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The natural frequencies and mode shapes of finite length thick cylinders are of
considerable engineering importance. A comprehensive classification of the modes of such
thick cylinders, based on three-dimensional mode shapes, is presented in this paper. In
addition to the 5 groups consisting of pure radial, radial motion with radial shearing,
extensional, axial bending, and global modes, as previously adopted for thin cylinders, a
further sixth circumferential category is proposed. This classification, together with the
numbers of both the circumferential and the longitudinal nodes, is sufficient to identify each
mode of a finite length thick cylinder. The classification for the modes of thick cylinders
is applied to four groups of cylinders whose radial thickness to median radius ratio varies
from 0·1 to 0·4. Each group contains a set of 8 cylinders with similar inside and outside
diameters, but with different axial lengths; these were used to verify the validity of the
classifications, and to study the effects of varying axial length and varying radial thickness
on each of the different types of modes. Analytical finite element analysis was applied to
all four groups, and experimental analysis was applied to those cylinders whose radial
thickness to the medium radius ratio was 0·4. The results support the method of
classification, although very short cylinders behave essentially as annular circular plates.
The effects of varying axial length and radial thickness on the vibrational modes are such
that all modes can be broadly categorized as either pure radial modes, or non-pure radial
modes. The natural frequencies of the former are dependent upon only the radial
dimensions of the models, while the natural frequencies of the latter are dependent upon
both axial length and radial thickness.
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1. INTRODUCTION

The vibrations of hollow cylinders are of considerable engineering importance as
such cylinders have numerous applications in practice. A number of papers for the
prediction of the resonant frequencies of cylinders have been published over the
years. Early investigations of the vibrations of hollow cylinders based on the linear
three-dimensional theory of elasticity were by Greenspon [1] and Gazis [2]. McNiven
et al. [3] developed a three-mode theory, i.e. the longitudinal, first radial and first axial
shear modes, for the axisymmetric vibrations of hollow cylinders. McNiven and Shah
[4] further extended this to investigate the end mode. Tabulated data of the natural
frequencies and mode shapes of hollow and solid circular cylinders, with infinite length,
were published by Armenakas et al. [5]. The general problem of three-dimensional
vibrations of a finite length circular cylinder, with traction free surfaces, was first
studied by Gladwell and Vijay [6]. Hutchinson and El-Azhari [7] found the natural
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frequencies for the vibrations of hollow elastic circular cylinders, with traction free
surfaces, by using a series solution. Singal and Williams [8] investigated the vibrations
of thick circular cylinders by using the energy method based on the three-dimensional
theory of elasticity. Also investigations of thick circular cylinders can be found in
studies of cylindrical shells, a summary and comparison of which can be found in reference
[9].

In so far as the experimental investigation is concerned, McMahon [10] gave
experimental results for the natural frequencies of vibrations of solid, isotropic, elastic
cylinders with free boundaries. Singal and Williams [8] gave experimental results for both
the natural frequencies and mode shapes of a series of thick circular cylinders with traction
free surfaces.

The vibrational analysis of thick cylinders of finite length is more complicated
than that of thin cylinders. For the case of traction free surfaces, there are no
closed form solutions [6]. Either an analytical approach using series solutions, or a
numerical approach using the finite element method is often used. In the past, some
papers, such as reference [6], were restricted to discussing natural frequencies, and
the relationship between the natural frequency and the dimensions of the thick
cylinder. In references [8, 11] the authors discussed both the natural frequencies and
mode shapes of thick cylinders. The mode shapes were described in the circumferential
and longitudinal directions separately. Such a method of description may be
satisfactory for the mode shapes of thin cylinders, but it is not complete enough to
accurately describe the mode shapes of thick cylinders. References [8, 11] further
indicated that several combinations of the same circumferential and longitudinal
node numbers existed in the frequency range investigated. In their theoretical analysis,
Girgis and Verma [12] indicated that there were three such frequencies for each
combination of circumferential and longitudinal node numbers. The first frequency
was predicted as being a predominantly radial vibration, the second as being
predominantly axial, and finally, the third and highest as being predominantly tangential
in natural. Such an explanation is still not sufficiently exact because, as will be
shown, some of the mode shapes of thick cylinders are not readily represented by these
descriptors.

