

∂v

∂y
= −∂p

∂y
, (5.4)

ρ
∂e

∂t
+ ρu

∂e

∂x
+ ρv

∂e

∂y
=

p

ρ

[

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y

]

. (5.5)

The continuity equation (5.2) is already written in conservation form. In order to

express the x-momentum equation (5.3) in conservation form multiply (5.2) by u and

add to (5.3), resulting in:

∂

∂t
(ρu) +

∂

∂x
(p+ ρu2) +

∂

∂y
(ρuv) = 0. (5.6)
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Multiplying (5.2) by v and adding to the y-momentum equation (5.4) renders it into

the form:

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(p+ ρv2) = 0. (5.7)

With the help of (5.2), the energy equation (5.5) may be converted into the form:

ρ
De

Dt
= −p∂u

∂x
− p

∂v

∂x
. (5.8)

Or equivalently:

ρ
De

Dt
= − ∂

∂x
(pu) − ∂

∂y
(pv) + u

∂p

∂x
+ v

∂p

∂y
. (5.9)

Multiplying (5.3) by u and (5.4) by v gives:

ρ
D

Dt

(

u2

2

)

= −u∂p
∂x
, ρ

D

Dt

(

v2

2

)

= −v ∂p
∂y
. (5.10)

Introduce the “full energy” function:

E = e+
1

2
(u2 + v2). (5.11)

Then substituting (5.10) into (5.5) results in:

ρ
∂E

∂t
+

∂

∂x
(pu) +

∂

∂y
(pv) = 0. (5.12)

It remains to multiply (5.2) by E and add the result to (5.12). This leads to the

conservation form of the energy equation:

∂

∂t
(ρE) +

∂

∂x
(u(p+ ρE)) +

∂

∂y
(v(p+ ρE)) = 0. (5.13)

5.2 Non-dimensionalisation and Initial Conditions

When attempting to undertake a numerical solution of the Euler equations, the first

task is to non-dimensionalise them. In the free-stream flow there are reference quan-

tities which can be used to define non-dimensional variables. The quantities are:

V∞ − free-stream flow

ρ∞ − free-stream density

p∞ − free-steam pressure

L − reference length scale
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The dimensionless quantities are then defined as:

t = L
V∞
t̄, x = Lx̄, y = Lȳ, u = V∞ū,

v = V∞, ρ = ρ∞ρ̄, p = ρ∞V
2
∞
, E = V 2

∞

The equations now become (after dropping the bars):

∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0,

∂

∂t
(ρu) +

∂

∂x
(p+ ρu2) +

∂

∂y
(ρuv) = 0,

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(p+ ρv2) = 0,

∂

∂t
(ρE) +

∂

∂x
(u(p+ ρE)) +

∂

∂y
(v(p+ ρE)) = 0.

E − 1

γ − 1

p

ρ
+

1

2
(u2 + v2) = 0

5.2.1 Initial Conditions

The previous analysis was based upon the Rankine-Hugoniot equations. The aim of

this study is to examine numerically, the transition from regular reflection to Mach

reflection. In particular the difference between the two different transition conditions

is of interest. The formation of the shocks are important, the Rankine-Hugoniot

equations have no information how the shocks are formed, only that they exist and

how to calculate their properties.

The computational domain is set up in the following way: The reflected wall is at

the upper boundary and the material flows in through the lower boundary. The lower

boundary is split up into two parts. On part of the lower boundary, there is free-

stream flow and on the rest the Rankine-Hugoniot equations are applied, simulating

the transition through an oblique shock. The flow then reaches the upper boundary

and the boundary conditions deal with flow after this.

This approach whilst not being a full numerical method (due to the use of the

Rankine-Hugoniot equations on the lower boundary) it does solve the Euler equations

to give a numerical picture of what happens after the incident shock.

The initial conditions for the problem are the free-steam conditions and the bound-

ary conditions for the shock is the Rankine-Hugoniot equations, the dimensionless
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values for the velocities and the densities are u = 1, v = 0 and ρ = 1 respectively.

The equation for the pressure is given by p∞ = ρ∞V
2
∞
p and using the expression

for the speed of sound in air gives p = 1/γM2
∞

where M∞ is the free-stream Mach

number. The initial condition for energy takes (by a similar reasoning used for the

pressure) the form:

E =
1

γ(γ − 1)M2
∞

+
1

2
(5.14)

Suppose the location of the shock is xsh, for x < xsh the free-stream conditions are

used for x ≥ xsh, the Rankine-Hugoniot equations are used. Suppose there is a unit

free-stream velocity parallel to the fixed boundary crossing a shock which is at an

angle θ, then:

u1n = sin θ, u1t = cos θ. (5.15)

From the Rankine-Hugoniot equations:

θ

u1n

1

θ

u2t

θ

Figure 5.1: Initial Value From the Shock

u2n =

[

γ − 1

γ + 1
+

1

(γ + 1)M2
∞

sin2 θ

]

sin θ

u2t = cos θ

To obtain the initial conditions for the shock, apply a rotation of angle −θ to get u2
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and v2,

u2 = u2n sin θ + v2t cos θ (5.16)

v2 = u2t sin θ − u2n cos θ (5.17)

For pressure, density and energy the relations (which come from the Rankine-Hugoniot

equations) are:

ρ2 =
(γ + 1)M2

∞
sin2 θ

2 + (γ − 1)M2
∞

sin2 θ
(5.18)

p2 =
1

γM2
∞

2γM2
∞

sin2 θ − (γ − 1)

γ + 1
(5.19)

E2 =
1

γ − 1

p2

ρ2
+

1

2
(u2

2 + v2
2) (5.20)

5.3 Numerical method

A predictor-corrector method is used, all of the equations have been written in the

form:

∂A

∂t
+
∂B

∂x
+
∂C

∂y
= 0. (5.21)

x x x

x x x

x x x

h h

h

h

i− 1, j − 1 i, j − 1 i+ 1, j − 1

i− 1, j i, j i+ 1, j

i− 1, j + 1 i, j + 1 i+ 1, j + 1

2 1

4

3
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5.3.1 Predictor

At point 1 (5.21) is written as:

A⋆1 − 1
2
(Ai,j + Ai+1,j)

δt/2
+
∂B

∂x

∣

∣

∣

∣

∣

1

+
∂C

∂y

∣

∣

∣

∣

∣

1

= 0. (5.22)

Where:

∂B

∂x

∣

∣

∣

∣

∣

1

=
Bi+1,j −Bi,j

δx

∂C

∂y

∣

∣

∣

∣

∣

1

=
Ci+1,j+1 − Ci+1,j−1 + Ci,j+1 − Ci,j−1

4δy
.

All the quantities without a ⋆ are evaluated at the previous time-step, tn = nδt.

Equation (5.21) at point 2 is given by:

A⋆2 − 1
2
(Ai,j + Ai−1,j)

δt/2
+
∂B

∂x

∣

∣

∣

∣

∣

2

+
∂C

∂y

∣

∣

∣

∣

∣

2

= 0, (5.23)

where

∂B

∂x

∣

∣

∣

∣

∣

2

=
Bi,j − Bi−1,j

δx

∂C

∂y

∣

∣

∣

∣

∣

2

=
Ci,j+1 − Ci.j−1 + Ci−1,j+1 − Ci−1,j−1

4δy
.

At point 3, equation (5.21) becomes:

A⋆3 − 1
2
(Ai,j+1 + Ai,j)

δt/2
+
∂B

∂x

∣

∣

∣

∣

∣

3

+
∂C

∂y

∣

∣

∣

∣

∣

3

= 0, (5.24)

where:

∂B

∂x

∣

∣

∣

∣

∣

3

=
Bi+1,j+1 −Bi−1,j+1 +Bi+1,j −Bi−1,j

4δx

∂C

∂y

∣

∣

∣

∣

∣

3

=
Ci,j+1 − Ci,j

δy
.

At point 4, equation (5.21) becomes:

A⋆4 − 1
2
(Ai,j + Ai,j−1)

δt/2
+
∂B

∂x

∣

∣

∣

∣

∣

4

+
∂C

∂y

∣

∣

∣

∣

∣

4

= 0, (5.25)

where:

∂B

∂x

∣

∣

∣

∣

∣

4

=
Bi+1,j −Bi−1,j +Bi+1,j−1 −Bi−1,j−1

4δx

∂C

∂y

∣

∣

∣

∣

∣

4

=
Ci,j − Ci,j−1

δy
.
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5.3.2 Corrector

The second step is the corrector part, equation (5.21) can be written as a finite

difference equation:

Anewi,j −Ai,j

δt
+
B1 − B2

δx
+
C3 − C4

δy
= 0, (5.26)

where Anewi,j is the value of the function A at the new time-step tn+1 = (n+ 1)δt

5.3.3 Artificial Viscosity

The Euler equations have discontinuous solutions, that is, variables have an infinite

spatial gradient which isn’t possible to model numerically. The way around this

problem is to introduce some viscosity, this has the effect of smearing out the shock

over a number of cells making the spatial gradients large but manageable.

For any quantity {αnewi,j }, introduce:

D1 = αnewi+1,j − αnewi,j

D2 = αnewi,j − αnewi−1 .

Then the correction to {αnewi,j } is given by:

Ω = ν(|D1|D1 − |D2|D2) (5.27)

and the proper value is given by:

αi,j = Ω + αnewi,j (5.28)

5.3.4 Numerical Results

The free-stream Mach number used was 2.75 in order to distinguish the von Neumann

(figure 5.3) and detachment criteria (figure 5.2). The calculations were performed for

the same length of time to make a fair comparison of the results.

The first thing to note is that the pressure in the reflected shock is not constant,

it peaks at the stem and then decreases as the distance from the reflecting boundary

is increased. For the incident shock however the pressure is uniform, this is due to
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the boundary condition imposed on the lower boundary being the Rankine-Hugoniot

equations and not an artifact of the real boundary geometry. However, away from

the shock the pressure at the rear of the reflected shock seems to be converging to a

uniform pressure.

As the difference in the detachment and von Neumann criteria are close at M∞ =

2.75, the size of the Mach stem is approximately the same size as can be seen in

figures 5.2 and 5.3. For situations which give a regular reflection, the stem-like shock

still appears, this is due to the fact that close to the reflecting boundary the incident

shock and the reflected shock are very close and the flow direction changes very

rapidly which causes the incident and reflected shocks to merge together close to the

boundary. It is possible that the shocks in figures 5.2 and 5.3 are regular reflections

as the stems are the same size. Note that moving away from the upper boundary the

pressure from the reflected wave appears to be decreasing to a constant pressure as

the distance from the incident and reflected shocks increase.

