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PROPAGATION OF ION-ACOUSTIC SOLITARY WAVES OF SMALL AMPLITUDE
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The conspicuous properties of the Kortweg-
deVries equation have been investigated exten-
sively by Zabusky and Kruskal. ~ In this note
we show that the one-dimensional long-time
asymptotic behavior of ion-acoustic waves of
small but finite amplitude is described by the
Kortweg-deVries equation in the same sense
as was given by Gardner and Morikawa for a
hydromagnetic wave in a cold plasma. ' For
a collisionless plasma of cold ions and warm
electrons, the basic system of equations may
be given as follows~'.

The derivation goes parallel to that done by
Gardner and Morikawa for the hydromagnet-
ic wave in cold plasma propagating in a direc-
tion perpendicular to a magnetic field.

We first note that the dispersion relation of
the linearized system leads to the phase

kx (dt = (—x—t)(d + &xQP

for ~ «17 where 4 and ~ are the wave num-
ber and the frequency, respectively, or putting
x'=e p, ', we have the expression
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where e is a small parameter. In view of this
relation let us introduce the coordinates g and

g through the equations~

g
= e'"(x-t),

f/=E X

Then Zqs. (1)-(4) take the form
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in which n and ne denote the densities of ions
and electrons, respectively, u is the flow ve-
locity of ions, E the electric field, x the space
coordinate, and t the time variable. All these
quantities are dimensionless, being normalized
in terms of the following characteristic quan-
tities: a characteristic density no,' the charac-
teristic velocity (~Te/M)'", where w is the
Boltzman constant, M is the ion mass, and Te
the electron temperature (Te is assumed to be
constant); the characteristic length, the Debye
length (vTe/47te'no)'"; and the characteristic
electric potential zTe/e.

Equations (1) and (2) are the continuity and

the momentum equation for the cold-ion fluid,
respectively; Eq. (3) is the momentum equation
for the electron fluid in which the electron in-
ertia is neglected; the last equation, Eq. (4),
is the Poisson equation. We impose the bound-

ary conditions that for x —~,
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in which E is defined by the equation
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We now assume that n, ne, u, and E can be
given in terms of the power series in e, i.e.,

n =~+En +E n +

u = eu")+e'u")+ ~ ~ ~
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n=n
e

u =0.
Then for the first and the second-order terms
in e, we have, respectively,

Our aim is to derive the Kortweg-deVries equa-
tion, from the system of equations (1)-(4).
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and
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(i 0) where the prime denotes the differentiation
with respect to u0$ —

anal. If g, g', and g"' are
set to be zero at infinity, integrating Eq. (18)
twice, we have
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and if and only if a is positive, i.e., the wave
velocity exceeds the ion sound velocity, we
obtain the compressive solitary wave
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Under the boundary conditions, Eqs. (5) and

(6), the first equality in Eq. (9) results in the
identity

where x0 and t0 are arbitrary constants.
On the other hand, the exact solitary wave

is given by the integral of the equation

yg
(j) —u (&) (i5) e(u')' = 2(u —uo) '(exp[- —,'u(u —2u, )]—u,u —Ij, (21)
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Also na' n "' ue'1', and fE"'dg sa-tisfy the
same Eq. (16).

Since by means of Eqs. (7) and (8) q=0 cor-
responds to x =0, a solution of Eq. (16) satis-
fying an initial condition prescribed at g = 0,
say u a'($, 0) =f($), can be transformed to the
solution in the (x, t) space satisfying the corre-
sponding stretched boundary condition given
at x=0, i.e., uu'(O, t) =f(-e'"t). If we employ,
instead of Eq. (8), the transformation 1l = e~/2t, 4

the initial value problems in the ($, 1i) space
correspond to those in the (x, t) space. Thus,
solving Eq. (16) numerically as well as analyt-
ically enables us to understand the asymptotic
properties of the original system.

As an illustration, we derive from Eq. (16)
a weak solitary wave of the original system,
for which u'1' is a function of e1/2(x-uot) only,
namely,

u'" =g(u, (-aq), (17)

Using these relations (9), (10), and (15) and
eliminating the second-order quantities in Eqs.
(11)-(14), we obtain the Kortweg-deVries equa-
tion,

which results immediately from Eqs. (1)-(4)
under the assumption that all quantities depend
on e1/2(x —uot) only. It is easy to show that in
the lowest order of the expansion in e, Eq. (21)
reduces to Eq. (19) when in the latter uo is re-
placed by unity.