In this paper, a classification of the vibrational modes of thick cylinders of finite
length, based on three-dimensional mode shapes, is proposed. For such a classification,
information about both the natural frequencies and mode shapes is necessary. The finite
element method is used in this paper to calculate these. Using commercially available
finite element programs, it is relatively easy to obtain the necessary information upon
which the mode classification can be based. The classification is then applied in a
study of how variations of both cylinder axial length and radial thickness influence the
natural frequencies of a cylinder.

According to the classification of the modes of thick cylinders used by Singal and
Williams [8], the natural frequencies and the mode shapes of different kinds of modes vary
with changing length in a number of different ways. In this paper, the variation in
the natural frequencies and the node shapes of several sets of thick cylinders, with varying
axial length and radial thickness, are analysed theoretically using a finite element
technique. The natural frequencies and mode shapes of a series of cylinder models,
whose radial thickness to median radius ratio was 0·4, were verified by experiment.
The results of the analytical and experimental investigations are presented here to
further verify the validity of the classification, and to reveal the relationships which exist
between the different categories of modes and the two variables: axial length and radial
thickness.
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2. NATURAL FREQUENCY AND MODE SHAPE

The equation of motion of a unit infinitesimal element can be expressed by the
displacement tensor as

mUi,mm +(l+ m)Um,mi +Fi = rUi,tt , (1)

where U is the displacement tensor, F is the applied force, l is the Lame-coefficient,
m is the shear modulus of elasticity, r is the material density, and i, m= x, y, z. The
corresponding finite element equation of motion for free vibration is

MU� +KU=0, (2)

where

M=gV

rWU,i dV, K=gV

[mW,mUi,m +(l+ m)W,iUm,m ] dV.

M is the mass matrix, K is the stiffness matrix and W is a weighting function. For the
Galerkin finite element method the weighting function is the same as the shape function.
In this paper, in order to directly obtain three dimensional mode shapes for all the modes
in the investigated frequency range, the cylinder is modeled as a collection of three
dimensional block elements with eight nodes and three translation degrees of freedom
per node. Thirty six elements and six layers were used in the circumferential and the
longitudinal directions, respectively.

The cylindrical model used in the calculations is shown in Figure 1: L=522·9 mm,
R1=238·05 mm, R2=158·45 mm. The model is made of mild steel. The material
constants used in the calculation are: modulus of elasticity E=207 GPa, density
r=7800 kg/m3, and Poisson’s ratio n=0·30. The calculated natural frequencies of the first
21 modes are presented in Table 1. The software ANSYS (education version) was used
to perform the finite element analysis. The subspace method and frequency shift technique
were used in the mode extraction. The calculated natural frequencies and mode shapes,
in the frequency range 0–10 kHz, are listed in Table 2.

3. CLASSIFICATION OF MODES

Mode shapes of a thick cylinder are three-dimensional, and all three components of
displacement may be associated with each resonant frequency. A pure radial excitation will
give rise to a response not only in the radial direction, but to one which has components
in the two other orthogonal directions. A classification of the modes of a thin cylinder,
given by reference [13], with the further addition of a circumferential mode category, can
be used for the thick cylinder, i.e. the modes of a thick cylinder can be classified using the
following categories.

A. Pure radial modes: the vibration of this kind of mode is primarily due to pure radial
motion and the cylinder retains a constant cross-sectional shape along its length, further
the cross section remain plane and normal to the cylinder axis. An example is shown in
row A of Table 2. These modes are important because the lowest mode of a thick cylinder
is a pure radial mode.