There are two types of “ripples” in the results. The first is located by the incident

shock and can be removed by having a longer run-time for the program. The second

of these ripples is located at the lower boundary where the material flows in. These

are due to the mesh size, decreasing the mesh size will in general increase the accuracy

of the results. The ripples are in just one direction which would indicate that only

reducing the mesh size in one direction would remove the ripples.
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Figure 5.2: Detachment Point

Figure 5.3: von Newmann Point



Chapter 6

The Shape of the Contact

Discontinuity; Downstream

Asymptote

Much of the analysis of Mach stems has been carried out by approximating the contact

discontinuity as a straight line (see ref [7]).

Experimentally however the contact discontinuity is seen to be curved, this is also

known about theoretically but has been very difficult to calculate, so the straight line

approximation has been used. In this chapter, the shape of the contact discontinuity

is computed when the conditions are close to the von Neumann criterion where the

Mach stem and contact discontinuity are straight lines and so the method used is

perturbation theory.

6.1 von Mises Variables

It is occasionally useful to have a set of co-ordinates which are intrinsic to the problem

studied. The von Mises co-ordinate system fit around the body surface by using the

stream function in their definition.

74
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6.1.1 Definition

In the analysis of the contact discontinuity the von Mises variables are used. The

co-ordinate transformation is given by:

(x, y) 7→ (s, ψ) (6.1)

where s = x and ψ is defined by:

∂ψ

∂x
= −ρv, ∂ψ

∂y
= ρu. (6.2)

6.1.2 Derivatives in von Mises Co-ordinates

The task now is to rewrite the Euler equations using the von Mises variables. From

the chain rule:

∂

∂x
=

∂s

∂x

∂

∂s
+
∂ψ

∂x

∂

∂ψ

=
∂

∂s
− ρv

∂

∂ψ
.

Also

∂

∂y
=

∂s

∂y

∂

∂s
+
∂ψ

∂y

∂

∂ψ

= ρu
∂

∂ψ
.

From the definition of the material derivative:

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y

=
∂

∂t
+ u

[

∂

∂s
− ρv

∂

∂ψ

]

+ v

[

ρu
∂

∂ψ

]

=
∂

∂t
+ u

∂

∂s

6.1.3 The Euler Equations in von Mises Variables

The continuity equation

Dρ

Dt
+ ρ∇ · u = 0 (6.3)
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becomes

Dρ

Dt
+ ρ∇ · u =

∂ρ

∂t
+ u

∂ρ

∂s
+ ρ

[

∂u

∂s
− ρv

∂u

∂ψ
+ ρu

∂v

∂ψ

]

=
∂ρ

∂t
+

∂

∂s
ρu+ ρ2

[

u
∂v

∂ψ
− v

∂u

∂ψ

]

=
∂ρ

∂t
+

∂

∂s
ρu+ (ρu)2 ∂

∂ψ

(

v

u

)

= (ρu)2

[

1

(ρu)2

∂ρ

∂t
+

1

(ρu)2

∂

∂s
(ρu) +

∂

∂ψ

(

v

u

)]

.

Dividing through by (ρu)2 gives the final form of the continuity equation:

1

(ρu)2

∂ρ

∂t
− ∂

∂s

(

1

ρu

)

+
∂

∂ψ

(

v

u

)

= 0. (6.4)

The x-momentum equation has the form

Du

Dt
= −1

ρ

∂p

∂x
, (6.5)

Upon using the von Mises variables:

∂u

∂t
+ u

∂u

∂s
= −1

ρ

∂p

∂s
− v

∂p

∂ψ
. (6.6)

Similarly, the y-momentum equation:

Dv

Dt
= −1

ρ

∂p

∂y
, (6.7)

becomes

∂v

∂t
+ u

∂v

∂s
= −u ∂p

∂ψ
. (6.8)

Finally, the conservation of energy:

DS

Dt
= 0 ⇒ D

Dt

[

p

ργ

]

= 0, (6.9)

takes the form

∂S

∂t
+ u

∂S

∂s
=

[

∂

∂t
+ u

∂

∂s

]

p

ργ
= 0. (6.10)

The flow studied is stationary, in which case the above equations reduce to
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∂

∂s

(

1

ρu

)

− ∂

∂ψ

(

v

u

)

= 0 (6.11a)

u
∂u

∂s
= −1

ρ

∂p

∂s
− v

∂p

∂ψ
(6.11b)

∂v

∂s
= − ∂p

∂ψ
(6.11c)

∂

∂s

[

p

ργ

]

= 0. (6.11d)

From (6.11a), there exists a function N = N(s, ψ) such that

∂N

∂s
=
v

u
,

∂N

∂ψ
=

1

ρu
. (6.12)

The physical meaning of N may be revealed as follows. Consider the identities:

x ≡ x(s(x, y), ψ(x, y)), y ≡ y(s(x, y), ψ(x, y)), (6.13)

Differentiating the second of (6.13) with respect to y:

∂y

∂y
= 1 =

∂s

∂y

∂y

∂s
+
∂ψ

∂y

∂y

∂ψ
= ρu

∂y

∂ψ
.

Shows that:

∂y

∂ψ
=

1

ρu
. (6.14)

Differentiating the second of (6.11b) with respect to x:

∂y

∂x
= 0 =

∂y

∂s

∂s

∂x
+
∂y

∂ψ

∂ψ

∂x
=
∂y

∂s
− v

u
.

which gives:

∂y

∂s
=
v

u
. (6.15)

These calculations show that the physical meaning of N is the distance from the body

surface to a particular streamline.

6.2 Linearised Equations

The idea of this section is to examine the shape of the contact discontinuity around

the von Neumann criterion. The way to study this is via a perturbation expansion

in region 41.

1The subscripts of the Mach numbers in figure 6.1 denote the region number
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M1 > 1

M2 > 1

M3 > 1

M4 < 1

Figure 6.1: Mach Reflection

In order to do this, seek a solution in the form:

p(s, ψ) = p0(s, ψ) + εp1(s, ψ) +O(ε2), (6.16)

ρ(s, ψ) = ρ0(s, ψ) + ερ1(s, ψ) +O(ε2), (6.17)

u(s, ψ) = u0(s, ψ) + εu1(s, ψ) +O(ε2), (6.18)

v(s, ψ) = εv1(s, ψ) +O(ε2) (6.19)

Inserting these expansions into the continuity equation (6.11a) yields:

∂

∂s

[

1

ρu

]

− ∂

∂ψ

[

v

u

]

=
∂

∂s

[

1

ρ0u0 + (ρ1u0 + ρ0u1)ε

]

− ∂

∂ψ

[

εv1

u0 + εu1

]

=
∂

∂s

[

1

ρ0u0

[

1 −
[

ρ1

ρ0

+
u1

u0

]

ε

]]

+ ε
∂

∂ψ

[

v1

u0

]

.

To leading order the equation becomes:

∂

∂s

[

1

ρ0u0

]

= 0. (6.20)

By the principle of least degeneracy this cannot happen, so define X = εs as a

new variable. This rescaling means that the analysis presented here is valid for large

distances downstream of the Mach stem. The rescaling makes the continuity equation

become:

∂

∂X

[

1

ρ0u0

]

− ∂

∂ψ

[

v1

u0

]

= 0. (6.21)
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with (6.16)-(6.19) the x-momentum equation (6.11b) takes the form:

ε(u0 + εu1)
∂

∂X
(u0 + εu1) = εv1

∂

∂ψ
(p0 + εp1) −

ε

ρ0 + ερ1

∂

∂X
(p0 + εp1) (6.22)

which to O(ε) is:

u0
∂u0

∂X
= v1

∂p0

∂ψ
− 1

ρ0

∂p0

∂X
. (6.23)

Substituting (6.16)-(6.19) into the y-momentum equation (6.11b) yields:

ε
∂

∂X
(εv1) = − ∂

∂ψ
(p0 + εp1). (6.24)

The leading order term shows that ∂ψp0 = 0 which makes the x-momentum equation

(6.23) become:

u0
∂u0

∂X
= − 1

ρ0

∂p0

∂X
. (6.25)

Finally the conservation of energy (6.11d) shows that:

∂

∂X

[

p0 + εp1

(ρ0 + ερ1)γ

]

= 0. (6.26)

Which to the leading order reduces to:

∂

∂X

[

p0

ργ0

]

= 0. (6.27)

Equation (6.27) can be re-arranged to:

1

γp0

∂p0

∂X
=

1

ρ0

∂ρ0

∂X
(6.28)

Integrating (6.27) w.r.t X yields p0 = b(ψ)ργ . Inserting this into (6.25) gives:

∂

∂X

[

γ

γ − 1

p0

ρ0
+

1

2
u2

0

]

= 0. (6.29)

This yields two equations:

γ

γ − 1

p0

ρ0

+
1

2
u2

0 = a (6.30)

p

ργ
= b (6.31)



CHAPTER 6. CONTACT DISCONTINUITIES 80

Where a and b are functions of ψ, they can be calculated via the Rankine-Hugoniot

equations on the stem. Write quantities in region 1 as ρ̄, ū, p̄, then from the Rankine-

Hugoniot equations:

p0

p̄
= 1 +

2γ

γ + 1
(M2 − 1) (6.32)

ρ0

ρ̄
=

(γ + 1)M2

2 + (γ − 1)M2
(6.33)

u0

ū
=

γ − 1

γ + 1
+

2

(γ + 1)M2
(6.34)

Inserting these equations into (6.30) and (6.31) gives:

a =
γp̄

ρ̄

[

γ − 1

γ + 1
+

2

(γ + 1)M2

][

2

γ + 1
+

1

γ − 1
− 2γ

γ + 1
+
γ + 1

γ − 1
M2

]

(6.35)

b =
p̄

ρ̄γ

[

1 +
2γ

γ + 1
(M2 − 1)

][

γ − 1

γ + 1
+

2

(γ + 1)M2

]γ

(6.36)

6.3 Calculating the Shape of the Contact Discon-

tinuity

The pressures at each side of the contact discontinuity are equal, so the idea in

calculating the shape of the contact discontinuity is to obtain expressions for the

pressure at both sides and equate them. As the contact discontinuity is expected

to vary only via a small amount from the von Neumann condition and hence the

gradient of the contact discontinuity will be very small.

