
1 Wigner’s theorem

Let H be an arbitrary Hilbert space. We define a relation ∼ on H by x ∼ y
if there’s a c ∈ C such that |c| = 1 and x = cy. This is clearly an equivalence
relation. For each x ∈ H, the equivalence class that x belongs to will be
denoted by [x]. The set of equivalence classes will be denoted by S. For each
a ∈ C and each x, y ∈ H, we define

a[x] = [ax] (1)

[x] · [y] = |⟨x, y⟩|. (2)

Note that the right-hand sides don’t depend on the representatives x, y from
the equivalence classes [x], [y]. We will be particularly interested in the equiv-
alence classes [x] such that ∥x∥ = 1. These classes are called the unit rays
of H. (A ray of H is a 1-dimensional subspace of H). The set of unit rays of
H will be denoted by R.

In this section, the symbols θ and η will denote automorphisms of C. For
all a ∈ C, we will write aθ and aη instead of θ(a) and η(a).

Definition 1.1 (θ-unitary). Suppose that θ is an automorphism of C. An
operator U : H → H is said to be θ-linear if for all a, b ∈ C and all x, y ∈ H,

U(ax+ by) = aθUx+ bθUy.

A θ-linear operator U : H → H is said to be θ-unitary if for all x, y ∈ H,

⟨Ux, Uy⟩ = ⟨x, y⟩θ.

Let I be the identity map on C. Denote the complex conjugation map
λ 7→ λ∗ on C by I∗.

Theorem 1.2 (Wigner’s theorem). If T is a permutation of R such that
T [x] · T [y] = [x] · [y] for all x, y ∈ H − {0}, then there’s a θ ∈ {I, I∗} and a
θ-unitary U : H → H such that Ux ∈ T [x] for all x ∈ H−{0}. If dimH ≥ 2,
then θ is uniquely determined by T , and U is unique up to multiplication by
a complex number of absolute value 1.

The proof is very long, so instead of trying to prove it all at once, we’re
going to state and prove a number of lemmas that lead up this result. Lemma
1.15 will be the final step.

Lemma 1.3 (Extension of T from R to S). For each x ∈ H, we define
T [x] = ∥x∥T [e], where e is the unit vector in the direction of x. The map
T : S → S defined this way has the following properties.
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(a) T [ax] = aT [x] for all a ∈ C and all x ∈ H.

(b) T [x] · T [y] = [x] · [y] for all x, y ∈ H.

(c) For all x ∈ H, and all x′ ∈ T [x], we have ∥x′∥ = ∥x∥.

Proof. Let a ∈ C and x, y ∈ H be arbitrary. Define e = x
∥x∥ and f = y

∥y∥ .

(a):

T [ax] = T
[
a∥x∥e

]
= a∥x∥T [e] = aT

[
∥x∥e

]
= aT [x]. (3)

(b): Let e′ ∈ T [e] and f ′ ∈ T [f ] be arbitrary. Since

T [x] = T
[
∥x∥e

]
= ∥x∥T [e] = ∥x∥ [e′] =

[
∥x∥e′

]
T [y] =

[
∥y∥f ′], (4)

we have

T [x] · T [y] =
[
∥x∥e′

]
·
[
∥x∥f ′] = ∣∣⟨∥x∥e′, ∥y∥f ′⟩∣∣

= ∥x∥ ∥y∥ |⟨e′, f ′⟩|︸ ︷︷ ︸
= [e′] · [f ′] = T [e] · T [f ] = [e] · [f ] = |⟨e, f⟩|

=
∣∣⟨∥x∥e, ∥y∥f⟩∣∣ = |⟨x, y⟩| = [x] · [y]. (5)

(c): For all x′ ∈ T [x],

∥x′∥2 = |⟨x′, x′⟩| = [x′] · [x′] = T [x] · T [x] = [x] · [x] = |⟨x, x⟩| = ∥x∥2. (6)

The following lemma is the only theorem in this section that’s not a part
of the proof of Wigner’s theorem. We’re proving it because it answers a
question suggested by the previous theorem.

Lemma 1.4 (The extended T is a bijection). The T : S → S defined above
is a permutation of S.