B. Radial motion with radial shearing modes: for this kind of mode, the cylinder no
longer retains a constant cross-sectional along its length as in the previous case. The
circumferential cross sections do not remain plane, the generatrices do not remain parallel
to each other, and for higher modes they are no longer straight lines. Examples are shown
in row B in Table 2.
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T 1

Natural frequencies for the test cylinder

Resonant frequency (Hz)
ZXXXXXCXXXXXV

Mode Experimental Calculated Error % n m Mode type

1 1240 1251 0·9 2 0 A: pure radial mode
2 1432 1451 1·3 2 1 B: radial motion with shearing mode
3 3032 3038 0·2 1 1 E: axial bending mode
4 * 3090 — 0 1 F: global torsion mode
5 3136 3240 3·2 2 2 B: radial motion with shearing mode
6 3200 3266 2·0 3 0 A: pure radial mode
7 3432 3520 2·5 3 1 B: radial motion with shearing mode
8 3456 3515 1·7 1 2 F: global bending mode
9 3944 3918 −0·7 0 0 C: extensional mode

10 4152 4129 −0·6 0 1 C: extensional mode
11 4296 4282 −0·3 0 2 C: extensional mode
12 4472 4632 3·5 3 2 B: radial motion with shearing mode
13 4632 4741 2·3 2 1 E: axial bending mode
14 4784 4788 0·1 1 2 E: axial bending mode
15 5256 5621 6·5 1 3 F: global bending mode
16 5296 5616 5·7 0 3 C: extensional mode
17 5512 5720 3·6 4 0 A: pure radial mode
18 5552 5603 0·9 0 1 F: global longitudinal mode
19 5728 5960 3·9 4 1 B: radial motion with shearing mode
20 6080 6140 1·0 1 1 D: circumferential mode
21 6125 6211 1·4 2 2 E: axial bending mode

Error %=(fcal· − fexp·)/fexp %. *: Not measured.

C. Extensional modes: for these modes, the median surface of the thick cylinder is
stretched in the circumferential direction. Some authors refer to these as the breathing type
modes. An example is given in row C in Table 2.

D. Circumferential modes (new category): in these modes, adjacent segmental elements
expand or contract one by one in the circumferential direction. The median circumferential
length of an expanding segment becomes longer and the length of the contracting segment
becomes shorter. A nodal radius exists when there is no net circumferential displacement
of a segmental element. An example is given in row D in Table 2.

E. Axial bending modes: for these modes, the circumferential cross-section is divided
into several segments; adjacent segments bend oppositely in the axial direction, hence,
nodal radial lines exist in the circumferential cross-section where the curvature of the
transverse plane is zero. See row E in Table 2 for examples.

F. Global modes: for these modes the thick cylinder can be considered to behave as one
of the following: a simple beam vibrating in a transverse direction, a bar vibrating in
torsion, or as a rod vibrating in a longitudinal direction, and these are respectively shown
as examples a, b and c of row F in Table 2.

In Table 2, n is the mode order in the circumferential direction, and the number of nodal
radii of the nth mode is 2n; m is the mode order in the axial direction, and the number
of nodal cross sections or nodal median circles of the mth mode is m. Table 3 shows 5
different cross sections, which are equally spaced along the length of the cylinder, for the
three modes n=3, and m=0, 1, and 2, respectively.

Tables for the natural frequencies of the same thick cylinder model, computed using the
energy method, based on the three-dimensional theory of elasticity, are given in reference
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T 2

Classification of vibrational modes of thick cylinders

Mode shape n m Frequency

2 0 1251
3 0 3266
4 0 5720
5* 0 8445

2 1 1451
3 1 3520
4* 1 5960
5 1 8653

2 2 3240
3* 2 4632
4 2 6844
5 2 9371

2* 3 6216
3 3 7875
4 3 8524
5 3 10771

0 0 3918
0 1 4129
0 2 4282
0* 3 5616
0 4 8847

1 1 6140
1* 2 8219
1 3 9933
2 1 8605
2 2 9173
3 1 8867

1 1 3038
2* 1 4741
3 1 6597
4 1 10259

1 2 4788
2* 2 6211
3 2 8040
4 2 10132

1* 2 3515
1 3 5621
1 4 9103
1 5 out of range

0* 1 3090
0 2 6391
0 3 10106
0 4 out of range

0 1 5603
0* 2 10908
0 3 out of range
0 4 —

*: The mode shape illustrated.
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T 3