The conservation of mass is:

∂

∂X

[

1

ρ0u0

]

=
∂

∂ψ

[

v1

u0

]

. (6.37)

Integrating (6.37) w.r.t ψ from 0 to ψ gives:

∂

∂X

[

ψ

ρ0u0

]

=
v1

u0
=

dy

dX
(6.38)

Integrating (6.38) w.r.t. X gives:

y =
ψ

ρ0u0

. (6.39)
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At ψ = ψS is where is the contact discontinuity is, and writing the equation of the

contact discontinuity as y = f(X) gives:

f(X) =
ψS
ρ0u0

(6.40)

The next task to to write (6.40) in terms of pressure. Using equations (6.30) and

(6.31) to give:

ρ0 =

(

p0

b

)
1

γ

(6.41)

u0 =

[

2a− 2γ

γ − 1
p

γ−1

γ

0 b
1

γ

]
1

2

. (6.42)

So for region 4:

f(X) = ψS

(

p0

b

)

−
1

γ
[

2a− 2γ

γ − 1
p

γ−1

γ

0 b
1

γ

]

−
1

2

. (6.43)

This ends the analysis for region 4. Use the Ackeret formula for region 3, which is:

p = p3 + ρ3V
2
3

θ
√

M2
3 − 1

. (6.44)

Now θ = f ′(X) and so, for brevity write:

p = α + βf ′(X), (6.45)

where α = p3 and β = ρ3V
2
3 (M2

3 − 1)−1/2. As the pressures are equal on either side

of the contact discontinuity p = p0, insert (6.45) into (6.43) and obtain a differential

equation for f(X). By expanding the LHS of (6.43) to first order in f ′(X). Inserting

(6.45) into (6.43) gives:

f(X) = ψS

(

α + βf ′

b

)

−
1

γ
[

2a− 2γ

γ − 1
(α + βf ′)

γ−1

γ b
1

γ

]

−
1

2

. (6.46)

The result of doing this is:

f(X) =
(α

b

)

−1/γ

√

2a− 2b
1

γα1− 1

γ γ

γ − 1
ψS −

[

β

√

2a− 2b
1
γ α

1−
1
γ γ

γ−1
ψ
(

α
b

)

−1/γ

αγ
+

+
b

1

γα−1/γβψS
(

α
b

)

−1/γ

√

2a− 2b
1
γ α

1−
1
γ γ

γ−1

]

f ′(X). (6.47)
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This differential equation is in the form:

f(X) = A− Bf ′(X). (6.48)

Where A,B > 0. The solution of this equation is:

f(X) = A− f(0)e−
X
B (6.49)

Which is the equation of the contact discontinuity. Note that this is not a straight

line as most of the theoretical analysis uses.



Chapter 7

The Shape of the Mach Stem

This chapter investigates the shape the Mach stem makes and also the shape of the

contact discontinuity at finite distance from the Mach stem. In order to do this,

a PDE for the pressure will be derived for the subsonic region (region 4) and then

solved and examining the boundary value for this will give the shape of the Mach

stem. This chapter will be split into three sections:

• Derive the PDE for pressure

• Obtain the boundary conditions for the PDE

• Solve the PDE and relate the solution to the shape of the Mach stem

7.1 Deriving the Pressure Equation

To model the Mach stem, the steady 2D Euler equations are used:

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (7.1)

u
∂u

∂x
+ v

∂u

∂v
= −∂p

∂x
, (7.2)

u
∂v

∂x
+ v

∂v

∂v
= −∂p

∂y
, (7.3)

[

u
∂

∂x
+ v

∂

∂y

]

p

ργ
= 0. (7.4)
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The idea is to examine the perturbations about the flow satisfying the von Neumann

criterion. The first task is to non-dimensionalise the Euler equations, for this use

the values in region 4. Let the quantities U4,ρ4 and p4 be the values obtained at the

von Neumann condition. Also let the height of the triple point be d (see figure 7.1).

Define the following:

d

Figure 7.1: Scaling of x and y

p = p4 + ρ4U
2
4 εp̄(x, y), u = U4(1 + εū(x, y)),

ρ = ρ4(1 + ερ̄(x, y)), v = U4εv̄(x, y),

x = dx̄, y = dȳ.

The Euler equations reduce to (dropping the bars) at O(ε):

∂u

∂x
+
∂ρ

∂x
+
∂v

∂y
= 0, (7.5)

∂u

∂x
= −∂p

∂x
, (7.6)

∂v

∂x
= −∂p

∂y
, (7.7)

∂p

∂x
=

1

M2
4

∂ρ

∂x
. (7.8)

In order to obtain the equation for pressure, differentiate (7.5) w.r.t. x to get:

∂2u

∂x2
+
∂2ρ

∂x2
+

∂2v

∂x∂y
= 0. (7.9)
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Differentiating (7.6) and (7.8) w.r.t. x to get:

∂2u

∂x2
= −∂

2p

∂x2
, M2

4

∂2p

∂x2
=
∂2ρ

∂x2
. (7.10)

Substituting equations (7.10) into (7.5) giving:

−∂
2p

∂x2
+M2

4

∂2p

∂x2
+

∂2v

∂x∂y
= 0. (7.11)

Differentiate (7.7) w.r.t. y which yields:

∂2v

∂x∂y
= −∂

2p

∂y2
. (7.12)

Inserting this into (7.11) gives:

(1 −M2
4 )
∂2p

∂x2
+
∂2p

∂y2
= 0. (7.13)

As (7.13) applies to the subsonic region the term (1 −M2
1 ) is positive and so (7.13)

is an elliptic equation. Another useful equation is obtained by substituting (7.6) and

(7.8) into (7.5) which yields:

(1 −M2
4 )
∂p

∂x
=
∂v

∂y
(7.14)

7.2 Boundary Conditions

In order to obtain a unique solution for (7.13), it is necessary to specify the boundary

conditions for all four sides1.

7.2.1 Fixed Boundary (y = 0)

Along the body surface the impermeability condition holds:

v
∣

∣

y=0
= 0. (7.15)

Inserting this into (7.7) gives:

∂p

∂y

∣

∣

∣

∣

∣

y=0

= 0. (7.16)

1One of the boundary conditions is at infinity
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7.2.2 The Mach Stem (x = 0)

As the Mach stem deviates only slightly from a straight line normal to the wall, it’s

equation may be written as x = εf(y), where ε is a small parameter.

x = εf(y)

θ

Figure 7.2: Mach Stem

Let the normal to the Mach stem be denoted by n and the angle between the

normal and the horizontal be dentoted by θ (figure 7.2). Write ϕ = x − εf(y), then

n = ∇ϕ, so

n = i − εf ′(y)j. (7.17)

Then θ is related to f(y) by:

tan θ = −εf ′(y). (7.18)

The angle that the stem makes with the wall is:

φ =
π

2
− θ (7.19)

The way to obtain the boundary condition is to insert (7.19) into the Rankine-

Hugoniot equations and expand to O(ε). As θ is small then tan θ ≈ θ and:

φ =
π

2
+ εf ′(y) (7.20)
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Now:

sinφ = sin

(

π

2
+ εf ′(y)

)

= sin

(

π

2

)

cos(εf ′(y)) + cos

(

π

2

)

sin(εf ′(y))

= cos(εf ′(y))

= 1 − 1

2
ε2f ′2 + o(ε2) (7.21)

Inserting (7.21) into the Rankine-Hugoniot equations will give the boundary condition

for the stem. For completeness all the variables are calculated:

Pressure

The approximation (7.21) in (2.29) gives:2

p

p1
= 1 +

2γ

γ − 1
(M2

1 sin2 φ− 1)

= 1 +
2γ

γ − 1
(M2

1 (1 − ε2f ′2/2)2 − 1 + o(ε2)

= 1 − 2γ

γ − 1
+

2γ

γ − 1
(M2

1 (1 − ε2f ′2)) + o(ε2)

= 1 +
2γ

γ − 1
(M2

1 − 1) − 2γ

γ − 1
M2

1 ε
2f ′2 + o(ε2)

=
p

p1

∣

∣

∣

∣

∣

normal

− 2γ

γ − 1
M2

1 ε
2f ′2 + o(ε2)

So the approximation is:

p

p1
=

p

p1

∣

∣

∣

∣

∣

normal

− 2γ

γ − 1
M2

1 ε
2f ′2 + o(ε2) (7.22)

Density

The density ratio is given by:

ρ

ρ1
=

(γ + 1)M2
1 sin2 φ

2 + (γ − 1)M2
1 sin2 φ

2The notation X |normal denotes evaluation at φ = π/2
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Examining the denominator initially:

1

2 + (γ − 1)M2
1 sin2 φ

= (2 + γ − 1)M2
1 (1 − εf ′2/2)2)−1

= (2 + (γ − 1)M2
1 − (γ − 1)M2

1 ε
2f ′2)−1

= (2 + (γ − 1)M2
1 )−1

[

1 − (γ − 1)M2
1 ε

2f ′2

2 + (γ − 1)M2
1

]

−1

= (2 + (γ − 1)M2
1 )−1

[

1 +
(γ − 1)M2

1 ε
2f ′2

2 + (γ − 1)M2
1

]

+ o(ε2)

The numerator is:

(γ + 1)M2
1 sin2 φ = (γ + 1)M2

1 (1 − ε2f ′2/2)2

= (γ + 1)M2
1 (1 − ε2f ′2) + o(ε2)

= (γ + 1)M2
1 − (γ + 1)M2

1 ε
2f ′2 + o(ε2)

With the numerator:

ρ

ρ1
=

[

(γ + 1)M2
1 − (γ + 1)M2ε2f ′2

][

(2 + (γ − 1)M2
1 )−1

[

1 +
(γ − 1)M2

1 ε
2f ′2

2 + (γ − 1)M2
1

]

]

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

− (γ + 1)M2
1 ε

2f ′2

2 + (γ − 1)M2
1

+
(γ − 1)(γ + 1)M4

1 ε
2f ′2

(2 + (γ − 1)M2
1 )2

+ o(ε2)

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

− 2(γ + 1)M2
1 ε

2f ′2

(2 + (γ − 1)M2
1 )2

+ o(ε2)

=
ρ

ρ1

∣

∣

∣

∣

∣

normal

− 2(γ + 1)M2
1 ε

2f ′2

(2 + (γ − 1)M2
1 )2

+ o(ε2)

Hence

ρ

ρ1

=
ρ

ρ1

∣

∣

∣

∣

∣

normal

− 2(γ + 1)M2
1 ε

2f ′2

(2 + (γ − 1)M2
1 )2

+ o(ε2) (7.23)

Mach Number

The normal component of the Mach number across a shock is given by:

M2
2n =

2 + (γ − 1)M2
1 sin2 φ

1 − γ + 2γM2
1 sin2 φ

Examining the numerator and denominator separately for ease. The numerator is:

2 + (γ − 1)M2
1 sin2 φ = 2 + (γ − 1)M2

1 (1 − ε2f ′2/2)2

= 2 + (γ − 1)M2
1 (1 − ε2f ′2) + o(ε2)

= 2 + (γ − 1)M2
1 − (γ − 1)M2

1 ε
2f ′2 + o(ε2)
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The denominator is:

1

(1 − γ + 2γM2
1 sin2 φ)

= (1 − γ + 2γM2
1 (1 − ε2f ′2/2)2)−1

= (1 − γ + 2γM2
1 − 2γM2

1 ε
2f ′2)−1

= (1 − γ + 2γM2
1 )−1

[

1 − 2γM2
1 f

′2ε2

1 − γ + 2γM2
1

]

−1

= (1 − γ + 2γM2
1 )−1

[

1 +
2γM2

1 f
′2ε2

1 − γ + 2γM2
1

]

+ o(ε2)

Putting these expressions together gives

M2
2n =

[

2 + (γ − 1)M2
1 − (γ − 1)M2

1 ε
2f ′2

][

(1 − γ + 2γM2
1 )−1 ×

×
[

1 +
2γM2

1 f
′2ε2

1 − γ + 2γM2
1

]]

+ o(ε2)

=
2 + (γ − 1)M2

1

1 − γ + 2γM2
1

+
(2 + (γ − 1)M2

1 )(2γM2
1 f

′2ε2)

(1 − γ + 2γM2
1 )2

− (γ − 1)M2
1 f

′2ε2

1 − γ + 2γM2
1

+ o(ε2)

= M2
2

∣

∣

normal
+

[

(2 + (γ − 1)M2
1 )(2γM2

1 f
′2)

(1 − γ + 2γM2
1 )2

− (γ − 1)M2
1 f

′2

1 − γ + 2γM2
1

]

ε2 + o(ε2)

= M2
2

∣

∣

normal
+

M2
1 f

′2ε2

(1 − γ + 2γM2
1 )2

[

2γ(2 + (γ − 1)M2
1 ) −

− (γ − 1)(1 − γ + 2γM2
1 )

]

+ o(ε2)

= M2
2

∣

∣

normal
+

M2
1 f

′2ε2

(1 − γ + 2γM2
1 )2

[

2(γ − 1)2M2
1 + (γ + 1)2

]

+ o(ε2)

So:

M2
2n = M2

2

∣

∣

normal
+

M2
1 f

′2ε2

(1 − γ + 2γM2
1 )2

[

2(γ − 1)2M2
1 + (γ + 1)2

]

+ o(ε2) (7.24)

Velocity Components

The Rankine-Hugoniot equations currently give the velocity components tangential

and normal to the stem, in order to get the boundary values for u and v, a rotation by

an angle θ in the clockwise direction has to be made. The ratio of normal velocities

is given by:

u2n

u1n

=
γ + 1

γ − 1
+

2

(γ + 1)M2
1 sin2 φ

(7.25)
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Figure 7.3: Velocity Components

Using (7.21) gives:

u2n

u1n
=

γ − 1

γ + 1
+

2

(γ + 1)M2
1 (1 + ε2f ′2)

=
γ + 1

γ − 1
+

2

(γ + 1)M2
1

(1 − ε2f ′2)

As the tangential components are equal, u2t = u1 cos φ, and so the boundary condi-

tions become:




u

−v



 =





cos θ sin θ

− sin θ cos θ









u2n

u2t





Which expanding gives:

u = u2n cos θ + u2t sin θ

v = u2n sin θ − u2t cos θ

In particular, for u

u =

[

γ − 1

γ + 1
+

2

(γ + 1)M2
1

(1 − ε2f ′2)

]

sinφ cos θ + cosφ sin θ

=

[

γ − 1

γ + 1
+

2

(γ + 1)M2
1

(1 − ε2f ′2)

]

(1 + ε2f ′2) + ε2f ′2

=
γ − 1

γ + 1
+

2

(γ + 1)M2
1

+

[

γ − 1

γ + 1
f ′2 + f ′2

]

ε2

=
γ − 1

γ + 1
+

2

(γ + 1)M2
1

+
2γ

γ + 1
f ′2ε2
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Calculating v gives:

v =

[

γ − 1

γ + 1
+

2

(γ + 1)M2
1

(1 − ε2f ′2)

]

sin φ sin θ − cos φ cos θ

=

[

γ − 1

γ + 1
+

2

(γ + 1)M2
1

(1 − ε2f ′2)

]

cos θ sin θ + sin θ cos θ

=

[

γ − 1

γ + 1
+

2

(γ + 1)M2
1

(1 − ε2f ′2)

](

1 − 1

2
ε2f ′2

)

(−εf ′) + (−εf ′)

(

1 − 1

2
ε2f ′2

)

=

[

− 2γ

γ + 1
− 2

(γ + 1)M2
1

]

εf ′ +O(ε2).

So:

v(0, y) =

[

− 2γ

γ + 1
− 2

(γ + 1)M2
1

]

εf ′. (7.26)

Comparing (7.22) with the asymptotic expansion for pressure (7.22), yields the bound-

ary condition for the Mach stem:

p(0, y) = 0. (7.27)

Contact Discontinuity (y = 1)

Integrating (7.14) w.r.t. y from 0 to 1 gives:

v(x, 1) = (1 −M2
4 )

∫ 1

0

∂p

∂x
dy, (7.28)

using the condition v(x, 0) = 0 on the lower boundary. Let ϑ be the angle which is

made by the contact discontinuity. Then as ϑ is small tanϑ ≈ ϑ and so

ϑ =
v

u
= εv1 = ε(1 −M2

4 )

∫ 1

0

∂p

∂x
dy. (7.29)

Inserting this into (1.83) gives:

p = p3 + ε
ρ3V

2
3

√

M2
3 − 1

(1 −M2
4 )

∫ 1

0

∂p1

∂x
dy. (7.30)

Writing p3 = p4+ερ1U
2
1 , which in turn defines ε. This reduces the boundary condition

to be:

p = 1 + εκ

∫ 1

0

∂p1

∂x
dy, (7.31)

where

κ =
ρ3U

2
3

ρ1U3
1

√

M2
3 − 1

(1 −M2
4 ) (7.32)
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Long Distance Behavior (x→ ∞)

As x → ∞, it is expected that ∂p/∂x → 0. Inserting this into (7.13) gives:

∂2p

∂y2
= 0. (7.33)

Integrating (7.33) twice gives:

p(∞, y) = a + by. (7.34)

The boundary condition for p at y = 0 (∂yp(x, 0) = 0) shows that b = 0 and taking

the limit as x→ ∞ of (7.31) shows that a = 1, so the boundary condition as x→ ∞

is p(∞, y) = 1.

7.3 The Numerical Solution of Equation (7.13)

7.3.1 The Numerical Method

The method for discretising the Laplace equation is done via central differences:

∂2p

∂x2
=
pi+1,j − 2pi,j + pi−1,j

δx2
,

∂2p

∂y2
=
pi,j+1 − 2pi,j + pi,j−1

δy2
. (7.35)

So upon using (7.35), the numerical scheme is given by:

β2pi+1,j − 2pi,j + pi−1,j

δx2
+
pi,j+1 − 2pi,j + pi,j−1

δy2
= 0, (7.36)

where β2 = 1 −M2
4 . Equation (7.36) can be written in the form:

aipi+1,j + bipi,j + cipi−1,j + di = 0, (7.37)

where

ai =
β2

δx2
, bi = −2β2

δx2
− 2

δy2
, ci = ai, di =

pi,j+1 + pi,j−1

δy2
(7.38)

To obtain a method for solving (7.36) write,

pi,j = ripi−1,k + qi (7.39)

Using the boundary condition p(∞, y) = 1 in conjunction with (7.39) gives:

pN,j = rNpN−1,j + qN = 1, (7.40)
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which shows that rN = 0 and qN = 1. Applying (7.39) to i+ 1 results in:

pi+1,j = ri+1pi,j + qi+1

= ri+1(ripi−1,k + qi) + qi+1

= ri+1ripi−1,j + ri+1qi + qi+1. (7.41)

Inserting (7.41) and (7.39) into (7.36) yields Api−1,j +B = 0, where

A = airi+1ri + biri + ci (7.42)

B = airi+1qi + biqi + aiqi+1 + di (7.43)

Compairing coefficients gives A = 0 and B = 0, which means:

ri = − ci
airi+1 + bi

, qi = −aiqi+1 + di
airi+1 + bi

. (7.44)

This completes the method for solving the main equation. The next step in the

solutions is to update the pressure along the lower wall, the boundary condition is

given by ∂yp(x, 0) = 0. Note:

∂p

∂y

∣

∣

∣

∣

∣

j=1/2

=
pi,1 − pi,0

δy
(7.45)

∂p

∂y

∣

∣

∣

∣

∣

j=1

=
pi,2 − pi,0

2δy
(7.46)

(7.47)

However:

∂p

∂y

∣

∣

∣

∣

∣

j=1/2

=
1

2

[

∂p

∂y

∣

∣

∣

∣

∣

j=1

+
∂p

∂y

∣

∣

∣

∣

∣

j=0

]

. (7.48)

Hence:

∂p

∂y

∣

∣

∣

∣

∣

j=0

= 2
∂p

∂y

∣

∣

∣

∣

∣

j=1/2

− ∂p

∂y

∣

∣

∣

∣

∣

j=1

= 0. (7.49)

Inserting (7.45) and (7.45) into (7.49) yields:

pi,0 =
4pi,1 − pi,2

3
(7.50)

In order to obtain the pressure on the contact discontinuity use the trapezium rule

for evaluating integrals:

∫ 1

0

f(x)dx =
δx

2
fM +

δx

2
f0 +

M−1
∑

k=1

fkδy. (7.51)
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Which means that:

∫ 1

0

∂p

∂x
dy =

pi+1,M − pi−1,M

2δx

δy

2
+

+

(

pi+1,0 − pi−1,0

2δx

δy

2
+

M−1
∑

k=1

pi+1,k − pi−1,k

2δx
δy

)

(7.52)

The boundary condition on the contact discontinuity (7.31) can be written as:

pi,M = κ(pi+1,M − pi−1,M)
δy

4δx
+ 1 + κ(pi+1,0 − pi−1,0)

δy

4δx
+

+ κ
M−1
∑

k=1

(pi+1,k − pi−1,k)
δy

2δx
. (7.53)

which is equivalent to:

aipi+1,M + bipi,M + cipi−1,M + di = 0, (7.54)

where:

ai = κ
δy

4δx

bi = −1

ci = −ai

dj = 1 + κ(pi+1,0 − pi−1,0)
δy

4δx
+ κ

M−1
∑

k=1

(pi+1,k − pi−1,k)
δy

2δx
.

