CHAPTER

12

IDENTICAL
PARTICLES

In any discussion of multizlectron atoms, molecules, solids, nuclei, or elementary
particles, we face systems that immvolve identical particles. As we will discuss in
this chapter, the truly indistinguishable nature of identical particles within quantum
mechanics has profound consequences for the way the physical world behaves.

12.1 INDISTINGUISHABLE PARTICLES
IN QUANTUM MECHANICS

As far as we can tell, all electrons are identical, They all have the same mass, the
same charge, and the same intninsic spin. There are no additional properties, such
as color, that allow us to distinguish one electron from another. Yet within classical
mechanics, identcal particles are, in prnciple, distmguishable. You don’t have
to paint one of them red and one of them green to be able to tell two identical
particles apart. If at some initial time you specify the positions and the velocities
{ry, ¥;) and (r;, ¥;) of 1wo interacting particles, you can caleulate their positions
and velocities at all later times. The particles follow well-defined trajectories, so
you don't need to actually observe the particles to be sure which is which when
you find one of the particles at a later ume. In any case, within classical theory you
would, in principle, be permitted to make measurements of the particles’ positions
and velocities without influencing therr motions 50 that you could actually follow

the wrajectories of the two particles and thus keep track of them.

Life in the real world is different, at least on the microscopic level, As we
have seen in Chapter 8, in many microscopic situations there is no well-defined
trajectory that a particle follows. The particle has amplitudes to take all paths. Orin
the language of wave functions, each of the particles may have an amplitude to be
at | \Fmﬂ}' ufcwr,rla,pping !:al'_'.l:q.itin:ms:1 as indicated in Fig. 12.1, 50 we cannot be sure
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FIGURE 12.1

A schematic diagram imdicating ithe po-
sition probability distribution for two
particles. Since these disinbutions over-
fap, there is no woy 10 be sume which
particle we have detecied if we make n
measwremenl of e particle’s position
and the v paticlés are identical,

which of the particles we have found if we make a subsequent measurement of the
particle’s position, Moreover, any attempt (o keep track of the particle by measunng
its position is bound to change fundamentally the particle’s quantum state,

With these consideranions in mind, let's see what types of states are allowed
for a pair of identical particles. We specify a two-particle state by

la, by = |a) @b} (12.1)

where a single-particle state such as |a) specifies the state of particle | and |b)
specifies the state of particle 2.
We introduce the exchange operator Py, which is defined by

Pula, by = |b, a) (12.2a)
of
Pusllay @ b)) = |b) @lak (12.28)

As an example, the effect of the exchange operator on the state |ry, +2z); @
Irz, —2);. which has particle 1 at position ry with §. = A/2 and parucle 2
at position r; with §, = =A/2, is to pmduce the state |r3, —2z) @ |y, +2)2,
which has particle 1 at position r; with §. = —#A/2 and paricle 2 a1 position r
with §, = h/2 (see Fig. 12.2). The exchange operator interchanges the particles,
switching the subscript labels | and 2 on the states. Since for any physical state
of two identical particles we cannot tell if we have exchanged the particles, the
“exchanged” state must be the same physical state and therefore can differ from
the initial state by at most an overall phase:

Pyl = e®l) = i) (12.3)

Thus the allowed physical states are eigenstates of the exchange operator with
eigenvalue A. Applying the exchange operator twice yields the identity operator,
Therefore

L) = Ayg) = ) {12.4)
which shows that A7 = 1, or A = =1 are the two allowed eigenvalues. '

' There are exceptions to this rule in two-dimensional systems. See the amicle “Anyons”™ by F
Wilczek, Scienrific American. May 1991, p. 58,
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(a) (b)

FIGURE 12.2
The effect of the exchange operalor on o slale of wo u|!|in-i particles as showin in (a) is 10 exchange

Bah the positions and the sping (indicated by the double amaw), as shawn in (0],

Clearly, if the two identical particles are each in the same state |a}), they are
in an eigenstate of the exchange operator with elgenvalue A = 1:

Pila, a) = la, a) (12.5)

indicating that the state is symmetric under exchange. If & # a, we can find the
linear combinations of the two states |a, b) and |b, a) that are eigenstates of the

exchange operator. The matrix representation of the exchange operator using these
states as A basis is given by

{a, blPsla, By {a. blP3lb, a) I
Piz = ({b albpla. by (b, alPylb. na) (1 u) (12.6)

where we have used action of the exchange operator as given in (12.2) and
assumed that the two states |a, by and |5, @) are normalizable and orthogonal,
Thus the condition that the eigenvalue equation (12.3) has a nontrivial solution is

given by
= 0 (12.7)

which also yvields A = £ as before, Substituting the eigenvalues into the eigen-
value equation, we find that the ecigenstates corresponding to these eigenvalues
are given by

1 1
Y= —|a, b)Y + —|b, A=1 12.8a
I‘#s ﬁlﬂ ﬁl E"} ': -'.
o, b) - —ba) A= —I (12.86)

lufra) = % 7
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where the subscripts § and A indicate that these two eigenstates are symmetric
and antisymmetric, respectively, under the interchange of the two particles, Notice
that two identical particles must be in either the state [fis) or the state |, but
they cannot be in a superposition of these states, for then exchanging the two
particles does not lead to & state that differs from the initial state by an overall

phase:
Puialeshis) + caliad) = eslirsd = calia) (12.9)

Thus the particles must make a choice between [s) and [¢4). In fact, it tums out
that Nature makes the choice for them in a strikingly comprehensive way:

Particles with an integral intrinsic spin, s = 0,1, 2,..., are found w0 be
only in symmetnc states and are called bosons; these particles obey Bose-Einstein
statistics.” Examples of such particles include fundamental elementary particles
such as photons, gluons, the W, and 2y inlermediate vector bosons, and the
graviton— particles that mediate the electromagnetic, strong, weak, and gravita-
tional interactions, respectively —as well as composite particles such as pions and
nuclei such as He'.

Particles with half-integral intrinsic spin, 5 = %. %. g. v+, Bre found to be
only 1in antisymmetsic states and are called fermions; these particles obey Fermi-
Dirac statistics, Examples of such particles include fundamental elementary par-
ticles such as electrons, muons, neutninos, and quarks, as well as composite
particles such as protons, neutrons, and nuclei such as He”,

At the level of nonrelativistic quantum mechanics, this relationship between
the intrinsie spin of the particle and the exchange symmetry of the quantum state
i & law of nature —often referred 1o as the spin-statistics theorem —that we must
accept as a given. We can take comfort in the fact that this spin-statistics theorem
can be shown to be a necessary consequence of relativistic quantum field theory.?
In Chapter 14 we consider the fully relativistic quantum field theory for photons,
and we can then see why, as an example, photons must indeed be bosons.

2 The symmitry requirement on the allowed quantum states of identical bosons leads o o stanstical
distfibution fnction for an ensemble of & dentical Borons in thermal egquilibrivm at & tempersture
T thar is different from the classical Boltzmann distribution function. In panicular, the aumbsr of
bosons in a particular quanium stabe with energy E 15 given by

MEY ™ — T

where the value of « is chosen =0 as to ensure that the total number of particles 15 indeed &. On
the oihor hand. the antisymmetry requirement on the allowed gquantum sisies for an enzembie of &
identical fermions lemds o the distribution TuRctioR

1
emetil 4|
Mote: #{£) con be very large for the Bose-Einstein distmbution, while for the Fermi-Dirac distribution
alE) = |, For a derivation of thess quantum distribution functions, see, for example, F Reif,
Fundumentaly of Swtixtical and Theemal Phycdes, MeGraw-Hill, Mew York, 1965, Chapter 9.,

* A comprehensive but advanced discussion is given by B, Streater and A. 5. Wightman, PCT. Spin
oired Siubiztics, and All That, W, A, Benjamin, Mew York, 1984,
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