Proof. Injectivity: Let x and y be arbitrary members of H such that T [x] =
T [y]. Let x′ ∈ T [x] be arbitrary. Since x′ ∈ T [y], lemma 1.3(c) tells us
that ∥x′∥ = ∥y∥. Similarly, ∥y′∥ = ∥x∥. Since x′ and y′ belong to the same
equivalence class, we also have ∥x′∥ = ∥y′∥. So ∥x∥ = ∥y′∥ = ∥x′∥ = ∥y∥.
Define e = x

∥x∥ and f = y
∥y∥ . Let e

′ ∈ T [e] and f ′ ∈ T [f ] be arbitrary.

T [x] = T [y] ⇒ T
[
∥x∥e

]
= T

[
∥y∥f

]
⇒ ∥x∥T [e] = ∥x∥T [f ]

⇒ ∥x∥ [e′] = ∥x∥ [f ′] ⇒
[
∥x∥e′

]
=

[
∥x∥f ′]. (7)

2



This result implies that there’s a c ∈ C such that |c| = 1 and ∥x∥e = c∥x∥f .
Clearly, any such c also satisfies e′ = cf ′. So [e′] = [f ′]. This means that
T [e] = T [f ]. Since the original T is a permutation of R, this implies that
[e] = [f ]. Let c be a complex number such that e = cf . Clearly, ∥x∥e =
c∥x∥f = c∥y∥f . So

[
∥x∥e

]
=

[
∥y∥f

]
. This means that [x] = [y].

Surjectivity: Let y ∈ H be arbitrary. Define f = y
∥y∥ . Let e ∈ H be unit

vector such that T [e] = [f ]. We have

[y] =
[
∥y∥f

]
= ∥y∥ [f ] = ∥y∥T [e] = T

[
∥y∥e

]
. (8)

Lemma 1.5 (Properties of any partially defined U). Let D be an arbitrary
subset of H. Let U : D → H be an arbitrary map such that U0 = 0 if 0 ∈ D,
and Ux ∈ T [x] for all x ∈ D such that x ̸= 0.

(a) For all x, y ∈ D, |⟨Ux, Uy⟩| = |⟨x, y⟩|.

(b) For all x ∈ D, ∥Ux∥ = ∥x∥.

(c) For each x ∈ D such that x ̸= 0, there’s a unique function px : C → C
such that U(ax) = px(a)Ux and |px(a)| = |a| for all a ∈ C.

Proof. Let x, y ∈ D and a ∈ C be arbitrary.
(a): If x = 0 or y = 0, we have |⟨Ux, Uy⟩| = 0 = |⟨x, y⟩|. If x ̸= 0 and

y ̸= 0, we have |⟨Ux, Uy⟩| = T [x] · T [y] = [x] · [y] = |⟨x, y⟩|.
(b): Part (a) implies that ∥Ux∥2 = |⟨Ux, Ux⟩| = |⟨x, x⟩| = ∥x∥2.
(c): Suppose that x ̸= 0. We have [U(ax)] = T [ax] = aT [x] = a[Ux] =

[aUx]. So there’s a unique c ∈ C such that |c| = 1 and U(ax) = caUx.
Define px(a) = ca.

Suppose that qx : C → C is such that U(bx) = qx(b)Ux for all b ∈ C.
Then qx(a)Ux = U(ax) = px(a)Ux, and therefore (qx(a)− px(a))Ux = 0. If
qx(a) ̸= px(a), we can multiply this by 1/(qx(a)− px(a)) to get Ux = 0. This
contradicts part (b) or the assumption that x ̸= 0. So qx(a) = px(a). Since
a is an arbitrary member of C, this implies that qx = px.

Lemma 1.6 (Linear combinations of orthonormal vectors). Let ⟨ek⟩nk=1 be an
arbitrary orthonormal finite sequence in H. Define I = {1, . . . , n}. For each
k ∈ I, let e′k ∈ T [ek] be arbitrary. If x =

∑n
k=1 akek, then for each x′ ∈ T [x],

there are complex numbers a′1, . . . , a
′
n ∈ C such that x′ =

∑n
k=1 a

′
ke

′
k and

|a′k| = |ak| for all k ∈ I.
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Proof. For all i, j ∈ I, we have

|⟨e′i, e′j⟩| = [e′i] · [e′j] = T [ei] · T [ej] = [ei] · [ej] = |⟨ei, ej⟩| = δij.

