Appendix J

Infinite dimensional operators

(A. Wirzba)

of trace-class and Hilbert-Schmidt matrices, the deteamt over infinite
dimensional matrices and regularization schemes for oestior operators
which are not of trace-class.

Tms APPENDIX, taken from ref. [J.1], summarizes the definitions and priige

J.1 Matrix-valued functions

(P. Cvitanovit)

As a preliminary we summarize some of the properties of fonstof finite-
dimensional matrices.

The derivative of a matrix is a matrix with elements

A= L0 = LA, 0.1)

Derivatives of products of matrices are evaluated by thénahde

d dA dB

A matrix and its derivative matrix in general do not commute

— A= A+ A—. J.3)

860
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The derivative of the inverse of a matrix, follows frogg(AA‘l) =0:
—Al- 3.4

A function of a single variable that can be expressed in terfhaslditions and
multiplications generalizes to a matrix-valued functionrbplacing the variable
by the matrix.

In particular, the exponential of a constant matrix can dendd either by its
series expansion, or as a limit of an infinite product:

_ v 1k 0_
& = ZEA, A0 =1 (3.5)
k=0
= lim 1+iAN (3.6)
- N—oco N '

The first equation follows from the second one by the binothiebrem, so these
indeed are equivalent definitions. That the terms of of@{@t~2) or smaller do
not matter follows from the bound

x—e\N X+ Xy \N X+ e\N
(1+ N)<(1+ N )<(l+ N)’

where|dxy| < e. If lim 6xy — 0 asN — oo, the extra terms do not contribute.

Consider now the determinant

det@) = Jim (det (1+ A/NYN

To the leading order in/N
1 -2

det(1+A/N) =1+ NtrA+ O(N™).

hence
1 N
dete” = lim (1 AT O(N’Z)) =dra Q.7

Due to non-commutativity of matrices, generalization ofiadtion of several
variables to a function is not as straightforward. Exp@ssivolving several
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matrices depend on their commutation relations. For exentpbe commutator
expansion

é”Be ™™ =B +t[A,B] + ;[A,[A,B]] + t3—3I[A, [A[A,B]]] +--- (3.8)

sometimes used to establish the equivalence of the Heigpabe Schrodinger
pictures of quantum mechanics follows by recursive evalnaif t derivatives

d —tA) _ A —tA
e (¢#Be™) = ¢*[A,Ble ™.
Manipulations of such ilk yield
1
eATBIN — ANGB/N _ W[A’ B] + O(N73),
and the Trotter product formula: B, C andA = B + C are matrices, then

& = lim (NN (2.9)

N—oo

J.2 Operator norms

(R. Mainieri and P. Cvitanovic)

X
‘ The limit used in the above definition involves matrices -rapa's in
vector spaces - rather than numbers, and its convergencbecahecked using
tools familiar from calculus. We briefly review those tookré, as throughout the
text we will have to consider manyftiérent operators and how they converge.

Then — oo convergence of partial products

can be verified using the Cauchy criterion, which states ttatsequencé¢E,}

converges if the dierenced|Ex — Ej|| — 0 ask, j — co. To make sense of this we
need to define a sensible nofim - ||. Norm of a matrix is based on the Euclidean

norm for a vector: the idea is to assign to a mawixa norm that is the largest
possible change it can cause to the length of a unit vector ~

Ml = suplIMAll, [IAll =1. (3.10)
n
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We say thatf] - || is the operator norm induced by the vector ndrnf|. Construct-
ing a norm for a finite-dimensional matrix is easy, but Mwdbeen an operator in
an infinite-dimensional space, we would also have to spekéyspace belongs
to. In the finite-dimensional case, the sum of the absoluligegaof the compo-
nents of a vector is also a norm; the induced operator norra foatrixM with
componentsVi;j in that case can be defined by

IMIl = max ) M. (3.11)
]

The operator norm (J.11) and the vector norm (J.10) are anghyr distinguished
by different notation, a bit of notational laziness that we shétlolgh

Now that we have learned how to make sense out of norms of topgrave
can check that exercise J.1

€4 < Al J.12)

exercise 2.9

As ||All is a number, the norm @&f* is finite and therefore well defined. In partic-
ular, the exponential of a matrix is well defined for all vaue t, and the linear
differential equation (4.10) has a solution for all times.