Mode shapes in the axial direction for the modes n=3

Cross-section
Mode ZXXXXXXXXXCXXXXXXXXXV
shape m 1 2 3 4 5

[11]. In these tables the mode shapes are described by the number of circumferential nodes
n, and the number of longitudinal nodes m, where n was determined theoretically. The
value of m was theoretically assigned an even or odd unknown integer value, which was
then determined experimentally using a single-axis accelerometer monitoring deflections in
the radial direction only, along a given external generatrix. The values of n and m, thus
assigned, corresponded to those which would be obtained by using projections, in both
end view and plan, of the true deflected shape of the cylinder. From these tables it can
further be seen that several natural frequencies can have the same numbers n and m, i.e.
the same apparent mode shape. Table 4 shows some examples extracted from reference
[11]. Actually the modes are quite different according to the mode classification of thick
cylinders, as presented in this paper. In addition to the assigned values of n and m, and
the new classification of modes, Table 4 also gives both the experimental frequency data
and frequency data calculated by the finite element method.

4. EXPERIMENTAL RESULTS

To verify the calculated results, measurements were made on the experimental
model which is exactly the same as the cylinder model shown in Figure 1. In order to
extract the resonant frequencies and the mode shapes of the model, the frequency response
functions were measured on all surfaces of the model including the end surfaces.
In the test a hammer was used as the exciter, therefore, only those modes with natural
frequencies up to 6·4 kHz could be obtained. Figure 2 shows a typical frequency response
function of the experimental model. The first 21 resonant frequencies, and corresponding
mode type descriptions of the model are given in Table 1. Figure 3 shows 6 typical
experimental modes of the model. From Figure 3 and Table 1 it can be seen that the
results for the experimental and finite element methods natural frequencies are sufficiently
accurate to confirm the identity of the resonant frequencies, thus permitting cross-
referencing of the results and those of reference [11]. Any errors in natural frequency data
may be attributed to the finite element analysis. Because the educational version of ANSYS
was used, a limit existed on the size of the wave front. By increasing the number of
elements, better results are obtainable with the element used. Even better results can be
obtained in the case of axisymmetric bodies, such as cylinders, by using a two dimensional
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Figure 1. Calculated and experimental cylinder model.

element in the axial plane combined with a Fourier expansion in the circumferential
direction. Since a uniaxial accelerometer was used for the input to one channel of the
analyzer, the experimental system was incapable of measuring a torsional response,
therefore, the pure torsional mode 4 was not detected, also the experimental mode shapes
would not indicate shear deflections.

5. EFFECT OF AXIAL LENGTH

In order to further study the mode classification, the effects of varying axial length and
varying radial thickness were investigated. A set of 8 thick cylinder models, comprising
group 1, the general form of which is shown in Figure 1, were analyzed using the finite
element method. The inside and outside radii of all the models were the same,
R1=114·3 mm and R2=76·2 mm, and the length of each model is different and is as
given in Table 5. All the models were modeled as collections of three-dimensional block
elements with eight nodes, each of which had three translational-degrees-of-freedom. The
models were made of mild steel, and the elastic constants were the same as used for the
mode classification. Modes up to 20 kHz were studied. The calculated natural frequencies
and mode shapes of the 8 models are given in Table 6 together with the classification
category as proposed. Rows A to F represent pure radial modes, radial shearing modes,
extensional modes, circumferential modes, axial bending modes and global modes,
respectively.

To verify the calculated results, extensive experiments were performed on the
experimental models which were exactly the same as the analytical models listed in Table 1.

Figure 2. Frequency response function of cylinder model.



