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hence Ax = ay/1/3 —5/Q2x2) and Ap = nh/(v/3a). We see that the uncertainties product
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satisfies Heisenberg’s uncertainty principle, AxAp > h/2.
(d) Since dy?/dx? is zero at the inflection points, we have
d’y n? Tx
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This relation holds when x = #+a/2; hence the classically allowed region is defined by the in-
terval between the inflection points —a/2 < x < a/2. That is, since y (x) decays exponentially
forx > a/2 and for x < —a/2, the energy of the system must be smaller than the potential.
Classically, the system cannot be found in this region.

Problem 4.2
Consider a particle of mass m moving freely between x = 0 and x = a inside an infinite square
well potential.

(a) Calculate the expectation values (X),, (P),. (X2),. and (P2),,, and compare them with
their classical counterparts.

(b) Calculate the uncertainties product Ax, Ap,.

(c) Use the result of (b) to estimate the zero-point energy.

Solution

(a) Since y, (x) = +/2/a sin(nz x /a) and since itis a real function, we have (| P|y,) = 0
because for any real function ¢ (x) the integral (13) = —ih [ ¢*(x)(d¢(x)/dx) dx is imaginary
and this contradicts the fact that (13) has to be real. On the other hand, the expectation values
of X, X2, and P? are
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In deriving the previous three expressions, we have used integrations by parts. Since £, =
n?x?h? /(2ma?), we may write
s n’z?h?
{wn P ) = = 2mE,. (4.209)

To calculate the classical average values Xuy, Puv. X2, P2, it is casy first to infer that p,, = 0
and p2, = 2mE. since the particle moves to the right with constant momentum p = mv and to

the left with p = —muw. As the particle moves at constant speed, we have x = v¢, hence
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where 7 is half3 of the period of the motion, witha = 7.
We conclude that, while the average classical and quantum expressions for x, p and p? are
identical, a comparison of (4.207) and (4.211) yields
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so that in the limit of large quantum numbers, the quantum expression (y/n|f( 2|y,,) matches
with its classical counterpart x2,: lim,— oo (| X%y} = a?/3 = x2,.
(b) The position and the momentum uncertainties can be calculated from (4.2006) to (4.208):
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(c) Equation (4.214) shows that the momentum uncertainty for the ground state is not zero,
but

hence

h
Apy = % (4.216)

5We may parameterize the other half of the motion by x = —v¢, which when inserted in (4.210) and (4.211), where
the variable 7 varies between — 7 and 0, the integrals would yield the same results, namely x4, = a/2 and xﬁv =a?2/3,
respectively.
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This leads to a nonzero kinetic energy. Therefore, the lowest value of the particle’s kinetic
energy is of the order of E,,;, ~ (Ap1)?/Qm) ~ x%h?/(2ma?). This value, which is in full
agreement with the ground state energy, £1 = z#2h%/(2ma?), is the zero-point energy of the
particle.

Problem 4.3
An electron is moving freely inside a one-dimensional infinite potential box with walls at x = 0
and x = a. If the electron is initially in the ground state (» = 1) of the box and if we suddenly
quadruple the size of the box (i.¢., the right-hand side wall is moved instantancously fromx = a
to x = 4a), calculate the probability of finding the electron in:

(a) the ground state of the new box and

(b) the first excited state of the new box.

Solution
Initially, the electron is in the ground state of the box x = 0 and x = q; its energy and wave

function are -
h
=" 4= [sm(ﬂx). (4.217)
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(a) Once in the new box, x = 0 and x = 4a, the ground state energy and wave function of
the electron are
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The probability of finding the electron in  (x) is
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the upper limit of the integral sign is ¢ (and not 4a) because ¢ (x) is limited to the region

between 0 and «. Using the relation sina sinb écos(u —b) — cos(a + b), we have

sin(zx /4a) sin(zx/a) = 5 L cos(3nx/4a) — cos(57rx/4a) hence
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(b) If the electron is in the first excited state of the new box, its energy and wave function
are
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