Exactly the same method can be applied to (7.54) as was used to solve (7.36). This

completes the numerical solution of (7.36).

7.3.2 Numerical Results

In the numerical solution, the triple point is located in the upper left hand corner of

the computational domain. The pressure gradient at x = 0 for the solution is given

by figure 7.4.

From figure 7.4, it can be seen that there is a singularity is the pressure field at

the triple point, it is then possible to attach a polar co-ordinate system at this point.

In order to calculate the shape of the Mach stem, use equation (7.14):

∂v

∂y
= (1 −M4)

2 ∂p

∂x
(7.55)
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Figure 7.4: Pressure gradient at x = 0

Once (7.13) has been solved to obtain the pressure, integrate (7.14) to obtain v and

then set x = 0 to get:

f ′(y) =

[

− 2γ

γ + 1
− 2

(γ + 1)M2
4

]

−1

v(0, x) (7.56)

As v‖y=0 = 0 then the finite difference scheme is:

vi − vi−1

δy
=
β2

2

(

4p1,i − 3p0,i − p2,i

2δx
+

4p1,i−1 − 3p0,i=1 − p2,i−1

2δx

)

(7.57)

which results in the numeric scheme for v:

vi = vi−1 +
β2δy

4δx
(4p1,i − 3p0,i − p2,i + 4p1,i−1 − 3p0,i=1 − p2,i−1) (7.58)

It remains to integrate (7.58). Set f(1) = 0, the scheme becomes:

fi+1 − fi
δy

=
1

2

[

− 2γ

γ + 1
− 2

(γ + 1)M2
4

]

−1

(vi+1 + vi) (7.59)

The shape of the stem is given in figure 7.5.
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Figure 7.5: Shape of the Mach stem

7.4 The Solution

The Laplace equation is invariant under the transformation (x, y) 7→ (sx, sy). This

shows that pressure is independent of the distance from the triple point. Write

X = x
√

1 −M2
4 and transform to polar co-ordinates to give the Laplace equation as:

∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂p

∂θ2
= 0. (7.60)

Writing the pressure as p = g(θ) gives:

g′′(θ) = 0 (7.61)

The boundary conditions for this equation are:

g(0) = 0, g

(

π

2

)

= p4. (7.62)

The solution of this is:

g(θ) =
2

π
p4θ. (7.63)

In terms of the co-ordinates (x, y), the pressure is given by:

p(x, y) =
2

π
p4 tan−1

(

y

x

)

. (7.64)
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Using (7.14), this gives v to be:

v =
2p4

π
√

1 −M2
4

log

[

x2

1 −M2
4

+ y2

]

. (7.65)

Using the boundary condition for v gives:
[

− 2γ

γ + 1
− 2

(γ + 1)M2
4

]

f ′(y) =
4p4

π
√

1 −M2
4

log y (7.66)

Integrating (7.66) gives the shape of the stem given by:

f(y) = − 2p4

π
√

1 −M2
4

[

2γ

γ + 1
+

2

(γ + 1)M2
4

]

−1

(y log y − y) (7.67)

7.5 Stem Shape for Solids

A good experimental result which relates shock speed, US to particle velocity, up is

given by:

US = a + bup. (7.68)

Where a and b are values determined by experiment. The value a is identified with

the speed of sound in the material. Pressures in shocked materials tend to be of the

order of 109 Pa, as the initial pressures of the material are essentially atmospheric

pressure which is of the order 105 Pa, the initial pressure is usually taken to be zero,

p1 = 0. So the non-dimensionalisation for solids will take the form:

p = ρ1U
2
Sεp̄(x, y) u = US(1 + εū(x, y))

ρ = ρ1(1 + ερ̄(x, y)) v = USεv̄(x, y)

x = dx̄ y = dȳ

The conservation of energy for a solid is given by:

Dp

Dt
= a2Dρ

Dt
(7.69)

The sound speed can be expressed as a2 = a2
1+o(1), and so the conservation of energy

reduces to:

∂p

∂x
=

1

M2
1

∂ρ

∂x
(7.70)
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The basic equations remain the same and as a result the equation representing the

pressure remains the same. The only difference is the boundary condition on the

stem. The equation for pressure is given by:

p = ρ1US sinφ

[

US sinφ− a

b

]

(7.71)

Expanding this in terms of ε gives:

p =
ρ1US
b

(

1 +
1

2
ε2f ′2

)(

US

(

1 +
1

2
ε2f ′2

)

− a

)

=
ρ1US
b

(

US − a +

(

USf
′2 − a

2
f ′2

)

ε2

)

There are no terms of order ε, so the boundary condition on the stem remains the

same and the result will remain the same. The only difference is the boundary

condition of v on the stem. The velocities in the subsonic region are given by (using

the scaling):

un =
a

bUS
+
b− 1

b
cos θ

ut = sin θ

So this gives v on the stem as:

v = un sin θ − ut cos θ

=

[

a

b
+
b− 1

b
US cos θ

]

sin θ − sin θ cos θ

= −
[

b+ 1

2
+

a

bUS

]

f ′(y)ε+ o(ε)

So the shape of a Mach stem for a solid is given by:

f(y) = − 2p4

π
√

1 −M2
1

[

b+ 1

2
+

a

bUS

]

−1

(y log y − y) (7.72)



Chapter 8

Conclusions

This chapter is an executive summary of the thesis as well as adding some conclusions

to each of the chapters in the case of new material.

8.1 Chapter 1

This chapter introduced the basic concepts of supersonic flow and went on to de-

velop the governing equations used in this thesis: the Euler equations. To close the

set of equations, the first law of thermodynamics was used under the assumption

of constant entropy. The method of characteristics was introduced and as an ex-

ample of their use, the Riemann invariants of the steady 2D Euler equations were

computed and the characteristics which the Riemann invariants were constant along.

The Riemann invariants were applied to Prandtl-Meyer flow and it was shown that

the positive characteristics were straight lines around the corner. Prandtl-Meyer flow

was examined when the turning angle was small.

8.2 Chapter 2

This chapter introduced the Rankine-Hugoniot equations for an oblique shock in a

perfect gas and their solution. Prandtl’s relation was derived for an oblique shock.

Using the expression for the ratio of densities, two expressions relating shock angle

99
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to flow deflection angle were derived and from these expressions the maximum pos-

sible flow deflection angle for shock attachment was derived. The Rankine-Hugoniot

equations for solids were examined using the relationship: US = a + bup, two ex-

pressions relating shock angle and flow deflection were derived for this relationship.

These expressions only assume that the solid is in the hydrodynamic phase and has

no strength to talk of, so the author is unsure how accurate the solutions of these

equations will be when dealing with real materials, however 1D planar shocks this

method seems to agree with experiments relatively well. The modern way of dealing

with weak oblique shock reflections is also introduced.

8.3 Chapter 3

Shock polars are a basic tool when dealing with oblique shocks is the shock po-

lar which is dealt with in this chapter. There are two types: shock polars in the

hodograph plane and shock polars in the (p, ϕ) plane which is also called a pressure

deflection diagram. Both are examined for perfect gases but only the pressure deflec-

tion diagram is extended to solids. For solids it was found that the same basic shape

of the pressure deflection diagram was still apparent. Reflected shocks in solids create

“off Hugoniot states” and really when dealing with pressure deflection diagrams for

reflected shocks the full equation of state should be used. However most experimen-

talists when dealing with planar shocks ignore this to little effect; it is this approach

that is taken here.

8.4 Chapter 4

The concept of a Mach reflection is introduced in this chapter using the pressure

deflection diagram. There are many different types of Mach reflection which may

be split into two main types: direct and indirect. The pressure deflection diagrams

can give more than one possible shock configuration (indirect Mach reflections al-

ways share the pressure deflection diagram of regular reflection), so it is difficult



CHAPTER 8. CONCLUSIONS 101

to say which configuration will be a regular reflection or Mach reflection. Criteria

for transition from regular reflection to Mach reflection was given for von Neumann,

sonic and detachment conditions. There are regions where it is possible to say that

according to the Rankine-Hugoniot equations the only one shock pattern is possible

(this is the case for direct Mach reflections) but for many of the other configurations

there are more than just one solution. The detachment criterion gives the condition

necessary for a unique Mach reflection solution. It is thought by the author that

extra conditions on the flow are required to fully say when a Mach reflection will

occur. For solids this is technically the same question but the notion of strength will

change things considerably and it is possible that the Rankine-Hugioniot equations

are possibly not the correct tool as they may be too crude, only experiments can say

if this is indeed the case.

8.5 Chapter 5

The numerical method used to solve the Euler equation is a standard one, the

predictor-corrector method using the half step leapfrog method as the predictor.

Numerical viscosity was used for stability in the region with shocks and the standard

outflow boundary conditions were used. In order to obtain oblique shocks in the cal-

culation, the Rankine-Hugoniot equations were used as inflow boundary conditions.

The object of the numerical study was to examine if the transition from regular

reflection to Mach reflection was the same as predicted in the pressure deflection

diagram. From the results it appears that the two criteria didn’t differ by much

which was confirmed by the numerical simulations. When performing a calculation

that would result in regular reflection, a small stem was still seen in the results

and this is thought to reflect that the assumption of two shocks meeting at a single

point is not valid. From the results it can be seen that the pressure falls away

after the reflected shock but there is no similar phenomenon with the incident shock,

it is thought that this is due to the inflow conditions being the Rankine-Hugoniot

equations. It is thought that this would no be the case in a full 2D hydrocode.
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8.6 Chapter 6

In previous analysis the contact discontinuity has always been assumed to have been

a straight line, either parallel to the reflection surface or at an angle to it, inclined

toward the reflecting surface (a direct Mach reflection) or away from the reflecting

surface (indirect Mach reflection). This has led (in the case of direct Mach reflection)

to incorrect conclusions concerning the physics of such flows.