This implies that ⟨e′i, e′j⟩ = δij for all i, j ∈ I. Note that for all k ∈ I, we
have ak = ⟨ek, x⟩. This follows from x =

∑n
k=1 akek and the fact that {ek}k∈I

is an orthonormal set. We’re going to define a′k for each k ∈ I. Since {e′k}k∈I
is an orthonormal set and x′ =

∑n
k=1 a

′
ke

′
k, there’s only one definition that

can possibly work: For each k ∈ I, we define a′k = ⟨e′k, x′⟩. For all k ∈ I, we
have

|a′k| = |⟨e′k, x′⟩| = [e′k] · [x′] = T [ek] · T [x] = [ek] · [x] = |⟨ek, x⟩| = |ak|. (9)

We will prove that x′ =
∑n

k=1 a
′
ke

′
k. First note that∥∥∥∥x′ −

n∑
k=1

a′ke
′
k

∥∥∥∥2

= ∥x′∥2 − 2Re

⟨
x′,

n∑
k=1

a′ke
′
k

⟩
+

∥∥∥∥ n∑
k=1

a′ke
′
k

∥∥∥∥2

(10)

Since ⟨a′ke′k⟩nk=1 is an orthogonal finite sequence in H, the Pythagorean the-
orem tells us that the third term is equal to

∑n
k=1 ∥a′ke′k∥2 =

∑n
k=1 |a′k|2. To

evaluate the second term, we note that⟨
x′,

n∑
k=1

a′ke
′
k

⟩
=

n∑
k=1

a′k⟨x′, e′k⟩ =
n∑

k=1

|a′k|2 ∈ R. (11)

These results imply that∥∥∥∥x′ −
n∑

k=1

a′ke
′
k

∥∥∥∥2

= ∥x′∥2 −
n∑

k=1

|a′k|2 = ∥x∥2 −
n∑

k=1

|ak|2 =
∥∥∥∥x−

n∑
k=1

akek

∥∥∥∥2

= 0.

(12)

Let e be an arbitrary unit vector in H. e will denote the same vector
until the end of the section.

Definition 1.7 (Definition of Ux for all x ∈ H with ⟨e, x⟩ ∈ {0, 1}). We will
define Ux for all x in the subset {e+ y|y ⊥ e}, and then define Ux for all x
in the Hilbert subspace {e}⊥.

Let y ∈ {e}⊥ be arbitrary. Define f by f = y/∥y∥. Let e′ ∈ T [e] and
f ′ ∈ T [f ] be arbitrary. Lemma 1.6 tells us that since {e, f} is an orthonormal
set and e+ y = e+ ∥y∥f , there exist a, b ∈ C such that ae′ + bf ′ ∈ T [e+ y],
and |a| = 1, |b| = ∥y∥. Since T [e+ y] is an equivalence class whose members
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differ only by complex factors of absolute value 1, this means that there’s a
unique member of T [e + y] that can be expressed as e′ + bf ′, where b ∈ C.
Let b be the unique member of C such that e′ + bf ′ ∈ T [e + y]. Define
U(e+ y) = e′ + bf ′. Since y is an arbitrary member of {e}⊥, this defines Ux
for all x in {e+y|y ⊥ e}. Since |b| = ∥y∥, the definition implies that Ue = e′.

For each y ∈ {e}⊥, we define Uy = U(e+y)−Ue. This defines Ux for all
x in {e}⊥. So Ux is now defined for all x in

{
x ∈ H|⟨e, x⟩ ∈ {0, 1}

}
. This

set will be denoted by D.

Lemma 1.8 (Useful facts about complex numbers). Let a, b ∈ C be arbitrary.

(a) If Re a = Re b and |a| = |b|, then b = a or b = a∗.

(b) If Re(ab∗) = Re(ab), then (Im a)(Im b) = 0.

(c) If Re(|a|2b) = Re(a2b) and Im a ̸= 0, then (Re a)(Im b) = −(Im a)(Re b).

Proof. Let (p, q, r, s) be the unique 4-tuple of real numbers such that a =
p+ iq and b = r + is.

(a): By assumption, p = r and |a| = |b|. So

p2 + q2 = |a|2 = |b|2 = r2 + s2 = p2 + s2.