  963

Figure 3. Typical experimental mode shapes: (a) mode 1, pure radial mode, f=1240 Hz, n=2, m=0; (b)
mode 7, radial motion with shearing mode, f=3432 Hz, n=3, m=1; (c) mode 8, global bending mode,
f=3456 Hz, n=1, m=2 (d) mode 13, axial bending mode, f=4632 Hz, n=2, m=1; (e) mode 16, extensional
mode, f=5296 Hz, n=0, m=3; (f ) mode 20, circumferential mode, f=6080 Hz, n=1, m=1.

To simulate free boundary conditions, the models were suspended by a rubber rope, in
such a way that the mounting did not affect the vibration of the model. In order to measure
the resonant frequencies of the models a random excitation signal was used. The frequency
response functions were measured at several points on the surfaces of the model, including
the end surfaces, in order to prevent possible mode missing. For the purpose of confirming
the results of the analysis, the input frequency band of the random signal was the same
as used in the calculations (0–20 kHz). From the frequency response functions the resonant
frequencies of the model could be obtained. To identify the mode shape of the vibration
associated with a particular resonant frequency, the relative amplitudes and phases of
vibration were measured at a sufficient number of points on all surfaces. The experimental
resonant frequencies for the 8 models are also given in Table 6. The different types of
modes follow their own rules, with respect to axial length and radial thickness, as discussed
below.

T 5

Dimensions of the series of cylinders in group 1

Model R1 (mm) R2 (mm) R (mm) L (mm) h (mm) L/h h/R

1 114·3 76·2 95·3 12·7 38·1 0·33 0·4
2 114·3 76·2 95·3 25·4 38·1 0·67 0·4
3 114·3 76·2 95·3 50·8 38·1 1·33 0·4
4 114·3 76·2 95·3 76·2 38·1 2·00 0·4
5 114·3 76·2 95·3 101·6 38·1 2·67 0·4
6 114·3 76·2 95·3 127·0 38·1 3·33 0·4
7 114·3 76·2 95·3 177·8 38·1 4·67 0·4
8 114·3 76·2 95·3 254·0 38·1 6·67 0·4

R=(R1+R2)/2 h=R1−R2.
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Figure 4. Effect of axial length on natural frequencies; designation (n, m), group 1, h/R=0·4. ——, A: pure
radial modes; — - - —, B: radial motion with shearing modes; — - —, C: extensional modes; - - - -, D:
circumferential modes; – – –, E: axial bending modes; — + —, F: global bending modes; ——, in-plane modes
(plate); —w—, transverse modes (plate). At low L/h ratios, the cylinder behaves effectively as a plate.

To study the effect of the axial length on the modes of thick cylinders, the results
are plotted as shown in Figure 4. From these plots, the following observations can be
made:

1. The vibrational behavior of models 1 and 2 (short cylinders) are different from the
other longer models except in the case of the pure radial modes. The lowest mode of models
1 and 2 is the radial and shearing mode (n=2, m=1). The reason for this is that models
1 and 2 are not true cylinders; because their axial length is shorter than their radial
thickness, they are actually annular plates. Hence, from the point of view of vibration, the
difference between an annular plate and a thick cylinder is to be found in the form of
the lowest mode, for the former it is a radial motion with radial shearing mode (row B
of Table 6), whilst for the latter it is a pure radial mode (row A of Table 6). In other
words, for the range of models discussed here, the ratio of the axial length L to the radial
thickness h can be divided into three ranges, the plate range L/hE 1, the thick cylinder
range L/he 2 and the transition range 1EL/hE 2.

2. For a thick cylinder all the modes can be divided into two categories, axial length
independent modes and axial length dependent modes. All the pure radial modes are axial
length independent modes, and their natural frequencies are dependent only upon their
radial dimensions. Hence, even the natural frequencies of such modes for models 1 and
2, short cylinders, are the same as those for the long thick cylinders. Similar frequencies
are also found in annular plates of the same radial dimensions. The common characteristic
of such modes is m=0, i.e. similar to the in-plane vibrations of a plate.

