Rocket Dynamics and Kinetic Energy Derivation
We start by defining the variables used in our derivation:

e m; is the initial mass of the rocket, including both the rocket and its fuel
(constant).

R is the rate at which the fuel is burned, in units of mass per time (con-
stant).

u is the exhaust velocity of the expelled gas relative to the rocket (con-
stant).

t is the time elapsed.

m(t) = m; — Rt is the mass of the rocket at time ¢.
e v(t) is the velocity of the rocket at time .
e f(t) is the force (thrust) acting on the rocket at time ¢.

e K(t) is the kinetic energy of the rocket at time ¢.

Tsiolkovsky Rocket Equation

The Tsiolkovsky rocket equation relates the change in velocity Av of a rocket
to the exhaust velocity u and the initial and final masses of the rocket. It is

given by:
Av=uln (mi )
mpy

where: - my is the final mass of the rocket after expelling fuel. - m; is the
initial mass of the rocket before expelling fuel.
In our case, my = m; — Rt, so the velocity v(t) at time ¢ is:

v(t) = uln <mmRt)

Derivation of the Force f(t)

The force (thrust) f(¢) can be derived from the change in momentum of the
rocket. The momentum p(t) of the rocket is given by:

p(t) = m(t)v(t)

where m(t) = m; — Rt and v(t) = uln (m,;nliRt)'
Thus:




p(t) = (m; — Rt) -uln (m:fi Rt)

To find the force f(t), we take the time derivative of the momentum p(¢):

70 = o)

Applying the product rule:

d

2 m@v(t)] = m'(t)u(t) + m(t)v'(t)
where:

't)=-R
Fn d m; B R
U(t)_u'dtln(mi—Rt> - m; — Rt
Thus:
t) = (—R) - ul i . — Rt R
ft)=(-R) u n(mi—Rt> + (m; — Rt) - - ——

Simplifying:

m;
f(t) = —Ruln (mi — Rt) + Ru

Kinetic Energy Derivation

The kinetic energy K (t) of the rocket at time ¢ is given by:

Substituting m(t) = m; — Rt and v(t) = uln (m,;niiRt>:

K(t) = %(mf, — Rt) (u In (miniiRt»z




Work-Energy Theorem Approach

The total work done by the force f(t) on the rocket and fuel over time ¢ is:

W= /O F(t) - v(t) dt

Substituting f(¢) and v(t):

F(t) :Ru—Ruln( i >

mi—Rt

u(t) = uln <mmRt)

¢ m; m;
W = —Ruln| —— )| -uln ——
/0 [Ru Ru n( iRt)] uln (mi Rt) dt

Expanding the integrand:

t m; t 2 m;
= 1 dt — 1 — | dt
w Ru-/o uln (mi —Rt) Ru/o uln (mi —Rt)

First Integral
t
_ P2 m;
Wi = Ru /0 In <mi — Rt) dt

Substitute © = m; — Rt. Then dez = —Rdt or dt = f%”.
When t =0, x =m;. When t =t, x = m; — Rt.
The integral becomes:

Wy = —“2/%% In (ﬁ) d

m;

Simplify In (mi ):

x

Thus:

m; —Rt m; —Rt
/ In(m;) doe — / In(z) dx

The first integral is straightforward:

m; — Rt
/ In(m;) dx = In(m;) - (m; — Rt —m;) = —In(m;) - Rt

my

For the second integral:



my —Rt
/ In(z) dx

m;

Use integration by parts where u = In(z) and dv = dz. Then du = % dx and
V=

/ln(x)dx:xln(ac)—/x- L= win(a) -

Thus:

m;— Rt
/ In(x) de = [zIn(z) — 2]

m;
my

(m; — Rt) In(m; — Rt) — (m; — Rt) — (m; In(m;) —my)

(m; — Rt)In(m; — Rt) — m; In(m;) +m; — (m; — Rt)

= (m; — Rt)In(m; — Rt) — m; In(m;) + Rt
Combining both results:

U2

) [—In(m;) - Rt — ((m; — Rt) In(m; — Rt) — m; In(m;) + Rt)]

Wi

U2

7 [n(m:) - Rt = (m; — Rt) In(m; — Rt) + m; In(m;) — Rt}

Second Integral

t
Wy = —Ru® [ (") dt
2 v /0 n (miRt

Substitute x = m; — Rt:

u

2 m; —Rt m;
WQ—R/mi In* (2 do
In? (%) = [In(m;) — ln(x)]z

= In?(m;) — 21In(m;) In(z) + In*(z)
Thus:

u?

Wy =—

m;—Rt m;—Rt m;—Rt
/ In?(m;) dz — 21n(m;) / In(z) dx + /

m; m;

In?(z) dx]



The first integral:

m; — Rt
/ In?(m;) dz = In?(m;) - (m; — Rt —my;) = —In®(m;) - Rt

For the second term (already computed):

m;—Rt
/ In(x) dz = (m; — Rt) In(m; — Rt) — m; In(m;) + Rt

n;

For the third integral, use integration by parts:

/ln2(x) do = z1n%(z) — 2/3:111(3:) L= a(@) - 2/ln(x) do

X

= zln®(z) — 2(zIn(z) — z) = xIn®*(z) — 2z1n(z) + 2z
Thus:
m; —Rt _ Rt
/ In*(z) dz = [z1n*(z) — 2z In(x) + 22] mift

™mg
mg

= (m;—Rt) In®(m;—Rt)—2(m;—Rt) In(m;— Rt)+2(m;— Rt)— [m; In®(m;) — 2m; In(m;) + 2m;]

= (m;— Rt) In®(m; — Rt) —m; In® (m;) —2(m; — Rt) In(m; — Rt) +2m; In(m;) + 2Rt

Combining all results:

U2

Wy = = [— In?(m;) - Rt — 21In(m;) [(m; — Rt) In(m; — Rt) — m; In(m;) + Rt] + expression for In*(z) integrall

Combining W, and W,

W =W, + W,
Substituting the results of W7 and Wh:

u2

W = yl [In(m;) - Rt — (m; — Rt) In(m; — Rt) + m; In(m;) — Rt]

+— [(m; — Rt) In?(m; — Rt) — m; In?(my) — 2(m; — Rt) In(m; — Rt) 4+ 2m; In(m;) + 2Rt]

2| S



Combining like terms and simplifying;:

2
W= % [(mi — Rt)In®*(m; — Rt) — m; In*(m;) + 2m; In(m;) — (m; — Rt)In(m; — Rt) + 2Rt
w2
+47 [=(mi = Rt) In(m; — Rt) +m; In(m;) — Rt + 2RY]
Thus:
u2
W = ¥l [(mZ — Rt) 1n2(mz' — Rt) —m; ln2(mi) + 2m; In(m;) — (m; — Rt) In(m; — Rt) + 2Rt]

The total work done W is given by:

u

W = = [(m; — Rt) In®(m; — Rt) — m; In®(m;) + 2m; In(m;) — (m; — Rt) In(m; — Rt) + 2Rt]

After this, I would expect that the addition of the Kinetic Energy of the fuel

1
A(KEpyel) = §m(u —w(t))?
and the KE of the rocket would equal the total work, but they do not.
o+ e #

— 212 m
v=u"ln (m—Rr) 25

[
I,zf"vdr
0
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12:f vedt
0
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W= 5 ((m = Re) 102 (m — R) —m 1o (m)

1

Krocker = 5 (m—Re)V?
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