This implies that s = ±q. So either b = r+ is = p+ iq, or b = r+ is = p− iq.
(b): Since

Re(ab) = Re
(
(p+ iq)(r + is)

)
= pr − qs,

Re(ab∗) = Re
(
(p+ iq)(r − is)∗

)
= pr + qs, (13)

the assumption implies that that 0 = qs = (Im a)(Im b).
(c): Since

Re(|a|2b) = Re
(
(p2 + q2)(r + is)

)
= (p2 + q2)r

Re(a2b) = Re
(
(p2 − q2 + 2ipq)(r + is)

)
= (p2 − q2)r − 2pqs (14)

the assumption that Re(|a|2b) = Re(a2b) implies that

−2pqs = (p2 + q2)r − (p2 − q2)r = 2q2r. (15)

Since q = Im a ̸= 0, we can cancel q from this equality. So (Re a)(Im b) =
ps = −qr = −(Im a)(Re b).

Let U : D → H be the map defined by definition 1.7.

Lemma 1.9 (Properties of U). (a) U0=0
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(b) For all x ∈ D such that x ̸= 0, Ux ∈ T [x].

(c) For all y, z ∈ {e}⊥, Re⟨Uy, Uz⟩ = Re⟨y, z⟩.

(d) For all y, z ∈ {e}⊥, |⟨Uy, Uz⟩| = |⟨y, z⟩|.

(e) For all y, z ∈ {e}⊥, we have ⟨Uy, Uz⟩ = ⟨y, z⟩ or ⟨Uy, Uz⟩ = ⟨y, z⟩∗.

Note that part (e) implies that when ⟨y, z⟩ ∈ R, we have ⟨Uy, Uz⟩ =
⟨y, z⟩.

Proof. Let y, z ∈ {e}⊥ and a ∈ C be arbitrary.
(a): U0 = U(e+ 0)− U(e) = 0.
(b): U(e+ y) is by definition a member of T [e+ y]. We will prove that if

y ̸= 0, then Uy ∈ T [y]. Suppose that y ̸= 0. Define f = y/∥y∥. We saw in
definition 1.7 that there’s an f ′ ∈ T [f ] and a b ∈ C such that |b| = ∥y∥ and
Uy = bf ′. So

[Uy] = [bf ′] = b[f ′] = bT [f ] = T [bf ] = T [∥y∥f ] = T [y]. (16)

(c): Lemma 1.5 tells us that |⟨U(e+ y), U(e+ z)⟩| = |⟨e+ y, e+ z⟩|, and
that

|⟨U(e+ y), U(e+ z)⟩| = |⟨Ue+ Uy, Ue+ Uy⟩|
=

∣∣∥Ue∥2 + ⟨Ue, Uz⟩+ ⟨Ue, Uy⟩+ ⟨Uy, Uz⟩
∣∣

= |1 + ⟨Uy, Uz⟩|2 = 1 + 2Re⟨Uy, Uz⟩+ |⟨Uy, Uz⟩|2

= 1 + 2Re⟨Uy, Uz⟩+ |⟨y, z⟩|2,

|⟨e+ y, e+ z⟩| =
∣∣∥e∥2 + ⟨e, z⟩+ ⟨e, y⟩+ ⟨y, z⟩

∣∣ = ∣∣1 + ⟨y, z⟩
∣∣2

= 1 + 2Re⟨y, z⟩+ |⟨y, z⟩|2. (17)

(d): This follows from parts (a) and (b), and lemma 1.5(a).
(e): This follows from parts (c) and (d), and lemma 1.8(a).

For each x ∈ D such that x ̸= 0, let px be the unique function such that
U(ax) = px(a)Ux for all a ∈ C.

Lemma 1.10 (pf and pg when {e, f, g} is an orthonormal set). For all a, b ∈
C and all f, g ∈ {e⊥} such that ∥f∥ = ∥g∥ = 1 and ⟨f, g⟩ = 0, we have
U(af + bg) = pf (a)Uf + pg(b)Ug.

Proof. Let a, b ∈ C be arbitrary. If a = 0 or b = 0, then we clearly have
U(af + bg) = pf (a)Uf + pg(b)Ug. (If a = b = 0, the equality follows the
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result U0 = 0. If only one of a and b is zero, the equality follows from the
definitions of pf and pg).