The results in this chapter are quite general, applying to any equation of state

as long as the expression for sound speed can be linearised. The Euler equations

are written in terms of von Mises variables and are then linearised and solved. The

assumption is that the curvature of the contact discontinuity is small, so higher order

terms can be ignored, which in turn leads to a differential equation for the contact

discontinuity. The assumption of small curvature indicates that the solution is for the

downstream asymptote. The solution of the equation shows that instead of reaching

the reflection surface, the contact discontinuity levels off, so there is a finite width to

the subsonic corridor. There is an arbitrary constant left in the solution, it is thought

that this can be fixed via asymptotic matching to the contact discontinuity in the

neighbourhood of the triple point.

8.7 Chapter 7

There has been a great deal of work done on determining the shape of the Mach

stem. Old references like [7] refer to it as a simple straight line, and for the von

Neumann Mach reflection, this is indeed the case as shown by the pressure deflection

diagram. However there have been some more recent work done on the subject ([20],

[27] and [28]) where a proof/experiment has shown the Mach stem to be the arc of

a circle. The aim of this chapter is to show that this is not the case, at least in the

neighbourhood of the triple point.

To find the shape of the Mach stem, an expression for pressure is derived for
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the subsonic region, along with boundary conditions which come from the Rankine-

Hugoniot equations, the governing equations themselves and the impermeability con-

dition for the reflecting surface. The resulting equation cannot be solved analytically

but can be solved numerically using the Thomas technique. The numerical results

show two things: a singularity at the triple point in the pressure, and the shape of

the Mach stem which isn’t a circle. A radial co-ordinate system is then fixed at the

triple point and an asymptotic solution for the Mach stem is derived, which again

shows that the Mach stem is not an arc of a circle.
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Appendix A

Calculation of the von Neumann

and Detachment Criterion

This appendix contains the octave/matlab program to calculate the von Neumann

criterion for a given initial Mach number.

A.1 von Neumann Criterion

function y=vN(M)

g=1.4;

M_1=M;

p_max=1+((2*g)/(g+1))*(M^2-1);

%Shock angles vary from the mach angle to pi/2

theta_i=asin(1/M):0.0001:0.5*pi;

%Calculate corresponding flow deflection angles

A=2*cot(theta_i);

B=(M^2)*sin(theta_i).^2-1;

C=2+M^2*(g+cos(2*theta_i));
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phi=atan(A.*B./C);

phi_max=max(phi);

%Convert the flow deflection angles into shock angles

phi=0:0.0005:phi_max;

X=[phi phi_max]; %This is a test

n=length(X);

a_1=(1+0.5*(g-1)*M^2)*tan(X); %phi is replaced by X

a_2=-(M^2-1)*ones(1,n);

a_3=(1+0.5*(g+1)*M^2)*tan(X); %phi is replaced by X

a_4=ones(1,n);

Q=[a_1’ a_2’ a_3’ a_4’];

Z=zeros(n-1,2);

for i=2:n

sol=sort(roots(Q(i,:)));

Z(i-1,:)=[real(atan(sol(2))) real(atan(sol(3)))];

end

weak=Z(:,1);

p_w=1+((2*g)/(g+1))*(M^2*sin(weak).^2-1);

p_weak=[1 p_w’];

%Calculate ALL the mach numbers for the second region

M_new_n=sqrt((2+(g-1)*M^2*sin(weak).^2)./(2*g*M^2*sin(weak).^2+1-g));

M_new=M_new_n./(sin(weak-phi’));
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%Calculate the maximum flow deflection angle for these

n=length(M_new);

phi_max=zeros(1,n);

for i=1:n

theta_i=asin(1/M_new(i)):0.0001:0.5*pi;

A=2*cot(theta_i);

B=(M_new(i)^2)*sin(theta_i).^2-1;

C=2+M_new(i)^2*(g+cos(2*theta_i));

x=atan(A.*B./C);

phi_max(i)=max(x);

end

%See if the corresponding reflected shocks go past the p axis.

c=0;

diff=phi’-phi_max’;

for i=1:n

if(diff(i)<0)

c=c+1;

end

end

%For those values of diff<0 indicates a crossing of the p axis. The next

%task is to find out when this happens.

%For the value phi, find the pressure at thet point.

%Turn flow deflection angles into shock angles

X=phi(1:c);

M=M_new(1:c)’;
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a_1=(1+0.5*(g-1)*M.^2).*tan(X); %phi is replaced by X

a_2=-(M.^2-1).*ones(1,c);

a_3=(1+0.5*(g+1)*M.^2).*tan(X); %phi is replaced by X

a_4=ones(1,c);

Q=[a_1’ a_2’ a_3’ a_4’];

Z=zeros(c,2);

for i=2:c

sol=sort(roots(Q(i,:)));

Z(i-1,:)=[real(atan(sol(2))) real(atan(sol(3)))];

end

weak=Z(:,1);

%Calculate the pressures

mu=M’;

p_old=p_weak(1:c)’;

p=(1+((2*g)/(g+1))*(mu.^2.*sin(weak).^2-1)).*p_old;

%Then look to see when this reaches the von Neumann point.

d=0;

for i=1:c

if (p(i)<p_max)

d=d+1;

end

end

%The correct value to take will be phi at point d, use this to plot the

%reflected polar.
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phi_vN=X(d);

a_1=(1+0.5*(g-1)*M_1^2)*tan(phi_vN); %phi is replaced by X

a_2=-(M_1^2-1);

a_3=(1+0.5*(g+1)*M_1^2)*tan(phi_vN); %phi is replaced by X

a_4=1;

X=[a_1 a_2 a_3 a_4];

sol=sort(roots(X));

y=atan(sol(2))*180/pi;

end

A.2 Detachment Criterion

function y=d(M)

g=1.4;

%Shock angles vary from the mach angle to pi/2

theta_i=asin(1/M):0.0001:0.5*pi;

%Calculate corresponding flow deflection angles

A=2*cot(theta_i);

B=(M^2)*sin(theta_i).^2-1;

C=2+M^2*(g+cos(2*theta_i));

phi=atan(A.*B./C);

phi_max=max(phi);
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%Convert the flow deflection angles into shock angles

phi=0:0.0001:phi_max;

X=[phi phi_max]; %This is a test

phi_deg=X*180/pi; %phi is changed to X

%n=length(phi);

n=length(X);

a_1=(1+0.5*(g-1)*M^2)*tan(X); %phi is replaced by X

a_2=-(M^2-1)*ones(1,n);

a_3=(1+0.5*(g+1)*M^2)*tan(X); %phi is replaced by X

a_4=ones(1,n);

Q=[a_1’ a_2’ a_3’ a_4’];

Z=zeros(n-1,2);

for i=2:n

sol=sort(roots(Q(i,:)));

Z(i-1,:)=[atan(sol(2)) atan(sol(3))];

end

weak=Z(:,1);

%Calculate the right angle for the detachment criterion.

%calculate the new Mach numbers in the shocked region.

M_new_n=sqrt((2+(g-1)*M^2*sin(weak).^2)./(2*g*M^2*sin(weak).^2+1-g));

M_new=M_new_n./(sin(weak-phi’));

%Calculate the maximum flow deflection angle for these
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n=length(M_new);

phi_max=zeros(1,n);

for i=1:n

theta_i=asin(1/M_new(i)):0.0001:0.5*pi;

A=2*cot(theta_i);

B=(M_new(i)^2)*sin(theta_i).^2-1;

C=2+M_new(i)^2*(g+cos(2*theta_i));

x=atan(A.*B./C);

phi_max(i)=max(x);

end

%See if the corresponding reflected shocks go past the p axis.

c=0;

diff=phi’-phi_max’;

for i=1:n

if(diff(i)<0)

c=c+1;

end

end

y=weak(c)*180/pi;



Appendix B

Fortran Programs

In the course of the work, two fortran programs were used: one to solve the Euler

equations and the other to solve the elliptic PDE for pressure in region 4.

B.1 Solution of the Euler Equations

PROGRAM wake

implicit none

integer :: i,j,k,L,LL,a,b

integer,parameter :: n=500,m=250,m1=251,NS=50

real :: gamma,dx,dy,dum1,dum2,dum3,dum4,pi

real,parameter :: M_infty=3.0, UMIN=1.0, YD=1.0

real,parameter :: YM=5.0, XM=10.0

real,parameter :: dt=0.001

real,parameter :: VIS=1.0

real,parameter :: ST=3.588

real,dimension(0:n,0:m1) :: rho, rho_new

real,dimension(0:n,0:m1) :: u, u_new

real,dimension(0:n,0:m1) :: v, v_new

real,dimension(0:n,0:m1) :: p, p_new

real,dimension(0:n,0:m1) :: e, e_new
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real :: cos_alpha,sin_alpha,v_n_2,v_t_2,EPS,SM,SHCH,D1,D2,OM,T,X,Y,UC,HN

real :: H1,H2,H3,H4

real :: R1,R2,R3,R4

real :: U1,U2,U3,U4

real :: V1,V2,V3,V4

real :: E1,E2,E3,E4

real :: P1,P2,P3,P4

real :: df_dx,dg_dy

pi=4.0*atan(1.0)

open (21, FILE=’u.dat’, FORM=’FORMATTED’, STATUS=’NEW’)

open (22, FILE=’p.dat’, FORM=’FORMATTED’, STATUS=’NEW’)

25 format(2F11.6)

26 format(3F11.6)

write(22,*) ’VARIABLES = "x", "y", "p"’

write(22,*) ’ZONE i=’, n+1, ’, j=’, m+1, ’, F=POINT’

gamma=1.4

dx=XM/n

dy=YM/m

do i=0,n

do j=0,m+1

rho(i,j)=1.0

u(i,j)=1.0

v(i,j)=0.0

p(i,j)=1.0/(gamma*M_infty**2.0)

e(i,j)=1.0/(gamma*(gamma-1.0)*M_infty**2.0)+0.5

end do

end do
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(sqrt(1.0+(gamma+1.0)*ST/(2.0*gamma)))/M_infty

cos_alpha=sqrt(1-sin_alpha**2)

SM=(M_infty*sin_alpha)**2.0

do i=NS,n

rho(i,m+1)=(gamma+1.0)*SM/(2.0+(gamma-1.0)*SM)

v_n_2=sin_alpha*((gamma-1.0)/(gamma+1.)+2.0/((gamma+1.0)*SM))

v_t_2=cos_alpha

u(i,m+1)=v_n_2*sin_alpha+v_t_2*cos_alpha

v(i,m+1)=v_t_2*sin_alpha-v_n_2*cos_alpha

p(i,m+1)=(2.0*gamma*SM-gamma+1.0)/(gamma*(gamma+1.0)*M_infty**2.0)

e(i,m+1)=p(i,m+1)/((gamma-1.0)*rho(i,m+1))+(u(i,m+1)**2.0

+v(i,m+1)**2.0)/2.0

end do

write(*,*) ’alpha= ’,sin_alpha*180/pi

do L=1,30000

EPS=0.0

do i=1,n-1

do j=1,m

!C--POINT 1

df_dx=(rho(i+1,j)*u(i+1,j)-rho(i,j)*u(i,j))/dx

dg_dy=(rho(i+1,j+1)*v(i+1,j+1)-rho(i+1,j-1)*v(i+1,j-1)

