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A Schwarzschild radial coordinate R is presented for the Friedmann dust-filled cosmology models.
It is shown that a worldline of constant Schwarzschild radial coordinate in the dust-filled universe
is instantaneously null at R,=2GM/c?, where M is the Schwarzschild mass inside the sphere
R=R; . Itis also shown that M =3 rc3/4G where M , is the proper mass inside R=R,, and 7is the
age of the universe. The R, = 2GM /c? result in Fnedmann dust-filled cosmology is made physically
significant by abandoning the cosmological principle and adjoining segments of Fricdmann dust to
segments of Schwarzschild vacuum. In the resulting cosmology model, the observable universe may

lie inside a black or white hole.

I. INTRODUCTION

It is not uncommon to find introductory astronomy texts or
popularized literature stating that the Milky Way and all the
galaxies of the observable universe may lie inside a black
hole. However; these sources rarely establish the general
relativistic (GR) context for the “black hole universe.”
In this paper, we explain a GR cosmology model in which
the observable universe may lie inside a black or white hole.

We assume the reader is familiar with GR cosmology and
the Schwarzschild solution with its Kruskal extension. Those
not familiar with these topics are referred to a few of many
excellent introductions.?

We begin in Sec. II b y introducing Schwarzschild coordi-
nates in GR cosmology.” We show that the worldline of con-
stant Schwarzschild radial coordinate in the dust-filled uni-
verse is instantaneously null at R,=2GM/c?, where M is
the Schwarzschild mass inside the sphere R=R,. The
Hubble sphere and various horizons are briefly dlscussed We
then show the proper mass M, = =37¢%/4G inside the sphere
R=R, for the dust-filled unlversc where 7 is the age of the
universe.

The result R,=2GM/c? of Sec. Il is only suggestive. We
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actualize this implication in Sec. Ill, where we discard the
cosmological principle and construct a cosmology model
from a combined Friedmann dust and Schwarzschild
vacuum. The merger is outlined for each of the dust-filled
models. The results are discussed in Sec. IV, emphasizing the
conditions whereby the observable universe exists inside a
black or white hole.

While this result is not necessarily of astrophysical impor-
tance, the methodology has been used extensively by cos-
mologists and astrophysicists. The methods outlined in this
paper were used as early as 1939 by Oppenheimer and
Snyder* to explain stellar collapse. Examples of more recent
uses of this technique: Farhi and Guth® examined the possi-
bility of creating an inflationary universe in the laboratory;
Frolov, Markov, and Mukhanov® studied spacetime inside of
a black hole; Goldwirth’ found a basic asymmetry between
the expanding and collapsing phases of the closed universe;
Harwit® offered an explanation of the large scale structure of
the universe; and Dyer, Landry, and Shaver’ joined the flat
dust-filled Friedmann model with one of the spatially homo-
geneous, anisotropic, vacuum spacetimes of the Kasner met-
ric.
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II. SCHWARZSCHILD COORDINATES IN
COSMOLOGY

Before we outline the merger of Friedmann dust-filled cos-
mologies with Schwarzschild space, we hint at the results of
such a combination. We do this by defining a radial coordi-
nate R in the dust-filled Friedmann models analogous to the
radial coordinate of Schwarzschild space. Using the form

sin? y dQ)?
ds?=—c2dP+a¥ (7| dx*+ x*dQ? (1)
sinh? y dQ?

for the closed, flat, and open Robertson-Walker metric re-
spectively, we have

R=a(7)sin x
=a(7)x
=a(7)sinh y (2)

in each of these models. Because the universe is expanding,
an observer trying to maintain constant R would have a local
velocity with respect to the comoving observers. At large
enough R (call it R,), this, velocny would be c, ie., the
worldline would be null. This is analogous to r=2GM /c in
the Schwarzschild metric.
Also analogous to the Schwarzschild space R,=2GM/c?

where M is the Schwarzschild mass inside R= R,, , that is™”

M=4rx f:"p(R)R2 dR. (3)

[n the Friedmann dust-filled cosmologies, p is constant on a
constant 7 surface, so we have simply
47R2p

. @

for all models. That the null observer be at constant R (=R,,)
gives

dR d)(+_ da 0
=acos x o +sin y — =

dr
dyx da
—a— Xdr~ =0
—a cosh x X 4 sinh x 22 =0 5)
=a cosh y = +sinh y —— = (

n the closed, flat, and open models. Since a(dy/d7)=c is
he local velocity of the null observer

da
c=tan x, a7

B da
—X";i—;
=tanh da 6
= tanh x, 7~ | ©)

ignoring algebraic sign) where y, is the comoving radial
:oordinate at R,,. Using the Friedmann dust-filled solutions,
ve have
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da_ c
dr tan /2