J.3 Trace class and Hilbert-Schmidt class

This section is mainly an extract from ref. [J.9]. Refs. [J.20, J.11, J.14] should
be consulted for more details and proofs. The trace classHilbdrt-Schmidt
property will be defined here for linear, in general non-hiéem operatorsA €
L(H): H - H (whereH is a separable Hilbert space). The transcription to
matrix elements (used in the prior chapters) is simgly= (¢i, A¢;) where{sn}

is an orthonormal basis off and( , ) is the inner product it (see sect. J.5
where the theory ofon Koch matrice®f ref. [J.12] is discussed). So, the trace
is the generalization of the usual notion of the sum of thegalial elements of a
matrix; but because infinite sums are involved, not all ojpesawill have a trace:

Definition:

(a) An operatorA is calledtrace class A € 73, if and only if, for every or-
thonormal basisi@n}:

D Kb Al < 0. (0.13)

The family of all trace class operators is denotedfay
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(b) An operatorA is calledHilbert-Schmidt, A € 7, if and only if, for every
orthonormal basiggn}:

D IAGI? < oo
n

The family of all Hilbert-Schmidt operators is denoted .

Bounded operatorsare dual to trace class operators. They satisfy the follgwin
condition: [(y, Be)| < Cllyllll¢ll with C < co andy, ¢ € H. If they have eigenval-
ues, these are bounded too. The family of bounded operatdenbted byB(H)
with the norm||B|| = supwo% for ¢ € H. Examples for bounded operators are
unitary operators and especially the unit matrix. In faggrg bounded operator

can be written as linear combination of four unitary opersato

A bounded operato€ is compact if it is the norm limit of finite rank opera-
tors.

An operatorA is calledpositive A > 0, if (Ag,¢) > 0 V¢ € H. Note that
ATA > 0. We defingA| = VATA.

The most important properties of the trace and Hilbert-Sdhlasses are
summarized in (see refs. [J.7, J.9]):

(&) J1andJ, arexideals., i.e., they are vector spaces closed under scalar mu
tiplication, sums, adjoints, and multiplication with baled operators.

(b) A e g1ifand only if A = BC with B,C € 7>.
(c) 91 c g c Compact operators.

(d) For any operatoA, we haveA € 75 if 3, [IAdnlI? < oo for a single basis.
For any operatoA > 0 we haveA € 71 if Y, [{¢n, Adn)| < oo for a single
basis.

(e) If A e g1, Tr(A) = Y{¢n, Agn) is independent of the basis used.

(f) Tris linear and obeys TA") = Tr(A); Tr(AB) = Tr(BA) if either A € J1
andB bounded A bounded and € J; or bothA,B € 7.

(@) J» endowed with the inner produ¢d, B), = Tr(ATB) is a Hilbert space.
If Al = [Tr(A*A)]%, then||All2 > ||All and 7> is the]| ||]>-closure of the
finite rank operators.

(h) g1 endowed with the normiAll, = Tr( VATA) is a Banach spacelAll; >
[IAll2 > |IAll and 77 is the|| ||1-norm closure of théinite rank operators. The
dual space off; is B(H), the family of bounded operators with the duality
(B,A) = Tr(BA).

(i) If A,B € J», then||ABl1 < IAl2IIBIL. If A € J» andB € B(H), then
IABI2 < [All2lIBII. If A € g1 andB € B(H), then||AB||1 < [|A|l1]BIl.
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Note the most important property for proving that an operatdrace class is the
decomposition(b) into two Hilbert-Schmidt ones, as the Hilbert-Schmidt prop
erty can easily be verified in one single orthonormal bagie(@®)). Property(e)
ensures then that the trace is the same in any basis. Peggajtand (f) show
that trace class operators behave in complete analogy te farik operators. The
proof whether a matrix is trace-class (or Hilbert-Schmaithot simplifies enor-
mously for diagonal matrices, as then the second part ofgpryd) is directly
applicable: just the moduli of the eigenvalues (or — in cdsiditbert-Schmidt —
the squares of the eigenvalues) have to be summed up in oraeswer that ques-
tion. A good strategy in checking the trace-class charatteigeneral matri is
therefore the decomposition of that matrix into two masiBeandC where one,
sayC, should be chosen to be diagonal and either just barely deHHSchmidt
character leaving enough freedom for its parfBer of trace-class character such
that one only has to show the boundednes®for

J.4 Determinants of trace class operators
This section is mainly based on refs. [J.8, J.10] which sthdd consulted for
more details and proofs. See also refs. [J.11, J.14].

