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Abstract

It’s widely recognized that general relativity emerges if we impose invariance under

local translations and local Lorentz transformations. In the same manner supergravity

arises when we impose invariance under local supersymmetry. In this paper we show how

to treat general relativity as a common gauge theory, without introducing a metric or

a tetrad field. The price to pay for such simplification is the acceptance of non-locality.

At first glance the resulting theory seems renormalizable. Finally we derive Feynman

vertices for such theory.
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1 Introduction

It’s widely recognized that general relativity emerges if we impose invariance un-

der local translations and local Lorentz transformations. In the same manner

supergravity arises when we impose invariance under local supersymmetry.

In this paper we show how to treat general relativity as a common gauge

theory, without introducing a metric or a tetrad field. The price to pay for such

simplification is the acceptance of non-locality. Several indications in such direction

are coming from Arrangement Field Theory[1].

2 Non local operators

In this section we define non-local fields over discrete spacetimes, showing that

such fields include differential operators.

Every euclidean 4-dimensional space can be approximated by a graph Λ4, that is

a collection of vertices connected by edges of length ∆. We recover the continuous

space in the limit ∆ → 0. Moreover we can pass from the euclidean space to

the lorenzian space-time by extending holomorphically any function in the fourth

coordinate x4 → ix4 [7].

We start with a local scalar field ϕ(pi) represented by a column array where

each entry is the value of the field in a specific vertex of the graph. For example

(with only 5 vertices):

ϕ(pi) =



ϕ (p0)

ϕ (p1)

ϕ (p2)

ϕ (p3)

ϕ (p4)


Λ4 = {p0, p1, p2, p3, p4} (1)

Similarly we can define a non-local scalar field as:
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ϕ(pi, pj) =



ϕ(p0, p0) ϕ(p0, p1) ϕ(p0, p2) ϕ(p0, p3) ϕ(p0, p4)

ϕ(p1, p0) ϕ(p1, p1) ϕ(p1, p2) ϕ(p1, p3) ϕ(p1, p4)

ϕ(p2, p0) ϕ(p2, p1) ϕ(p2, p2) ϕ(p2, p3) ϕ(p2, p4)

ϕ(p3, p0) ϕ(p3, p1) ϕ(p3, p2) ϕ(p3, p3) ϕ(p3, p4)

ϕ(p4, p0) ϕ(p4, p1) ϕ(p4, p2) ϕ(p4, p3) ϕ(p4, p4)


(2)

At the same time, a local field can be represented also by a diagonal matrix:

ϕD(pi) = ϕ(pi, pi) =



ϕ(p0, p0) 0 0 0 0

0 ϕ(p1, p1) 0 0 0

0 0 ϕ(p2, p2) 0 0

0 0 0 ϕ(p3, p3) 0

0 0 0 0 ϕ(p4, p4)


(3)

ϕ(pi) = ϕD(pi) · ~1 = ϕ(pi, pi) =

=



ϕ(p0, p0) 0 0 0 0

0 ϕ(p1, p1) 0 0 0

0 0 ϕ(p2, p2) 0 0

0 0 0 ϕ(p3, p3) 0

0 0 0 0 ϕ(p4, p4)





1

1

1

1

1



=



ϕ (p0)

ϕ (p1)

ϕ (p2)

ϕ (p3)

ϕ (p4)


(4)
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In the discretized theory, the integral over points becomes a sum over vertices of

the graph. Similarly, the derivative becomes a finite difference. For simplicity, we

start with a one-dimensional graph: it’s easy to see how the derivative operator

is proportional to an antisymmetric matrix M̃ whose elements are different from

zero only immediately above the diagonal (where they count +1), and immediately

below (where they count -1). We can see this, for example, in a “toy-graph” formed

by only 7 separated vertices (figure 1). The argument remains true while increasing

the number of vertices.

∂ϕ(pi) =
1

2∆



0 +1 0 0 0 0 −1

−1 0 +1 0 0 0 0

0 −1 0 +1 0 0 0

0 0 −1 0 +1 0 0

0 0 0 −1 0 +1 0

0 0 0 0 −1 0 +1

+1 0 0 0 0 −1 0





ϕ (0)

ϕ (1)

ϕ (2)

ϕ (3)

ϕ (4)

ϕ (5)

ϕ (6)

ϕ (7)


=

1

2∆



ϕ (1)− ϕ (6)

ϕ (2)− ϕ (0)

ϕ (3)− ϕ (1)

ϕ (4)− ϕ (2)

ϕ (5)− ϕ (3)

ϕ (6)− ϕ (6)

ϕ (0)− ϕ (5)


(5)

Figure 1: A simple graph with 7 vertices which approximates a circular one-
dimensional space.
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∆ is the length of graph edges. In the continuous limit, ∆ → 0 (where matricial

product turns into a convolution), we obtain

∂ϕ(x) = lim
∆→0

1

2∆

∫
M̃(x, y)ϕ(y)dy

∂ϕ(x) = lim
∆→0

1

2∆

∫
[δ(y − (x+ ∆))− δ(y − (x−∆))]ϕ(y)dy

∂ϕ(x) = lim
∆→0

ϕ(x+ ∆)− ϕ(x−∆)

2∆
= ∂ϕ(x) (6)

In this way our definition is consistent with the usual definition of derivative.