Suppose that a, b ̸= 0. Define x = af + bg. Lemma 1.6 tells us that since
{f, g} is an orthonormal set, there exist a′, b′ ∈ C such that Ux = a′Uf+b′Ug,
and |a′| = 1, |b′| = 1. We will prove that a′ = pf (a) and b′ = pg(b). First
note that since

⟨f, f⟩ = ∥f∥2 = 1 ∈ R,
⟨x, af⟩ = ⟨af + bg, af⟩ = ⟨af, af⟩ = |a|2 ∈ R, (18)

we have ⟨Uf, Uf⟩ = ⟨f, f⟩ and ⟨Ux, U(af)⟩ = ⟨x, af⟩.

⟨Ux, U(af)⟩ = ⟨x, af⟩ = ⟨af + bg, af⟩ = ⟨af, af⟩ = |a|2 = |a′|2,
⟨Ux, U(af)⟩ = pf (a)⟨Ux, Uf⟩ = pf (a)⟨a′Uf + b′Ug, Uf⟩

= pf (a)a
′∗⟨Uf, Uf⟩ = pf (a)a

′∗⟨f, f⟩ = pf (a)a
′∗. (19)

So a′∗a′ = |a′|2 = pf (a)a
′∗. Since |a′| = |a|, the assumption that a ̸= 0

implies that we can cancel a′∗ from this equality to get pf (a) = a′. A similar
argument shows that pg(b) = b′. So

U(af + bg) = pf (a)Uf + pg(b)Ug. (20)

Lemma 1.11 (All the py such that y ⊥ e are the same). There’s a θ ∈ {I, I∗}
such that py = θ for all y ∈ {e}⊥ such that y ̸= 0.

Proof. We will prove the theorem by proving the following statements:

(a) For all f ∈ {e}⊥ such that ∥f∥ = 1, and all a ∈ C, we have py(a) ∈
{a, a∗}.

(b) For all f ∈ {e}⊥ such that ∥f∥ = 1, pf ∈ {I, I∗}.

(c) For all f, g ∈ {e⊥} such that ∥f∥ = ∥g∥ = 1 and ⟨f, g⟩ = 0, pf = pg.

(d) For all f, g ∈ {e⊥} such that ∥f∥ = ∥g∥ = 1 and ⟨f, g⟩ ̸= 0, pf = pg.

(e) For all y ∈ {e}⊥−{0}, we have py = pf , where f is defined by f = y/∥y∥.

These results imply that py is the same function for all y ∈ {e}⊥ such that
y ̸= 0, and that this function is either I or I∗. If this function is denoted by
θ, we have U(ay) = aθUy for all a ∈ C and all y ∈ {e}⊥.

(a): Lemma 1.9(e) tells us that ⟨Uf, U(af)⟩ = ⟨f, af⟩ = a or ⟨Uf, U(af)⟩ =
⟨f, af⟩∗ = a∗. But we also have ⟨Uf, U(af)⟩ = pf (a)⟨Uf, Uf⟩ = pf (a).
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(That last equality follows from lemma 1.9(d), because ⟨f, f⟩ = ∥f∥ = 1 ∈
R).

(b): Define Af = {a ∈ C|pf (a) = a} and Bf = {a ∈ C|pf (a) = a∗}. We
will prove that one of these sets is equal to C. Note that Af ∩ Bf = R. Let
a ∈ Af and bf ∈ B be arbitrary. 1.9(c) tells us that

Re⟨U(af), U(bf)⟩ = Re⟨af, bf⟩ = Re(a∗b),

Re⟨U(af), U(bf)⟩ = Re
(
pf (a)

∗pf (b)⟨Uf, Uf⟩
)
= Re(a∗b∗). (21)

So Re(a∗b) = Re(a∗b∗). Lemma 1.8(b) tells us that this implies that (Im a)(Im b) =
0. So one of a and b is real. If a is real, then a ∈ R = Af ∩ Bf ⊂ Bf . Since
a is an arbitrary member of Af , this implies that Af ⊂ Bf . Similarly, if b is
real, then Bf ⊂ Af . So one of these sets is a subset of the other. Since their
union is C, this implies that the larger of the two sets is = C. If Af = C,
then pf = I. If Bf = C, then pf = I∗.