Pre-definitions (Alternating algebra and Fock spaces):

Given a Hilbert spacé{, ®"H is defined as the vector space of multi-linear func-
tionals onH with ¢1 ® - - - ® ¢y € ®"H in casepy, ..., ¢n € H. A\"(H) is defined
as the subspace @f'H spanned by the wedge-product

1
i Z €M ¢r@) ® -+ ® dam)]
* nePn

PLA - Npn =

where®;, is the group of all permutations of letters ande(r) = +1 depending
on whetherr is an even or odd permutation, respectively. The inner prooiu
A"(H) is given by

(@1 A A A=+ Amn) = det{(gi, 7))

where deffajj} = ¥ ep, €(m)a1r) - - Am(n)- A"(A) is defined as functor (a functor
satisfies\"(AB) = A"(A) A"(B)) on \"(H) with

N@) @1 A7) = Ady A+ A Ady.

Whenn = 0, \"(H) is defined to b& and \"(A) as 1:.C — C.

Properties: If A trace class, i.eA € J1, then for anyk, AX(A) is trace class, and
for any orthonormal basig,} the cumulant

T (A @)= D (@n- A Bd A AAGY) <0

ip<-<ik

appendWirzba - 9dec2002 ChaosBook.org version13.7.6, May 3 2012



APPENDIX J. INFINITE DIMENSIONAL OPERATORS 866

is independent of the basis (with the understanding thalT&) = 1).

Definition: LetA € 71, then det (+ A) is defined as
- k
det@+A) = ) Tr ( A (A)) (3.14)
k=0

Properties:

Let A be a linear operator on a separable Hilbert spicand {¢;};* an or-
thonormal basis.

@ I, Tr(AMA)) converges for each € 7;.

(b) [det@ + A)l < T3, (1+uj(A)) wherey;(A) are thesingular values ofA,
i.e., the eigenvalues ¢A| = VATA.

(c) Idet@ + A)l < exp(lAlly).

(d) For anyAs,....An € J1, {Z1,...,Zn) — det(1+2i”:laAi) is an entire
analytic function.

(e) If A,B e J1,then
detl + A)detl +B) = det(1+A +B+AB)

= det((1+A)(1+B))
= det((1+B)(1+A)) . (J.15)

If A € 71 andU unitary, then
det(U™(1 + A)U) = det(1 + UT'AU) = det(l + A) .

(f) If A eJy,then @+ A)isinvertible if and only if det{ + A) # 0.

(g) If 2 # 0is ann-times degenerate eigenvaluefhok 71, then det{ + zA) has
azeroofordenatz= -1/A.

(h) For anye, there is aC.(A), depending oA € 71, so that/det(l + zA)| <
Ce(A) exp(el2).
(i) ForanyA € g1,

N(A)

det@+A) = [ | (1+4(A)) (3.16)
j=1
where here and in the foIIowirigj(A)}?:(f) are the eigenvalues gfcounted
with algebraic multiplicity .
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(j) Lidskii's theorem:For anyA € 91,
N(A)

TrA) = D) 4(A) < 0.
=1

(k) If A e g1, then

N(ARA))

Z 1 (/\k(A))

=1

Tr( /\k(A))

A3 (A) -+ A (A) < o0,
1<j<< Jk<N(A)

) If Aedgy,then

det(1+7A) = )" # DU A A) <w. (37)
k=0 1<ji<-<jksN(A)

(m) If A € 71, then foriz small (i.e.J2l max; (A)| < 1) the serie$ i, Tr ((-A)¥) /k

converges and

det(1+ zA)

exp{— Z %Tr((—A)k)]
k=1
exp(Trin(1 + zA)) . (J.18)

(n) The Plemelj-Smithies formul@efineam(A) for A € 91 by

- am(A)
det(l +7A) = )" 2" o (3.19)
m=0
Thenam(A) is given by them x m determinant:
Tr(A) m-1 0 0
Tr(A%)  Tr(A) m-2 0
Tr(A%)  Tr(A?) Tr(A) 0
am(A) = : : : (9.20)
1
Tr(A™)  Tr(AMY) Tr(AM2) ... TrA)

with the understanding thai(A) = 1 anda1(A) = Tr(A). Thus the cumu-
lantscm(A) = am(A)/m! satisfy the following recursion relation

cm(A) = r—ln Z(—l)MqH(A)Tr(Ak) form>1
k=1

Co(A)