+rho(i,j+1)*v(i,j+1)-rho(i,j-1)*v(i,j-1))/(4.*dy)

R1=0.5*(rho(i,j)+rho(i+1,j))-0.5*dt*(df_dx+dg_dy)

df_dx=(rho(i+1,j)*u(i+1,j)**2+p(i+1,j)-rho(i,j)*u(i,j)**2-p(i,j))/dx

dum1=rho(i+1,j+1)*u(i+1,j+1)*v(i+1,j+1)

dum2=rho(i+1,j-1)*u(i+1,j-1)*v(i+1,j-1)

dum3=rho(i,j+1)*u(i,j+1)*v(i,j+1)

dum4=rho(i,j-1)*u(i,j-1)*v(i,j-1)
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dg_dy=(dum1-dum2+dum3-dum4)/(4.0*dy)

H1=(rho(i,j)*u(i,j)+rho(i+1,j)*u(i+1,j))/2.0-dt*(df_dx+dg_dy)/2.0

U1=H1/R1

df_dx=(rho(i+1,j)*u(i+1,j)*v(i+1,j)-rho(i,j)*u(i,j)*v(i,j))/dx

dum1=rho(i+1,j+1)*v(i+1,j+1)**2+p(i+1,j+1)

-rho(i+1,j-1)*v(i+1,j-1)**2-p(i+1,j-1)

dum2=rho(i,j+1)*v(i,j+1)**2+p(i,j+1)-rho(i,j-1)*v(i,j-1)**2-p(i,j-1)

dg_dy=(dum1+dum2)/(4.0*dy)

H1=(rho(i,j)*v(i,j)+rho(i+1,j)*v(i+1,j))/2.0-dt*(df_dx+dg_dy)/2.0

V1=H1/R1

df_dx=(u(i+1,j)*(p(i+1,j)+rho(i+1,j)*e(i+1,j))-u(i,j)*(p(i,j)

+rho(i,j)*e(i,j)))/dx

dum1=v(i+1,j+1)*(p(i+1,j+1)+rho(i+1,j+1)*e(i+1,j+1))

dum2=v(i+1,j-1)*(p(i+1,j-1)+rho(i+1,j-1)*e(i+1,j-1))

dum3=v(i,j+1)*(p(i,j+1)+rho(i,j+1)*e(i,j+1))

dum4=v(i,j-1)*(p(i,j-1)+rho(i,j-1)*e(i,j-1))

dg_dy=(dum1-dum2+dum3-dum4)/(4.0*dy)

H1=(rho(i,j)*e(i,j)+rho(i+1,j)*e(i+1,j))/2.0-dt*(df_dx+dg_dy)/2.0

E1=H1/R1

P1=(gamma-1.0)*R1*(E1-(U1*U1+V1*V1)/2.0)

!C--POINT 2

df_dx=(rho(i,j)*u(i,j)-rho(i-1,j)*u(i-1,j))/dx

dg_dy=(rho(i,j+1)*v(i,j+1)-rho(i,j-1)*v(i,j-1)+rho(i-1,j+1)*v(i-1,j+1)

-rho(i-1,j-1)*v(i-1,j-1))/(4.*dy)

R2=(rho(i-1,j)+rho(i,j))/2.-dt*(df_dx+dg_dy)/2.

df_dx=(rho(i,j)*u(i,j)**2+p(i,j)-rho(i-1,j)*u(i-1,j)**2-p(i-1,j))/dx

dum1=rho(i,j+1)*u(i,j+1)*v(i,j+1)-rho(i,j-1)*u(i,j-1)*v(i,j-1)

+rho(i-1,j+1)*u(i-1,j+1)*v(i-1,j+1)

dum2=rho(i-1,j-1)*u(i-1,j-1)*v(i-1,j-1)

dg_dy=(dum1+dum2)/(4.0*dy)
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H2=(rho(i-1,j)*u(i-1,j)+rho(i,j)*u(i,j))/2.0-dt*(df_dx+dg_dy)/2.0

U2=H2/R2

df_dx=(rho(i,j)*u(i,j)*v(i,j)-rho(i-1,j)*u(i-1,j)*v(i-1,j))/dx

dum1=rho(i,j+1)*v(i,j+1)**2+p(i,j+1)-rho(i,j-1)*v(i,j-1)**2-p(i,j-1)

dum2=rho(i-1,j+1)*v(i-1,j+1)**2+p(i-1,j+1)-rho(i-1,j-1)*v(i-1,j-1)**2

-p(i-1,j-1)

dg_dy=(dum1+dum2)/(4.0*dy)

H2=(rho(i-1,j)*v(i-1,j)+rho(i,j)*v(i,j))/2.0-dt*(df_dx+dg_dy)/2.0

V2=H2/R2

df_dx=(u(i,j)*(p(i,j)+rho(i,j)*e(i,j))-u(i-1,j)*(p(i-1,j)

+rho(i-1,j)*e(i-1,j)))/dx

dum1=v(i,j+1)*(p(i,j+1)+rho(i,j+1)*e(i,j+1))-v(i,j-1)*(p(i,j-1)

+rho(i,j-1)*e(i,j-1))

dum2=v(i-1,j+1)*(p(i-1,j+1)+rho(i-1,j+1)*e(i-1,j+1))

-v(i-1,j-1)*(p(i-1,j-1)+rho(i-1,j-1)*e(i-1,j-1))

dg_dy=(dum1+dum2)/(4.0*dy)

H2=(rho(i-1,j)*e(i-1,j)+rho(i,j)*e(i,j))/2.0-dt*(df_dx+dg_dy)/2.0

E2=H2/R2

P2=(gamma-1.)*R2*(E2-(U2*U2+V2*V2)/2.0)

!C--POINT 3

df_dx=(rho(i+1,j+1)*u(i+1,j+1)-rho(i-1,j+1)*u(i-1,j+1)

+rho(i+1,j)*u(i+1,j)-rho(i-1,j)*u(i-1,j))/(4.0*dx)

dg_dy=(rho(i,j+1)*v(i,j+1)-rho(i,j)*v(i,j))/dy

R3=(rho(i,j+1)+rho(i,j))/2.-dt*(df_dx+dg_dy)/2.0

dum1=rho(i+1,j+1)*u(i+1,j+1)**2+p(i+1,j+1)-rho(i-1,j+1)*u(i-1,j+1)**2

-p(i-1,j+1)

dum2=rho(i+1,j)*u(i+1,j)**2+p(i+1,j)-rho(i-1,j)*u(i-1,j)**2-p(i-1,j)

df_dx=(dum1+dum2)/(4.0*dx)

dg_dy=(rho(i,j+1)*u(i,j+1)*v(i,j+1)-rho(i,j)*u(i,j)*v(i,j))/dy

H3=(rho(i,j+1)*u(i,j+1)+rho(i,j)*u(i,j))/2.-dt*(df_dx+dg_dy)/2.0
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U3=H3/R3

dum1=rho(i+1,j+1)*u(i+1,j+1)*v(i+1,j+1)-rho(i-1,j+1)*u(i-1,j+1)*v(i-1,j+1)

dum2=rho(i+1,j)*u(i+1,j)*v(i+1,j)-rho(i-1,j)*u(i-1,j)*v(i-1,j)

df_dx=(dum1+dum2)/(4.0*dx)

dg_dy=(rho(i,j+1)*v(i,j+1)**2+p(i,j+1)-rho(i,j)*v(i,j)**2-p(i,j))/dy

H3=(rho(i,j+1)*v(i,j+1)+rho(i,j)*v(i,j))/2.-dt*(df_dx+dg_dy)/2.0

V3=H3/R3

dum1=u(i+1,j+1)*(p(i+1,j+1)+rho(i+1,j+1)*e(i+1,j+1))

-u(i-1,j+1)*(p(i-1,j+1)+rho(i-1,j+1)*e(i-1,j+1))

dum2=u(i+1,j)*(p(i+1,j)+rho(i+1,j)*e(i+1,j))-u(i-1,j)*(p(i-1,j)

+rho(i-1,j)*e(i-1,j))

df_dx=(dum1+dum2)/(4.0*dx)

dg_dy=(v(i,j+1)*(p(i,j+1)+rho(i,j+1)*e(i,j+1))-v(i,j)*(p(i,j)

+rho(i,j)*e(i,j)))/dy

H3=(rho(i,j+1)*e(i,j+1)+rho(i,j)*e(i,j))/2.0-dt*(df_dx+dg_dy)/2.0

E3=H3/R3

P3=(gamma-1.0)*R3*(E3-(U3*U3+V3*V3)/2.0)

!C--POINT 4

df_dx=(rho(i+1,j)*u(i+1,j)-rho(i-1,j)*u(i-1,j)+rho(i+1,j-1)*u(i+1,j-1)

-rho(i-1,j-1)*u(i-1,j-1))/(4.0*dx)

dg_dy=(rho(i,j)*v(i,j)-rho(i,j-1)*v(i,j-1))/dy

R4=(rho(i,j)+rho(i,j-1))/2.0-dt*(df_dx+dg_dy)/2.0

dum1=rho(i+1,j)*u(i+1,j)**2+p(i+1,j)-rho(i-1,j)*u(i-1,j)**2-p(i-1,j)

dum2=rho(i+1,j-1)*u(i+1,j-1)**2+p(i+1,j-1)-rho(i-1,j-1)*u(i-1,j-1)**2

-p(i-1,j-1)

df_dx=(dum1+dum2)/(4.0*dx)

dg_dy=(rho(i,j)*u(i,j)*v(i,j)-rho(i,j-1)*u(i,j-1)*v(i,j-1))/dy

H4=(rho(i,j)*u(i,j)+rho(i,j-1)*u(i,j-1))/2.0-dt*(df_dx+dg_dy)/2.0

U4=H4/R4

dum1=rho(i+1,j)*u(i+1,j)*v(i+1,j)-rho(i-1,j)*u(i-1,j)*v(i-1,j)
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dum2=rho(i+1,j-1)*u(i+1,j-1)*v(i+1,j-1)