From Eq. (20), it follows that the width of
the solitary wave is of the order of e '" while
its amplitude is of the order of c. Therefore,
the width of the solitary wave becomes larger
for smaller amplitude. That is to say, steep-
ening of the wave due to the weak nonlinearity
is balanced by the dispersion in long wavelength
so that the weak solitary wave is formed.

It should however be noted that Eq. (16) does
not represent the totality of the solutions of
the original system of Eqs. (1)-(4). For exam-
ple, as can be seen easily from the above der-
ivation of the solitary wave, Eq. (16) excludes
the solitary wave propagating to the left. This
is because of the assumption that ( and q have
the different dependences on the power of e
and the solution is obtained in the power of e.

Finally, we explain briefly how Eq. (16) is
related to the long-time asymptotic solution
of the original system. ' Linearizing Eqs. (1)-
(4) leads to the following solution of the piston
problem for large t:

where a is a constant and ea yields the differ-
ence between the wave velocity and the ion sound
velocity, i.e., u0=1+ea. In the lowest order
of e, u, may be put equal to unity; then Eq. (17)
becomes the usual form for the solitary wave
in the (p, 11) space. By virtue of Eq. (17), Eq. (16)
takes the form

u"'(x, t)

U~
Ai(n) d o + —,',

where u"'(x, t) is small displacement, p, the
piston speed directed to the right, Ai(o, ) the
Airy function, and

(22)
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On the other hand, linearizing Eq. (16) and as-
suming that u(~) depends on P only, we get the
equation

(&) (( 0) —0
WP

which is satisfied by Eq. (22) and consequent-

ly describes the long-time asymptotic behavior
of the original system.
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The transformation is not unique; for example, the
transformation $ = e (x—t), g =& t, which is implied
by the relation kx —(dt =(x-t)k+qtk3 for k2&(1, leads
likewise to the Kortweg-deVries equation.
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A simple level-sensing device is described for probing the profile of the chemical po-
tential along the Qowing liquid He D film. Measurements with these probes indicate that
dissipation in the flowing film may occur either at highly localized regions or over ex-
tended regions of the flow path, depending upon experimental variations. Also it is shown
that changes in transfer rate occurring during a given flow process are accompanied by
a redistribution of the sites producing dissipation.

Studies of the flowing liquid He II film have

a rather long history featured by numerous
controversies over the observation and inter-
pretation. of "new" effects. ' Unfortunately,
a common ground for discussing these phenom-

ena has not yet been developed. The present
note describes a simple tool for investigating
and analyzing the flow processes of the film.

During an informal conversation with Dr.
B. D. Josephson concerning some unusual film-
flow effects we had observed, he suggested
the use of a "potentiometer" to probe the chem-
ical potential gy along the path of the film. 2

The physical form that this probe might assume
evolved in the discussion that followed.

Consider the flow of the film over the rim
of a beaker with the liquid level z& inside the

beaker above the outside level z, . The chem-
ical potentials per atom of the two bulk liquids

are, respectively, p. and p, 0,' and their differ-
ence is given by

p. -p, =mg(z. -z ) =b p, .
i 0 i 0

On the basis of recent developments in the the-
ory of superfluiditys we assume the following'.

(1) &p, provides the driving force for film
flow.

(2) The bulk He II inside the beaker commu-
nicates with the bulk liquid outside through the

film; at every point along the flow path Sy con-
necting the two reservoirs of bulk liquid the
chemical potential is defined and is related
to the phase of the order parameter through
the r elationship

(() =fexp(i9)) =f exp(ipt/5). ,

For a film-flow experiment in which the path

Sf is zi —rim - zo and in which the distance along

Sf is s, )((f will have a profile pf
-—pf(s).

(3) Production of dissipation xn the form of
quantized vorticity occurs through phase slip-
page only in those regions where d)((f/ds is dif-
ferent from zero and at a frequency

(4) In any region along Sf in which the veloc-
ity of particle flow vs is equal to or exceeds
the critical velocity vs c, pf varies spatially;
in regions where vs (vs c, pf remains constant,
provided v~ remains constant.

An example of the type of probe we have de-
vised to investigate pf(s) is shown in Fig. 1.
The side tube extending from the inside wall
of the beaker has a radius small compared
with that of the beaker itself, so that adjust-
ments of the liquid level st in the tube by film
flow occur rapidly compared with changes of
&i and z, . We propose that subject to the as-
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