()" 2 ¢’ %

4 3773

[

~ tanh 7/2 ™

87wGpa’®
B=ait=—22P% < ﬂ @®)

(is a constant) and
cdr=adny 9)

defines #.
Equations (6) and (7) give

9B
=n/2. (10)

Xn=1/2
3 /7_1/3 1/3 / 3 é—- ?
=35
Using the dust-filled solutions with Egs. (4), (8), and (10)

yields
%k

2GM B sin?(7/2)sin x,
P P

=ga sin y,=R,

== =ax.=R,

B sinh?( 7/2)sinh ﬁ
= (WS Xn _ o =R, () €

P

as claimed.

Thus upon defining a Schwarzschild radial coordinate R in
Friedmann dust-filled cosmology, we find the following anal-
ogy with Schwarzschild space. There is a sphere R=R,
about the origin on which constant R worldlines are null, and
the Schwarzschild mass M within this sphere is R,c*/2G.

Non-Schwarzschild-like characteristics should also be
noted Equation (11) does not hold between the proper
mass'' M, and R, , except in the flat model where space is
Euclidean. Rather, in all three models M, =37¢%/4G inside
R=R,,. To see this, first compute

Xn sin 2
M =47rpa3f sin? y dy=4mpa> Xn 0 X
p 0 2 4

Xn sinh 2
=47'rpa3f sinh? y dx=47rpa3(—4-—i\,—'l—%)
0

12

for the closed and open models. Then use y,=7/2, the dust-
filled solutions, Eq. (8), and Eq. (12) to obtain M,=37c?
4G for the open and closed models, as in the flat model
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Also contrary to Schwarzschild space, worldlines of con-
stant R>R,, in the Friedmann dust are spacelike. All par-
ticles at R>R, must be moving towards larger/smaller R in
an expanding/collapsing Friedmann universe.

And whereas the event horizons of the Schwarzschild
space separate observers in region I/IV from events in region
II/1 [Fig. 1(a)], the R=R,, sphere (an apparent horizon or
Hubble sphere)1 is not an cvcnt horizon. In fact, there are no
event horizons in either the flat or open models—all observ-
ers will see all events given enough time in these models.
The apparent horizon does reside at an event horizon of the
closed universe at the point of maximum expansion, but this
event horizon (as with the apparent horizon) is dependent on
the choice of coordinate origin. All comoving observers must
find themselves at the centers of such event and apparent
horizons, since space is everywhere isotropic according to
the cosmological principle.

But, if we discard the cosmological principle and allow
the R=0 observer to be at the center of a sphere of Fried-

mann dust surrounded by Schwarzschild vacuum, - the -

R,=2GM/c? analogy is pertinent. In this case, the
Schwarzschrld mass of the dust sphere is the M found in the
Schwarzschild metric. Thus, 2GM/c? is an event horizon of
the Schwarzschild space. That is, the Friedmann dust sphere
may reside in a black or white hole of the Schwarzschild
space. We now show how this adjoining can be accom-
plished and elaborate on the results.

III. JOINING THE FRIEDMANN AND
SCHWARZSCHILD METRICS

Birkoff’s theorem? tells us the Schwarzschild solution can
be adjoined to a dynamical mass distribution, as long as the
mass distribution is spherically symmetric. There are two
criteria which must be met at the interface (a three-
dimensional surface) of the adjoined spacctlmes so that the
union is a solution of Einstein’s equations." 4 First, the met-
rics must reduce to the same form on the three-dimensional
interface. Second, the extrinsic curvature of the surface must
be the same when computed with either of the metrics.

To visualize the joining of the spatial portions of the two
solutions, remove a sphere (constant radial coordinate r) of
vacuum from the Schwarzschild space and replace it with a
sphere of dust y=yx, from the Friedmann space (Fig. 2). As
the dust expands (or contracts) into the Schwarzschild space,
the value of r at the interface changes, while in comoving
R—-W coordinates the junction always lies at y=yx,. Since
the spherical interface exists in time, the surface is three
dimensional in spacetime.