-rho(i-1,j-1)*u(i-1,j-1)*v(i-1,j-1)

df_dx=(dum1+dum2)/(4.0*dx)

dg_dy=(rho(i,j)*v(i,j)**2+p(i,j)-rho(i,j-1)*v(i,j-1)**2-p(i,j-1))/dy

H4=(rho(i,j)*v(i,j)+rho(i,j-1)*v(i,j-1))/2.0-dt*(df_dx+dg_dy)/2.0

V4=H4/R4

dum1=u(i+1,j)*(p(i+1,j)+rho(i+1,j)*e(i+1,j))-u(i-1,j)*(p(i-1,j)

+rho(i-1,j)*e(i-1,j))

dum2=u(i+1,j-1)*(p(i+1,j-1)+rho(i+1,j-1)*e(i+1,j-1))

-u(i-1,j-1)*(p(i-1,j-1)+rho(i-1,j-1)*e(i-1,j-1))

df_dx=(dum1+dum2)/(4.0*dx)

dg_dy=(v(i,j)*(p(i,j)+rho(i,j)*e(i,j))-v(i,j-1)*(p(i,j-1)

+rho(i,j-1)*e(i,j-1)))/dy

H4=(rho(i,j)*e(i,j)+rho(i,j-1)*e(i,j-1))/2.0-dt*(df_dx+dg_dy)/2.0

E4=H4/R4

P4=(gamma-1.0)*R4*(E4-(U4*U4+V4*V4)/2.0)

!C--CORRECTOR

rho_new(i,j)=rho(i,j)-dt*((R1*U1-R2*U2)/dx+(R3*V3-R4*V4)/dy)

HN=rho(i,j)*u(i,j)-dt*((R1*U1**2+P1-R2*U2**2-P2)/dx

+(R3*U3*V3-R4*U4*V4)/dy)

u_new(i,j)=HN/rho_new(i,j)

HN=rho(i,j)*v(i,j)-dt*((R1*U1*V1-R2*U2*V2)/dx

+(R3*V3**2+P3-R4*V4**2-P4)/dy)

v_new(i,j)=HN/rho_new(i,j)

HN=rho(i,j)*e(i,j)-dt*((U1*(P1+R1*E1)-U2*(P2+R2*E2))/dx

+(V3*(P3+R3*E3)-V4*(P4+R4*E4))/dy)

e_new(i,j)=HN/rho_new(i,j)

p_new(i,j)=(gamma-1.0)*rho_new(i,j)*(e_new(i,j)-(u_new(i,j)**2

+v_new(i,j)**2)/2.0)

end do
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end do

do k=1,m

rho_new(0,k)=rho(0,k)

u_new(0,k)=u(0,k)

v_new(0,k)=v(0,k)

e_new(0,k)=e(0,k)

p_new(0,k)=p(0,k)

rho_new(n,k)=4.0*rho_new(n-1,k)/3.0-rho_new(n-2,k)/3.0

u_new(n,k)=4.0*u_new(n-1,k)/3.0-u_new(n-2,k)/3.0

v_new(n,k)=4.0*v_new(n-1,k)/3.0-v_new(n-2,k)/3.0

e_new(n,k)=4.0*e_new(n-1,k)/3.0-e_new(n-2,k)/3.0

p_new(n,k)=4.0*p_new(n-1,k)/3.0-p_new(n-2,k)/3.0

end do

!C--ART VISCOSITY

do a=1,n-1

do b=1,m

SHCH=p_new(a+1,b)-p_new(a,b)

D1=rho_new(a+1,b)-rho_new(a,b)

D2=rho_new(a,b)-rho_new(a-1,b)

OM=VIS*(ABS(D1)*D1-ABS(D2)*D2)

IF(SHCH<0.0)OM=0.0

rho(a,b)=OM+rho_new(a,b)

D1=u_new(a+1,b)-u_new(a,b)

D2=u_new(a,b)-u_new(a-1,b)

OM=VIS*(ABS(D1)*D1-ABS(D2)*D2)

IF(SHCH<0.0)OM=0.0

UC=OM+u_new(a,b)

IF(ABS(UC-u(a,b))>EPS)EPS=ABS(UC-u(a,b))

u(a,b)=UC

D1=v_new(a+1,b)-v_new(a,b)
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D2=v_new(a,b)-v_new(a-1,b)

OM=VIS*(ABS(D1)*D1-ABS(D2)*D2)

IF(SHCH<0.0)OM=0.0

v(a,b)=OM+v_new(a,b)

D1=e_new(a+1,b)-e_new(a,b)

D2=e_new(a,b)-e_new(a-1,b)

OM=VIS*(ABS(D1)*D1-ABS(D2)*D2)

IF(SHCH<0.0)OM=0.0

e(a,b)=OM+e_new(a,b)

D1=p_new(a+1,b)-p_new(a,b)

D2=p_new(a,b)-p_new(a-1,b)

OM=VIS*(ABS(D1)*D1-ABS(D2)*D2)

IF(SHCH<0.0)OM=0.0

p(a,b)=OM+p_new(a,b)

end do

end do

LL=L/30

T=dt*L

IF(L==30*LL)PRINT*,’TIME=’,T,’ EPS=’,EPS

!C--BOUNDARY CONDIONS

do i=1,NS-1

rho(i,m+1)=rho(i,m-1)

u(i,m+1)=u(i,m-1)

v(i,m+1)=-v(i,m-1)

e(i,m+1)=e(i,m-1)

p(i,m+1)=p(i,m-1)

end do

do j=0,m+1
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rho(n,j)=rho(n-1,j)

u(n,j)=u(n-1,j)

v(n,j)=v(n-1,j)

e(n,j)=e(n-1,j)

p(n,j)=p(n-1,j)

end do

end do

do i=0,n

X=dx*i

do j=0,m

Y=dy*j

WRITE(UNIT=22,FMT=26) X, Y, p(i,j)

end do

WRITE(22,*)

end do

do i=0,n

X=dx*i

WRITE(UNIT=21,FMT=25) X, u(i,m)

end do

end program

B.2 Solving the Equation for Pressure

PROGRAM STEM

IMPLICIT DOUBLE PRECISION(A-H, O-Z)

PARAMETER (S=-1.) !This is the switch from indirect (S=-1)

!to direct (S=+1) Mach reflection.

PARAMETER (AK=.25, BET=.5)

PARAMETER (M=200, N=800, XN=4.)
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PARAMETER (DEL=.0000001)

PARAMETER (GAM=1.4, AMINF=4.)

DIMENSION P(0:N,0:M), PN(0:N,0:M), R(N), Q(N)

DIMENSION V1(0:M), F(0:M)

OPEN (21, FILE=’dp_dx.dat’, FORM=’FORMATTED’, STATUS=’NEW’)

OPEN (22, FILE=’p0_x.dat’, FORM=’FORMATTED’, STATUS=’NEW’)

OPEN (23, FILE=’f_y.dat’, FORM=’FORMATTED’, STATUS=’NEW’)

OPEN (24, FILE=’p1_x.dat’, FORM=’FORMATTED’, STATUS=’NEW’)

25 FORMAT(2F11.6)

DX=XN/N

DY=1./M

C -- INITIALIZATION OF THE PRESSURE FIELD

DO 1 K=0,M

DO 1 J=0,N

X=DX*J

1 P(J,K)=X*S/XN

C -- ITERATION PROCESS

DO 9 I=1,200000

EPS=0.

DO 3 K=1,M-1

R(N)=0.

Q(N)=S

DO 2 L=1,N-1

J=N-L

AJ=BET**2/DX**2

BJ=-2.*BET**2/DX**2-2./DY**2

CJ=AJ

DJ=(P(J,K+1)+P(J,K-1))/DY**2

R(J)=-CJ/(AJ*R(J+1)+BJ)

2 Q(J)=-(AJ*Q(J+1)+DJ)/(AJ*R(J+1)+BJ)
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PN(0,K)=0.

DO 3 J=1,N

3 PN(J,K)=R(J)*PN(J-1,K)+Q(J)

DO 4 J=0,N

4 PN(J,0)=(4.*PN(J,1)-PN(J,2))/3.

R(N)=0.

Q(N)=S

DO 6 L=1,N-1

J=N-L

AJ=AK*DY/(4.*DX)

BJ=-1.

CJ=-AJ

DJ=S+AK*(PN(J+1,0)-PN(J-1,0))*DY/(4.*DX)

DO 5 K=1,M-1

5 DJ=DJ+AK*(PN(J+1,K)-PN(J-1,K))*DY/(2.*DX)

R(J)=-CJ/(AJ*R(J+1)+BJ)

6 Q(J)=-(AJ*Q(J+1)+DJ)/(AJ*R(J+1)+BJ)

PN(0,M)=0.

DO 7 J=1,N

7 PN(J,M)=R(J)*PN(J-1,M)+Q(J)

DO 8 J=0,N

DO 8 K=0,M

IF(ABS(P(J,K)-PN(J,K)).GT.EPS)EPS=ABS(P(J,K)-PN(J,K))

8 P(J,K)=PN(J,K)

II=I/20

IF(I.EQ.20*II)PRINT*,’I=’,I,’ EPS=’,EPS

IF(EPS.LT.DEL)GO TO 10

9 CONTINUE

10 X=0.

C -- CALCULATION OF V1 ON THE STEM
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V1(0)=0.

DO 15 K=1,M

15 V1(K)=V1(K-1)+BET**2*DY*(4.*P(1,K)-3.*P(0,K)-P(2,K)+

*4.*P(1,K-1)-3.*P(0,K-1)-P(2,K-1))/(4.*DX)

C -- CALCULATION OF F(Y)

G=(1.+(GAM-1.)*AMINF**2/2.)/(AMINF**2-1.)

F(M)=0.

DO 16 L=1,M

K=M-L

16 F(K)=F(K+1)-G*DY*(V1(K+1)+V1(K))/2.

C -- RECORDING THE RESULTS

DO 11 J=0,N

X=DX*J

WRITE(UNIT=22,FMT=25) X, P(J,0)

11 CONTINUE

DO 17 J=0,N

X=DX*J

WRITE(UNIT=24,FMT=25) X, P(J,M)

17 CONTINUE

DO 12 K=0,M

Y=DY*K

DPDX=(4.*P(1,K)-3.*P(0,K)-P(2,K))/(2.*DX)

WRITE(UNIT=21,FMT=25) Y, DPDX

12 CONTINUE

DO 18 K=0,M

Y=DY*K

WRITE(UNIT=23,FMT=25) Y, F(K)

18 CONTINUE

END