1. (3.21)
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Note that in the context of quantum mechanics formula (Jid9pe quantum
analog to the curvature expansion of the semiclassicalfastiion with TrA™)
corresponding to the sum of all periodic orbits (prime arsbakpeated ones) of
total topological lengttm, i.e., letcy(s.c.) denote then™™ curvature term, then the
curvature expansion of the semiclassical zeta functiorivisngby the recursion
relation

cm(s.c.) form>1

2o se) Y [~
K=t Wi Bl =k 1- (A_n)
co(sc) = 1. (J.22)

In fact, in the cumulant expansion (J.19) as well as in the/ature expansion
there are large cancelations involved. Let us order — withasi of generality —
the eigenvalues of the operatre 7; as follows:

[l > 2] = -+ - > [Aj-al 2 |4l > [Ajgal > -+

(This is always possible because Eﬁ‘f) [4i] < «.)  Then, in the standard
(Plemelj-Smithies) cumulant evaluation of the determinaqg. (J.19), we have
enormous cancelations of big numbers, e.g. atktheumulant orderK > 3),
all the intrinsically large ‘numberst, 2115, ..., 522,13, ... and many more
have to cancel out exactly until onfyaj, «..<j.<na) 4js - - - 4j, IS finally left over.
Algebraically, the fact that there are these large carioakatis of course of no
importance. However, if the determinant is calculated mica#y, the big cance-
lations might spoil the result or even the convergence. Nlogvcurvature expan-
sion of the semiclassical zeta function, as it is known tpdathe semiclassical
approximation to the curvature expansion (unfortunatelyhe Plemelj-Smithies
form. As the exact quantum mechanical result is approxicha@miclassically,
the errors introduced in the approximation might lead todffgcts as they are
done with respect to large quantities which eventually eanat and not — as it
would be of course better — with respect to the small surgidgomulants. Thus
it would be very desirable to have a semiclassical analofp¢aréduced cumu-
lant expansion (J.17) or even to (J.16) directly. It might be possible to find
a direct semiclassical analog for the individual eigeralyj. Thus the direct
construction of the semiclassical equivalent to (J.16atikar unlikely. However,
in order to have a semiclassical “cumulant” summation witharge cancelations
—see (J.17) — it would be just ficient to find the semiclassical analog of each
complete cumulant (J.17) and not of the single eigenvali$ether this will
eventually be possible is still an open question.

J.5 Von Koch matrices

Implicitly, many of the above properties are based on therthef von Koch
matrices [J.11, J.12, J.13]: Aninfinite matfix- A = ||6jx — ajll;’, consisting of
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complex numbers, is called a matrix with absolutely convergent determinaiit
the series’ |aj,k, aj,k, - - - @j, k| CONverges, where the sum extends over all pairs
systems of indicesj{, j2, -, jn) @and kg, ko, - - - , kn) which differ from each other
only by a permutation, anfi < jo <---jan(n=1,2,---). Then the limit

r!im deu\éjk - aijE =detl - A)

exists and is called the determinant of the matrix A. It can be represented in
the form

S 1S a an| 1 3jj A Ajm
detd-A)=1- Y ay+ 5 3| |- 3 lag A am
= =i “jkm=1| @nj amk amm

where the series on the r.h.s. will remain convergent evix@inumbers (j, k =

1,2,---) are replaced by their moduli and if all the terms obtainedekyanding
the determinants are taken with the plus sign. The matriA is calledvon Koch
matrix, if both conditions

Z|ajj| < o0, (J-23)
=1
Z|ajk|2 < (3.24)
k=1

are fulfilled. Then the following holds (see ref. [J.11, J)181) Every von Koch
matrix has an absolutely convergent determinant. If thenefes of a von Koch
matrix are functions of some paramete(ax = ajx(u), j.k = 1,2,---) and both
series in the defining condition converge uniformly in thenddn of the parameter
u, then asn — oo the determinant dgdjx — aj ()|l tends to the determinant
det(L+A(w)) uniformly with respect teu, over the domain gt. (2) If the matrices
1- A andl - B are von Koch matrices, then their proddct C = (1-A)(1-B)

is a von Koch matrix, and

det(l - C) = det(L — A) det(l - B).