Using the Schwarzschild metric

M 2M\ ™
ds2=—(1—7)d12+(1—7z—) dr’+r%dQ* (13)

and geometrlzed units (G=c=1), the three-dimensional

surfaces are given by!
¢ 2/ 5 \32 1/2 m 1
517:5(2—1”) +2(2M) M Wy
r=ax (14)
for the flat model [a(7) from flat, dust-filled solution];

+ constant,
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t B cot 7/2 + ]
37 =M 5T oot 772 +Bln+a(y—sin 7)]
+constant, r=a sin y, (15)
where
B sin X0
TTam

(16)

B=\2a—-1,

for the closed model [a(7) from closed, dust-filled solution];

t B—coth 5/2 N + ofsinh
M M g ¥ coth 772 Bl n+a(sinh 7—7)]
+constant, r=a sinh y,, 17
where
_ B sinh x,
CTTEM

(18)

B=2a+1,

for the open model [a(7) from open, dust-filled solution].
Again, M is the Schwarzschild mass generating the
Schwarzschild vacuum and =, describes the interface sur-
face in the Friedmann spacetimes. The angular coordinates
of the Schwarzschild spacetime are equal to those of the
Friedman spacetimes.

Since the surface is given by xy=yx,, the Friedman metric
on the surface is simply

ds’=—a? dn*+a? sin® x, dQ?
——dr+ald dO?
=-—a? dn*+a? sinh? y, dQ? (19)

for the closed, flat, and open models. In the Schwarzschild
spacetime we have from Eq. (14) ’

dt=J—[1-2H d
= 2M r Ts
(20)
2M
dr=\/—dr,
r
for the flat model; and from Egs. (15) and (16)
_2Ma*(1-cos 9)’B dy
a(l—cos p)—1 ’
B sin xg sin nd
- Xo nan ’ (21)
2
2M a(l cos 7)—1
r a(l—cos 7 ’
for the closed model; and from Egs. (17) and (18)
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Fig. 1. (a) A sketch of the Kruskal (X,T) plane. (b)—(f) Show a Schwarzschild throat opening and closing between regions 1 and IIT and correspond to the
various constant T slices shown in this figure. (b) The T=T1 slice of the Kruskal (X,T) plane shown in (a). (c) The T=T2 slice of the Kruskal (X, T) plane
shown in (a). (d) The T=0 slice of the Kruskal (X,T) plane shown in (a). (¢) The T=T3 slice of the Kruskal (X,T) plane shown in (a). (f) The T=T4 slice
of the Kruskal (X,T) plane shown in (a).
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Schwarzschild
Space

Spherical Interface

Friedmana Dust

Fig. 2. Friedmann dust (closed model) inside the spherical interface replac-
ing the interior region of the Schwarzschild vacuum.

d 2M a*(cosh 7—1)28 dn
1=

3

a(cosh p—1)—1

_ B sinh x, sinh pdn

r 3 ) (22)
1 2M _a(cosh p—1)—1
r a(cosh —1) ’
for the open model. Equations (14) and (20) give
2M 2M\ !
- ( 1 ——)dt2+ ( 1 ———) dri+r? dQ?
r r
= —dP+ay? d?, (23)

for the metric of ‘the interface surface in Schwarzschild
spacetime (flat model). Equations (15) and (21) give

2M 2M\ !
—(1——"—')(1!24'(1—7) dri+r2? dn?

=—a? dy’+a” sin? y, dO2,

for the metric of the surface in Schwarzschild spacetime
(closed model). Equations (17) and (22) give

( 2M
—1-==
r

=—a’ dn’+a” sinh? x, dO?,

de+

2M\ 1
I—T) dri+r? d0?
(25)

for the metric of the surface in Schwarzschild space-time
(open model). Equations (23)—(25) agree with Eq. (19), so
we have satisfied the first junction condition for joining the
two solutions. ’

We must now compute the extrinsic curvature of the sur-
face according to each of the solutions. We begin by finding
the unit normal vector to the surface according to the Fried-
man solutions. We have :

i=a1 2 (26)
n=a -
Ix
since
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(24).

ﬁ-ﬁ=a_2g33=l,

- a _1

n- £=a £31=0,

n- 2 =q"1g:,=0 27
a¢ 32 >

n- ‘a‘=a—1830=0
an ’

A a _1

n - =a g3,=0,

where we have labeled x°=17 (open and closed models),
x%=7 (flat model), x'=4, x’=¢ = X- We now compute the
extrinsic curvature of the surface according to the Friedman
solutions. In all the Friedman models

da ') o

VOﬁ:Wa +a"'Te,. (28)
The only nonzero I'g; is
1 da
F30=7 57 (29)
S0
Von=0=—Kpe;, i=0,1,2 (30)

_or K3=K(1,=K(2,=0 in all Friedmann models. To find K we

compute

da~' 9 +1 ra
0 dx a 31€a-

-

n=

(1)

The only nonzero I'§; is

, cosyx

k) B

sin x
1

X
cosh y

" sinh X (32)

in the closed, flat, and open models, so

1_ = €08 Xo

1" a sin xq
-1

axo

—cosh yq

" a sinh Xo (33)

and K9=K?=0 for all models. To find K% we compute

da' 3 2L e
- a¢ aX a 32€q -

The only nonzero I', is I'}, which equals T3, therefore
K3=K} and K3=K}=0 in all models.