(c): Since 0 = U0 = U(0f) = pf (0)Uf , and ∥Uf∥ = ∥f∥ = 1, we have
pf (0) = 0. Similarly, pg(0) = 0. So pf (0) = pg(0).

Let a ∈ C − {0} be arbitrary. Lemma 1.10 (applied to the linear combi-
nations f + g and af + ag) implies that

U(a(f + g)) = pf+g(a)U(f + g) = pf+g(a)Uf + pf+g(a)Ug,

U(a(f + g)) = U(af + ag) = pf (a)Uf + pg(a)Ug. (22)

This implies that

(pf+g(a)− pf (a))Uf + (pf+g(a)− pf (a))Ug = 0. (23)

Uf and Ug are orthogonal (lemma 1.9), and therefore linearly independent.
So this implies that pf (a) = pf+g(a) = pg(a). Since a is an arbitrary non-zero
complex number, and we have already proved that pf (0) = pg(0), this implies
that pf = pg.

(d): Suppose that pf ̸= pg. Then either pf = I and pg = I∗, or pf = I∗

and pg = I. Suppose that pf = I∗ and pg = I. (The other possibility can be
dealt with by swapping f for g and g for f in the argument we’re about to
make). Let a be an arbitrary complex number such that Im a ̸= 0.

Re⟨U(af), U(ag)⟩ = Re⟨af, ag⟩ = |a|2 Re⟨f, g⟩ = |a|2 Re⟨Uf, Ug⟩
= Re

(
|a|2⟨Uf, Ug⟩

)
,

Re⟨U(af), U(ag)⟩ = Re⟨pf (a)Uf, pg(a)Ug⟩ = Re
(
a2⟨Uf, Ug⟩

)
(24)

Since Im a ̸= 0, lemma 1.8(c) tells us that this implies that

(Re a)
(
Im⟨Uf, Ug⟩

)
= −(Im a)

(
Re⟨Uf, Ug⟩

)
. (25)
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We have proved that this equality holds for all a ∈ C such that Im a ̸= 0. If we
can prove that this result is actually false, this will disprove the assumption
that pf ̸= pg. It’s sufficient to prove that there’s an a ∈ C that doesn’t satisfy
(25) and has a non-zero imaginary part.

Lemma 1.9(d) and the assumption that ⟨f, g⟩ ̸= 0 imply that ⟨Uf, Ug⟩ ̸=
0. If Re⟨Uf, Ug⟩ ̸= 0, then (25) implies that

Im a = −Im⟨Uf, Ug⟩
Re⟨Uf, Ug⟩

Re a. (26)

So (25) is false for all a that don’t satsify this condition, for example 1− it,

where t is any real number such that t ̸= Im⟨Uf,Ug⟩
Re⟨Uf,Ug⟩ and t ̸= 0. If Im⟨Uf, Ug⟩ ̸=

0, then (25) implies that

Re a = −Re⟨Uf, Ug⟩
Im⟨Uf, Ug⟩

Im a. (27)

So (25) is false for all a that don’t satisfy this condition, for example t − i,

where t is any real number such that t ̸= Im⟨Uf,Ug⟩
Re⟨Uf,Ug⟩ . So for all possible values

of ⟨Uf, Ug⟩, there’s an a ∈ C that doesn’t satisfy (25) and has a non-zero
imaginary part. This contradicts the assumption pf ̸= pg, so pf = pg.

(e): We will prove that pf (a) = pf (a)pf (∥y∥). If pf = I, then pf (a∥y∥) =
a∥y∥ = pf (a)pf (∥y∥). If pf = I∗, then pf (a∥y∥) = a∗∥y∥ = pf (a)pf (∥y∥).

U(ay) = py(a)Uy,

U(ay) = U(a∥y∥f) = pf (a∥y∥)Uf = pf (a)pf (∥y∥)Uf

= pf (a)U(∥y∥f) = pf (a)Uy. (28)

This implies that (py(a) − pf (a))Uy = 0. If py ̸= p(a), we can multiply this
by 1/(py(a)− pf (a)) to get Uy = 0. This contradicts the result ∥Uy∥ = ∥y∥
(which is implied by lemma 1.8(c)) or the assumption that y ̸= 0. So py(a) =
pf (a). Since a is an arbitrary complex number, this implies that py = pf .