All other kinds of modes of thick cylinders are axial length dependent modes, and
their natural frequencies are not only dependent upon the radial dimensions, but are also
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dependent upon the axial length, and hence, the L/h ratio when h is constant. Generally,
the natural frequency decreases in a non-linear manner as the length of the cylinder
increases. In all kinds of axial length dependent modes, the natural frequencies of the
global modes are the most sensitive to length changes (row F of Table 6). For other kinds
of axial length dependent modes, as the number of circumferential nodes n increases, the
natural frequencies become more sensitive to changes in axial length. The extensional mode
m=1 (row C of Table 6) is an exception; the natural frequency continues to increase as
the length of the thick cylinder increases.

3. As the axial length of a thick cylinder increases, the mode shapes of the pure radial
modes are retained. For the axial length dependent modes, the mode shape may change,
and the longitudinal node number m may increase. For example, when the length of the
cylinder becomes long enough, there is no circumferential mode with n=1, m=0.

4. Each category of modes for a thick cylinder shows different rates at which their
natural frequencies decrease with increasing L/h ratio. For the pure radial modes and
radial motion with shearing modes, the rate is low, and these modes can be found in all
the models (even those which are effectively plates). For this reason these modes are the
most important modes of a thick cylinder, especially the pure radial mode n=2, which
is the lowest mode for all thick cylinders.

5. The models with L/hE 1 belong to the category of annular plates because their
lowest modes are the transverse vibration modes as discussed above. For an annular plate,
it is known that all the modes of the plate can be classified as either transverse vibrational
modes, or in-plane vibrational modes. From Figure 4 it can be seen that the transverse
vibrational modes are axially length dependent, and generally the natural frequency of a
mode increases as the axial length increases, which is opposite to the behaviour of the
axial length dependent modes of thick cylinders. The in-plane vibrational modes are axial
length independent modes, and their natural frequencies are dependent upon only the
radial size of the model; it can further be seen from Figure 4 that their natural frequencies
are the same as those of thick cylinders. Hence, an annular plate can be used as a model
to predicate the natural frequencies of the pure radial modes of a thick cylinder.

6. EFFECT OF RADIAL THICKNESS

In order to study the effect of radial thickness on the different modes, the natural
frequencies and mode shapes were calculated for a further three groups of cylinders
(groups 2, 3, and 4) which had the same outside radius as that of group 1, but
different inner radii; see Table 7 for details. Each group consisted of 8 models whose
length were the same as those of the corresponding 8 models of group 1. The calculated
results for group 3, h/R=0·2, are plotted in Figure 5. Similar calculated results were
obtained for groups 2 and 4. From the calculated results the following conclusions can
be drawn:

1. All of the previous conclusions with respect to the effects of axial length on the
different modes, obtained for group 1, are valid for all groups. As the L/R ratio decreases
from 0·4 to 0·1 there is a corresponding change in the location of the transition range from
plate to thick cylinder, the value for L/h increasing from 1·0 to 2·0.

2. As the radial thickness decreases, i.e. the thick cylinders become thinner, the natural
frequencies of all corresponding modes decrease, the rate of decrease is different for each
mode. Figure 6 shows the relation between natural frequencies of different kinds of
modes with varying radial thickness for the longest model 8 from all four groups. It can
be seen that for all modes there exists an approximately linear relationship, but the slopes
are different. All the pure radial modes, which are independent of axial length change, and
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T 7

Sectional properties of groups of models with equal outside radius R1

Group R1 (mm) R2 (mm) R (mm) h (mm) h/R

1 114·3 76·2 95·3 38·1 0·4
2 114·3 84·5 99·4 29·8 0·3
3 114·3 93·5 103·9 20·8 0·2
4 114·3 103·4 108·9 10·9 0·1

R=(R1+R2)/2 h=R1−R2.

the radial motion with shearing modes are very sensitive to radial thickness changes. The
slopes of equal order modes for these two categories are almost the same. All other types
of modes, which are sensitive to axial length change, as discussed earlier, are relatively
insensitive to a change in radial thickness.