We next compute the extrinsic curvature according to the
Schwarzschild metric. Again we start by finding the unit nor-
mal vector to the surface, but this time we need it represented

V.4 (34)
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in the Schwarzschild coordinate basis. We know that 7i-(3/
36)=n-(3/d¢)=0 from Eq. (27). Thus, n has only r and ¢

Interface Trajectories in Kruskal Plane

components, so 3 T P
. J d 24
n-_—n,5+n,a—r. (35) \f\egon "
14
To find n, and n,, use ol
0
M 2M\ 7! ‘ ;
n-n= —(1 —_—)nt2+( ——T—) nf:l (36) il Region Iil Region |
d Region IV
and -l / * _2
. a4 or 2M ot 2MY 0 s r="0
T\ T\ T S 2 o o 5 s

to obtain

A

for all models, and

n,=cos Xp
=1
=cosh xq. (39)
To find K{), compute
on, 3 on, 3 9 9
0ﬁ=3x—05 03 tn v"a +n V"a (40)
using

d at v d + ar v a
Ot ox® "tor " ax0 "o
ot ar
_G F,,e +—U F,,e (41)
(where r and ¢ are used in subscripts and superscripts to
denote r and ¢ components),
v a _ at v a + or v 7
Ogr ox® "tar " ox® T ar
at ar
__—6 Iﬂlre +ﬁ7 I‘rre (42)

and the only nonzero, relevant Christoffel symbols

M M -1
=\

-M [ 2M\"! /
r; S § S (43)
M l"l
1——— t&
to obtain K =0 for all models, in agreement with the Fried-

mann rcsult To find K, compute

LY ana+va+va »
=505 e ar TV Ty (44)

using the only nonzero, relevant Christoffel symbol
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Fig. 3. Example paths taken by the interface surfaces of each of the three
dust-filled models in the Kruskal (X,T) plane.

, 1
I, =; 45)
to thain
—COS XO
Kl=—
-1
N r
—cosh x,

=—2 (46)

r

and K?=Kf=0, in agreement with the Friedmann results of
Eq. (33). Finally to find K3, compute

¢9n, d on,d
64) at a¢d ar
using T2, =T}, to obtain K5=K, in agreement with the
Friedmann results above. Therefore, Egs. (14)-(18) describe

the connection between Friedmann dust and Schwarzschild
vacuum.

a d
Vz;i +H,V2 3[‘ +an2 ‘(; (47)

1V. RESULTS AND CONCLUSION

The interface surfaces (one for each of the Friedmann
models) are curves in the Kruskal diagram of Fig. 3. A point
on the curve represents a sphere, since the angular coordi-
nates are suppressed. The Friedmann dust may replace the
Schwarzschild vacuum on either side of the curve shown in
Fig. 3. The side of the curve containing the smaller r values
of region I at constant Kruskal time T is referred to as the
“interior” Schwarzschild space or region. The other side of
the sphere is referred to as the “exterior” Schwarzschild
space or region.

We also need to specify what is meant by “inside” and
“outside” of the sphere. When we say the Friedmann dust or
Schwarzschild vacuum lies inside/outside the sphere, we
mean the comoving or Schwarzschild radial coordinate of
the dust or vacuum immediately adjoining the interface has a
smaller/larger value than the interface. Thus, when dust re-
places the exterior/interior vacuum, it lies outside/inside the
sphere. We now describe different connections between the
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Friedmann
Dust

Spherical
Interface

Schvarzschild
Space

r = 0 singularity

Fig. 4. Friedmann dust (closed mode}) outside the spherical interface replac-
ing the exterior region of the Schwarzschild vacuum.

various Friedmann dust-filled models and the Schwarzschild
vacuum, which lead to an explanation of the black hole uni-
verse.