Let θ be the unique member of {I, I∗} such that py = θ for all y ∈ {e}⊥
such that y ̸= 0.

Lemma 1.12 (U is θ-linear and θ-unitary on {e}⊥). (a) For all a, b ∈ C and
all y, z ∈ {e}⊥, U(ay + bz) = aθUy + bθUz.

(b) For all y, z ∈ {e}⊥, ⟨Uy, Uz⟩ = ⟨y, z⟩θ.

Proof. Let a, b ∈ C be arbitrary. Let y, z ∈ {e}⊥ be arbitrary. If y = 0 or
z = 0, we clearly have U(ay + bz) = aθUy + bθUz. So suppose that y, z ̸= 0.
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These two vectors span a subspace of {e}⊥ that’s either 1-dimensional or
2-dimensional. Suppose that it’s 1-dimensional. Define f by f = y

∥y∥ . We

have y = ∥y∥f , and z = ∥z∥f or z = −∥z∥f . We will use the ± notation to
deal with both cases at once.

U(ay + bz) = U
(
(a∥y∥ ± b∥z∥)f

)
= (a∥y∥ ± b∥z∥)θUf

= aθ∥y∥Uf ± bθ∥z∥Uf = aθU(∥y∥f) + bθU(±∥z∥f)
= aθUy + bθUz. (29)

Since ⟨y, z⟩ =
⟨
∥y∥f,±∥z∥f

⟩
= ±∥y∥ ∥z∥ ∈ R, lemma 1.9(e) tells us that

⟨Uy, Uz⟩ = ⟨y, z⟩ ∈ R. Since rθ = r for all r ∈ R, this implies that
⟨Uy, Uz⟩ = ⟨y, z⟩θ.

Now suppose that the subspace spanned by {y, z} is 2-dimensional. Define
f by f = f

∥f∥ , and let g be an arbitrary member of {e}⊥ such that {f, g}
is an orthonormal basis for that subspace. Let (c, d) be the unique pair of
complex numbers such that z = cf + dg. Lemma 1.10 tells us that

U(ay + bz) = U
(
a∥y∥f + b(cf + dg)

)
= U

(
(a∥y∥+ bc)f + dg

)
= (a∥y∥+ bc)θUf + (bd)θUg = aθ∥y∥Uf + bθ(cθUf + dθUg)

= aθU(∥y∥f) + bθU(cf + dg) = aθUy + bθUz. (30)

Since ⟨y, z⟩ = ⟨∥y∥f, cf + dg⟩ = ∥y∥c, lemma 1.10 tells us that

⟨Uy, Uz⟩ =
⟨
U(∥y∥f), U(cf + dg)

⟩
=

⟨
∥y∥Uf, cθUf + dθUg

⟩
= ∥y∥cθ = (∥y∥c)θ = ⟨y, z⟩θ. (31)

Definition 1.13 (Extension of U to all of H). Let U : D → H be the map
defined by definition 1.7. Let θ be the unique member of {I, I∗} such that
U(ay) = aθUy for all a ∈ C and all y ∈ {e}⊥. For each x ∈ H − D, define
Ux by

Ux = ⟨e, x⟩θU
(

x

⟨e, x⟩

)
. (32)

Lemma 1.14 (U is θ-linear and θ-unitary). Let U : H → H be the map
defined by definition 1.13. Let θ be the unique member of {I, I∗} such that
U(ay) = aθUy for all a ∈ C and all y ∈ {e}⊥.

(a) For all x ∈ H such that x ̸= 0, Ux ∈ T [x].
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(b) For all a ∈ C and all x ∈ H, U(ax) = aθUx.

(c) For all x, y ∈ H, U(x+ y) = Ux+ Uy.