While increasing the number of points, a (−1) still remains in the up right

corner of the matrix, and a (+1) in the down left corner as well. To remove

those two non-null terms, it is sufficient to make them unnecessary, by imposing

boundary conditions that make the field null in the first and in the last point.

In fact we can describe an open universe (a straight line in one dimension),

starting from a closed universe (a circle) and making the radius to tend to infinity.

Hence we see that the conditions of null field in the first and in the last point

become the traditional boundary conditions for the Standard Model fields.

Remark 1 Note that in spaces with more than one dimension, a derivative matrix

M̃µ assumes the form (5) only if we number the vertices progressively along the

coordinate µ. However, two different numberings can be always related by a vertices

permutation.

3 Local translations

In this section we introduce a non-local gauge field for local translations. Moreover

we see that such field is enough to describe a covariant quantum theory (ie a

quantum theory of gravity).

A global translation for a scalar field ϕ is given by

6



ϕ′(x) = ϕ(x+ λ) = eλ
µ∂µϕ(x).

A local translation is then given by

ϕ′(x) = ϕ(x+ λ(x)) = E(λ(x))ϕ(x)

where

E(λ) = 1 + λµ∂µ +
1

2!
λµ1λµ2∂µ1∂µ2 + . . .+

1

n!
λµ1 . . . λµn∂µ1 . . . ∂µn

While for global translations we have (∂νϕ)′(x) = (∂νϕ)(x+ λ) = eλ
µ∂µ∂νϕ(x), for

local translations we have ∂νϕ
′(x) = ∂νϕ(x+ λ(x)) 6= E(λ)∂νϕ(x). Conversely:

∂νϕ
′(x) = E(λ(x))∂νϕ(x) + [∂ν , E(λ(x))]ϕ(x)

We take ∂′ = ∂ and (∂νϕ)′ = ∂νϕ
′ insofar as translations are considered transfor-

mations of fields and not of coordinates. Accepted this we can define a covariant

derivative

Dν = ∂ν +Gν

where Gν is a gauge field with transformation law

Gν → G′ν = E(λ)GνE
−1(λ)− [∂ν , E(λ)]E−1(λ).

The transformation law for D is easily calculated:

(Dϕ)′ = D′νϕ
′ = (∂′ν +G′ν)ϕ

′ = (∂ν +G′ν)ϕ
′ =

= E(λ)(∂νϕ) + [∂ν , E(λ)]ϕ+ E(λ)Gνϕ− [∂ν , E(λ)]ϕ =

= E(λ)(∂ν +Gν)ϕ = E(λ)(Dνϕ) (7)
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Hence

D′ν = E(λ)DνE
−1(λ) = Dν

What is E−1(λ)? Consider that

ϕ(x) = E−1(λ)ϕ′(x) = E−1(λ)ϕ(x+ λ(x))

Defining a new coordinate x′ = x+ λ(x) we obtain

ϕ(x′ − λ(x(x′))) = E−1(λ)ϕ(x′)

E−1(λ) = E(−λ′)

= 1− λµ ∂

∂x′µ
+

1

2!
λµ1λµ2

∂

∂x′µ1
∂

∂x′µ2
+ . . .+

(−1)n

n!
λµ1 . . . λµn

∂

∂x′µ1
. . .

∂

∂x′µn

∂

∂x′µ
=

(
∂(x+ λ(x))

∂x

)−1 ν

µ

∂ν

What’s about ϕ′(x′) ?

ϕ′(x′) = ϕ′(x+ λ(x)) = ϕ(x′ + λ(x′)) =

= ϕ(x+ λ(x) + λ(x+ λ(x))) = ϕ(x+ Λ(x)) =

= E(Λ(x))ϕ(x) (8)

with Λ(x) = λ(x) + λ(x+ λ(x)).

Take now a field Gν which is pure gauge, explicitly Gν = 0. Under a translation

x→ x+ Λ(x) we have
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Dν = ∂ν

G′ν = − [∂ν , E(Λ)]E(−Λ′)

D′ν = E(Λ)∂νE(−Λ′)

=

(
∂(x+ λ(x))

∂x

)−1 µ

ν

∂µ =
∂

∂(x+ λ(x))ν
=

∂

∂x′ν
(9)

The last relation is been obtained in three steps:

∂νE(−Λ′)E(Λ)ϕ(x)︸ ︷︷ ︸
ϕ′(x′)

= ∂νϕ(x)

E(Λ)∂νE(−Λ′)E(Λ)ϕ(x)︸ ︷︷ ︸
ϕ′(x′)