For the closed model, Eq. (39) tells us n, is negative for
Xo>/2, and positive for yo<w/2. Since n, is the r compo-
nent of (a~')d/dy, d/dx points towards smaller r for xo=>m/2
and towards larger r for o<m/2. Thus this Friedmann dust
replaces the exterior Schwarzschild space if the connection is
made at y,>7/2, and the interior Schwarzschild space if the
connection is made at xo<#/2 (Figs. 2 and 4). There is no
such restriction on the flat and open models, so they may
replace the interior or exterior region at any xo (Figs. 5 and
6). In all models when the Friedmann dust replaces the inte-
rior region, it replaces region III of the Kruskal extension,
thus precluding the possibility of a Schwarzschild throat!®
[Figs. 1(b)-1(f)] between regions I and IIL

Friednann Dust

Spherical Interface

Schvarzschild
Space

Fig. 5. Friedmann dust (flat model) inside the spherical interface replacing
the interior region of the Schwarzschild vacuum.
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Schwarzschild Space

r = 0 singularity

Fig. 6. Fricdmann dust (flat model) outside the spherical interface replacing
the exterior region of the Schwarzschild vacuum.

‘When the Friedmann dust replaces the exterior region, the
Schwarzschild vacuum must connect it to a mass M, other-
wise the interior metric is Minkowskian (Birkoff’s theorem).
As shown previously, M is equal to the Schwarzshild mass
of the Friedmann dust inside x=yx,.

To maintain the possibility of a Schwarzschild throat, the
mass M must reside in the singularity at r=0. Further, the
mass must have resided in the singularity since the Big Bang,
or its existence would have precluded the existence of the
Kruskal region III. Thus, with the dust outside the sphere, it
is as if the Schwarzschild mass at r =0 is Friedmann dust not
ejected from the Big Bang singularity, and the Schwarzschild
vacuum is serving as an ‘“‘umbilical cord” between the
ejected dust and the unejected dust (Figs. 4 and 6).

With this Friedmann—Schwarzschild cosmology model,
we see in what sense the Friedmann dust (today in the form
of galaxies) may be said to reside in a black or white hole. If
the Friedmann dust replaces the interior region (and therefore
lies inside the sphere), it can expand out of the initial singu-
larity and out of a white hole of the exterior space (Fig. 3).
The closed model will then collapse to its final singularity
(Big Crunch) inside the black hole of the exterior space. The
open and flat models will forever expand into the exterior
space.

If the Friedmann dust replaces the exterior region (and
therefore lies outside of the sphere), then the Schwarzschild
throat opens between regions I and III. For 7<0, region III
lies through the white hole horizon of region I and vice versa
[Fig. 1(c)]. For T>0, region I lies through the black hole
horizon of region I and vice versa [Fig. 1(¢)]. One may say
the Friedmann dust lies inside the white or black hole of
region IIL. (The converse statement is equally true, of
course.) Thus when the dust replaces the exterior region, it is
possible to have expanding Friedmann dust inside a black
hole (Fig. 7). ‘

To summarize and conclude, portions of Friedmann dust
may be connected to portions of Schwarzschild vacuum. The
adjoining may be done with the Friedmann dust inside or
outside of the spherical junction, replacing the interior or
exterior Schwarzschild space. When the Friedmann dust re-
places the interior Schwarzschild space, it may expand out of
a white hole and collapse into a black hole of the exterior
Schwarzschild space. When the Friedmann dust replaces the
exterior Schwarzschild space, it may be connected via a
Schwarzschild throat to the Kruskal extension of the
Schwarzschild space. Constant T slices of the Kruskal space-
time diagram depict expanding Friedmann dust inside the
white and black hole of region III. This diagram (Fig. 3) also
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Friednann Dust

Spherical Interface

Event Horizon

Schwarzschild ___,

Throat Event Horizom

Region III of
Schvarzschild

Space

Fig. 7. Friedmann dust (closed model) outside the spherical interface replac-
ing the exterior region of the Schwarzschild vacuum. Here, the Schwarzs-
child throat has opened to connect regions I and III of the extended
Schwarzshild space. The region between the event horizons may be either a
black or white hole.

shows the closed model collapsing into the black hole of
regions I and IIL. In this manner, if it is part of a Friedmann
dust, the observable universe may be inside a black or white
hole.
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UNITS: THE PROUT

A unit of nuclear binding energy equal to one twelfth of the binding energy of the deuteron. Its
value is 0-185 MeV or 195X10™° amu. The unit was suggested by Witmer in 1947, because the
binding energies of most nuclei are frequently equal to some integral of this value. Heavy nuclei
have binding energies of the order of 42 prouts, but the energies of light nuclei can be greater than
this. The unit is named after the Scottish physicist William Prout (1786-1850) who put forward a
theory that all atoms were composed of hydrogen atoms. Neither the name nor the unit has been
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