3. The vibrational behaviour of the pure radial modes is different from that of all the
other kinds of modes. The natural frequencies of such modes are only dependent upon
the radial dimensions of the model, and the natural frequencies of all other kinds of modes
are dependent upon both the axial and radial dimensions. All the modes of a thick cylinder,
therefore, can be separated into either pure radial modes, or non pure radial modes.

To further study the effect of radial thickness on the different modes of thick cylinders,
the natural frequencies and mode shapes of another four thick cylinders were also analyzed
and the results are shown in Figure 7. The difference between these four models and those
in groups 1 to 4 is the outside radius of the latter groups was constant, while for the former

Figure 5. Effect of axial length on natural frequencies, designation (n, m), group 3, h/R=0·2. ——, A: pure
radial modes; — - - —, B: radial motion with shearing modes; — - —, C: extensional modes; - - - -,
D: circumferential modes; – – –, E: axial bending modes; — + —, F: global bending modes; ——, in-plane modes
(plate); —w—, transverse modes (plate). L/h ratio comment as in Figure 4.
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Figure 6. Effect of radial thickness on natural frequencies, designation (n, m), L=522 mm, R1=const. ——,
A: pure radial modes; — - - —, B: radial motion with shearing modes; — - —, C: extensional modes, - - - -, D:
circumferential modes; – – –, E: axial bending modes; — + —, F: global bending modes.

Figure 7. Effect of radial thickness on natural frequencies, designation (n, m), L=522 mm, median R=Const.
——, A: pure radial modes; — - - —, B: radial motion with shearing modes; — - —, C: extensional modes; - - - -,
D: circumferential modes; – – –, E: axial bending modes; — + —, F: global bending modes.
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T 8

Sectional properties of models with constant median radius R

Model R1 (mm) R2 (mm) R (mm) h (mm) h/R

1 114·3 76·2 95·3 38·1 0·4
2 109·6 80·9 95·3 28·5 0·3
3 104·8 85·7 95·3 19·1 0·2
4 100·0 90·5 95·3 9·5 0·1

R=(R1+R2)/2 h=R1−R2.

one the median radius was constant, as shown in Table 8. It can be seen that all the
conclusions regarding the effects of radial thickness remain valid for this cylinder group,
however, all their natural frequencies are higher than those of the group shown in Figure 6.
Hence, the natural frequencies of thick cylinders are dependent upon not only the ratio
of the radial thickness to the median radius of the thick cylinder, but also upon the absolute
size of the cross section of the cylinder.

7. CONCLUSIONS

Based on the three-dimensional mode shapes, a mode classification for thick cylinders
is presented in this paper. The use of a simpler descriptor, based on the numbers of
circumferential nodes n and longitudinal modes m, is not sufficient for identifying a specific
mode. Used in conjunction with any one of the 6 classes of vibration, n and m can be
interpreted exactly to specify the mode shape of a given mode of vibration.

All types of modes can be further subdivided into either pure radial modes, or non-pure
radial modes. The natural frequencies of the pure radial modes can be considered to be
independent of axial length, but dependent upon the radial dimensions, and generally the
thicker the cylinder wall, the higher the natural frequencies of such modes. The natural
frequencies of non-pure radial modes are dependent upon both the axial length and radial
dimensions. Generally, the longer the model, the lower the natural frequencies; and the
thicker the cylinder wall, the higher the natural frequencies.

The pure radial modes and the radial motion with shearing modes are the most
important from an engineering standpoint. This is because of their low frequencies, and
because they always exist in any cylinder, whether it is long or short. The lowest mode
of a thick cylinder is the pure radial mode n=2, this is usually the one of most significance
from an engineering standpoint. Because the classification is based on the nature of the
mode shapes of the cylinder, it may provide a basis for the development of displacement
function which better describe these true mode shapes.
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