= E(Λ)∂νϕ(x)

D′νϕ
′(x′) = (∂νϕ)(x+ Λ(x)) = (∂νϕ)′(x+ λ(x)) =

∂

∂x′ν
ϕ′(x′)

Note that we have recovered the usual definition of ∂′, ie

∂′ν =
∂

∂x′ν
=

∂

∂(x+ λ(x))ν

We see that the action of a local translation x → x + Λ(x) corresponds to the

diffeomorphism x → x′ = x + λ(x) with Λ(x) = λ(x) + λ(x + λ(x)). Hence we

have two choices to obtain invariance under diffeomorphisms:

1. To define eµa(x) with e′µa (x′) = ∂x′µ

∂xν
eνa(x), in such a way to have

S =

∫
d4x ηabeµae

ν
b (∂µϕ)(∂νϕ)

invariant;

2. To introduce a vector field Gν which transforms as an ordinary gauge field
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Gν → G′ν = E(Λ)GνE(−Λ′)− [∂ν , E(Λ)]E(−Λ′)

in such a way to have

S =

∫
d4x ηµν(Dµϕ)(Dνϕ)

invariant.

The last case requires a bit of attention. In fact S is invariant if and only if the

field ϕ transforms according to the rule

ϕ(x)→ ϕ′(x′) = E(Λ)ϕ(x)E(−Λ′)

instead of

ϕ(x)→ ϕ′(x′) = E(Λ)ϕ(x).

However ϕ′(x′) = E(Λ)ϕ(x) in both cases when it applies to a constant field.

Substituting in S we find:

S′ =

∫
d4x ηµνE(Λ)(Dµϕ)E(−Λ′)E(Λ)︸ ︷︷ ︸

=1

(Dνϕ)E(−Λ′)

=

∫
d4x ηµνE(Λ)(Dµϕ)(Dνϕ)E(−Λ′)

In the discrete framework the operators E are simple matrices and
∫
d4x acts as

a trace. Hence we can apply the cyclicity property:

10



S′ =

∫
d4x ηµν E(−Λ′)E(Λ)︸ ︷︷ ︸

=1

(Dµϕ)(Dνϕ)

=

∫
d4x ηµν(Dµϕ)(Dνϕ) = S

Pay attention that (∂νϕ) is equal to ∂νϕ−ϕ∂ν and so it corresponds to [M̃, ϕ] with

ϕ in diagonal representation. At the same time the appearance of E(Λ) is very

simple: it has a 1 for every pi in the crossing between the row pi and the column

pi + Λ(pi). Other entries are zero. Finally E(−Λ′) is calculated as the inverse of

E(Λ).

In presence of fields with spin we have to add the usual spin connection ω in

order to compensate local Lorentz transformations. It is necessary because diffeo-

morphisms cause simultaneously a local shift of coordinates and a local “rotation”

of axes. Clearly this last doesn’t affect scalar fields. Putting all together:

Dµ = ∂µ +Gµ + ωijµ i, j = 0, 1, 2, 3 ωij = −ωji

Obviously all fields transform homogeneously under local translations:

ψ → ψ
′
= EψE−1

ψ → ψ′ = EψE−1

Aµ → A′µ = EAµE
−1

Dµϕ → (Dµϕ)′ = E(Dµϕ)E−1 (10)

We see that all fields can be local only in a specified gauge. In other words, given a

local field ϕ in the diagonal representation, its transformed ϕ′ = EϕE−1 is highly

non local.
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4 Ricci scalar and Feynman diagrams

In some gauge the Ricci Scalar is given by

R = α [(∂ρ + Aρ), (∂σ + Aσ)] [Gµ, Gν ] η
µρηνσ α ∈ R

However, the covariant combination

K = α[Dµ, Dν ][Dρ, Dσ]ηµρηνσ

is equivalent to Ricci scalar plus a topological term (usually called “Gauss-Bonnet

term”). Moreover we can extract from K the propagators of G and A as it happens

in ordinary gauge theories. Adding the expected fermionic term ψ̄γµDµψ, the

Feynman vertices of quantum gravity are the ones in figure 2.

Figure 2: Feynman diagrams in Quantum Gravity.

The price for treating Quantum Gravity as a gauge theory is the inclusion of

non-local fields. Explicitly, the path integral must contain not only integrations
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over diagonal fields ϕ(x), ψ(x) ψ̄(x), Aµ(x) and Gµ(x), but also over non-local

fields ϕ(x, y), ψ(x, y) ψ̄(x, y), Aµ(x, y) and Gµ(x, y).

In this way we recover the fundamental result of Arrangement Field The-

ory, ie that metric appears when locality principle is imposed.

5 Conclusion

At this point we have a quantum theory of gravity which resembles ordinary gauge

theories. This implies that quantum gravity has the same superficial degree of

divergence of gauge theories and then it is apparently quantizable. You just have

to try to calculate the first gravitational amplitudes.
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