Note that every trace-class matixe 71 is also a von Koch matrix (and that
any matrix satisfying condition (J.24) is Hilbert-Schmatd vice versa). The
inverse implication, however, is not true: von Koch mati@e not automati-
cally trace-class. The caveat is that the definition of vortKmatrices is basis-
dependent, whereas the trace-class property is bafipendent As the traces
involve infinite sums, the basis-independence is not atigiat. An example for
an infinite matrix which is von Koch, but not trace-class is following:

2/j for i-j=-1 and jeven,
Ajj=4 2/i for i-j=+1 and ieven,
0 else,
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ie.,

(3.25)

- O O ocoroO
O O O0OR
o ©O%9oo
co0oo

. i~

© o ygooo
.. 2

o o Oojoo

Obviously, condition (J.23) is fulfilled by definition. Sewd the condition (J.24)

is satisfied ag>; 2/n® < co. However, the sum over the moduli of the eigen-
values is just twice the harmonic serig§.; 1/n which does not converge. The
matrix (J.25) violates the trace-class definition (J.18)indts eigenbasis the sum
over the moduli of its diagonal elements is infinite. Thusahsoluteconvergence

is traded for aconditionalconvergence, since the sum over the eigenvalues them-
selves can be arranged to still be zero, if the eigenvalutsthee same modulus
are summed first. Absolute convergence is of course eskéhsiams have to be
rearranged or exchanged. Thus, the trace-class propertglispensable for any
controlled unitary transformation of an infinite determiheas then there will be
necessarily a change of basis and in general also a re<ogdefrthe correspond-
ing traces. Therefore the claim treHilbert-Schmidt operator with a vanishing
trace is automatically trace-clags false. In general, such an operator has to be
regularized in addition (see next chapter).

J.6 Regularization

Many interesting operators are not of trace class (althabgy might be in some
Jp with p> 1 - an operatoA is in 7, iff Tr/AP < oo in any orthonormal basis).
In order to compute determinants of such operators, an ggtenf the cumulant
expansion is needed which in fact corresponds to a regatane procedure [J.8,
J.10]:

E.g. letA € Jp with p < n. Define

n-1 (—Z)k
Ru(ZA) = (1 + ZA) exp[z TAk} -1
k=1

as the regulated version of the operatar Then the regulated operat@i(zA) is
trace class, i.eRn(zA) € J1. Define now def(1 + zA) = det( + R,(zA)). Then
the regulated determinant

N(zA)

dety(1+ zA) = l—[ l(l + z,lj(A)) exp
j=1

Z ” < oo, (3.26)

k=1
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exists and is finite. The corresponding Plemelj-Smithiesifda now reads [J.10]:

o (n)
am (A)
det(1+2A) = > 2" e (3.27)
m=0
with af{]‘)(A) given by them x m determinant:
o§"> m-1 0 - 0
cr%n) (rELn) m-2 0
DI R 0
oPry=|7% 2 71 ) (3.28)
1
o ol oy oD
where
o _ [ Tr(A% k>n
KT o0 k<n-1

As Simon [J.10] says simply, the beauty of (J.28) is that wedgg(1 + A) from
the standard Plemelj-Smithies formula (J.19) by simpl§irsgfTr(A), Tr(A?), ...,
Tr(A™1) to zero.

See also ref. [J.15] wherglj} are the eigenvalues of an elliptic (pseudo)-
differential operator of ordermon a compact or bounded manifold of dimension
d,0< g <23 < ---andig T +o0. and the Fredholm determinant

A(/l):g(l—%k)

is regulated in the cage= d/m > 1 as Weierstrass product

)

AQ) = ﬂ

k=0

(3.29)

1- i)exp(i U ﬂ_[”]]
A e 2 Py
where L] denotes the integer part pf This is, see ref. [J.15], the unique entire

function of orde: having zeros &tlx} and subject to the normalization conditions

dlul

:mlnA(O):O

InA(O):%InA(O):---

Clearly (J.29) is the same as (J.26); one just has to identify-1, A = 1/H and
n— 1= [u]. An example is the regularization of the spectral deteamin

A(E) = det[E - H)] (3.30)
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which — as it stands — would only make sense for a finite dinossibasis (or
finite dimensional matrices). In ref. [J.16] the regulatpdctral determinant for
the example of the hyperbola billiard in two dimensions §ttu= 2, m = 2 and
henceu = 1) is given as

A(E) = det [(E - H)Q(E, H)]
where
Q(E, H) = —H1efH™

such that the spectral determinant in the eigenbadis(efith eigenvalue&,, # 0)
reads

A(E) = ]—[(1— EEn)eE/En <.

n

Note thatH~1 is for this example of Hilbert-Schmidt character.

Exercises

J.1. Norm of exponential of an operator. Verify inequal-
ity (J.12):
e < e
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