(d) For all x, y ∈ H, ⟨Ux, Uy⟩ = ⟨x, y⟩θ.
Proof. (a): Lemma 1.9 tells us that Ux ∈ T [x] for all x ∈ D. Definition 1.13
and lemma 1.3(a) tell us that for all x ∈ H −D,

[Ux] =

[
⟨e, x⟩θU

(
x

⟨e, x⟩

)]
= ⟨e, x⟩θ

[
U

(
x

⟨e, x⟩

)]
= ⟨e, x⟩θT

[
x

⟨e, x⟩

]
= T

[
⟨e, x⟩θ

⟨e, x⟩
x

]
= T [x]. (33)

(b): Let a ∈ C and x, y ∈ H be arbitrary. We will prove that U(ax) =
aθUx. If a = 0 or x ∈ {e}⊥, we have already done that. So suppose that
a ̸= 0 and x /∈ {e}⊥. The latter assumption implies that ⟨e, x⟩ ̸= 0. Since
⟨e, ax⟩ = a⟨e, x⟩ and a ̸= 0, this implies that ⟨e, ax⟩ ≠ 0. So

U(ax) = ⟨e, ax⟩θU
(

ax

⟨e, ax⟩

)
= aθ⟨e, x⟩θU

(
x

⟨e, x⟩

)
= aθUx. (34)

(c) and (d): Let x, y ∈ H be arbitrary. The projection theorem tells
us that there’s a unique pair (a, b) of complex numbers and a unique pair
(x⊥, y⊥) of vectors in {e}⊥, such that x = ae + x⊥ and y = be + y⊥. Define
f and g respectively by f = f

∥f∥ and g = g
∥g∥ . We have

x = ae+ ∥x⊥∥f,
y = be+ ∥y⊥∥g. (35)

Recall that for all z ∈ {e}⊥, Uz is defined by Uz = U(e+ z)−Ue. So for all
z ∈ {e}⊥, U(e+ z) = Ue+Uz. This result, part (a), lemma 1.10 and lemma
1.12 imply that

U(x+ y) = U
(
(a+ b)e+ ∥x⊥∥f + ∥y⊥∥g

)
= U

(
(a+ b)

(
e+

∥x⊥∥f + ∥y⊥∥g
a+ b

))
= (a+ b)θU

(
e+

∥x⊥∥f + ∥y⊥∥g
a+ b

)
= (a+ b)θ

(
Ue+ U

(
∥x⊥∥f + ∥y⊥∥g

a+ b

))
= (a+ b)θUe+ U

(
∥x⊥∥f + ∥y⊥∥g

)
= aθUe+ bθUe+ ∥x⊥∥Uf + ∥y⊥∥Ug

= aθ
(
Ue+

∥x⊥∥
aθ

Uf

)
+ bθ

(
Ue+

∥y⊥∥
bθ

Ug

)
= aθU

(
e+

∥x⊥∥
aθ

f

)
+ bθU

(
e+

∥y⊥∥
bθ

Ug

)
= U(e+ ∥x⊥∥f) + U(e+ ∥y⊥∥g) = Ux+ Uy. (36)
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We have proved (c). To prove (d), first note that ⟨x, y⟩ = ⟨ae+ ∥x⊥∥f, be+
∥y⊥∥g⟩ = a∗b, and that lemma 1.5 implies that {Ue, Uf, Ug} is an orthonor-
mal set. These results and part (c) imply that

⟨Ux, Uy⟩ =
⟨
U(ae+ ∥x⊥∥f), U(be+ ∥y⊥∥g)

⟩
=

⟨
aθUe+ ∥x⊥∥Uf, bθUe+ ∥y⊥∥Ug

⟩
= (a∗b)θ = ⟨x, y⟩θ. (37)

Lemma 1.15 (U is unique up to a phase factor). Let U : H → H be the
map defined by definition 1.13. Let θ be the unique member of {I, I∗} such
that U is θ-unitary. Let V : H → H and η ∈ {I, I∗} be arbitrary.

(a) If dimH ≥ 2, η ∈ {I, I∗}, V is η-unitary, and V x ∈ T [x] for all x ∈
H− {0}, then η = θ and there’s a λ ∈ C such that |λ| = 1 and V = λU .

(b) For all λ ∈ C such that |λ| = 1, λU is θ-unitary and (λU)x ∈ T [x] for
all x ∈ H − {0}.

Proof. (a): The assumption that V is η-unitary implies that V 0 = V (0 ·0) =
0ηV (0) = 0. Since we also assumed that V x ∈ T [x] for all x ∈ H such that
x ̸= 0, V satisfies the assumptions of lemma 1.5.

We will prove that V is injective. Let x and y be arbitrary vectors in H
such that V x = V y. We have V (x− y) = 0, and therefore

0 = ⟨V (x− y), V (x− y)⟩ = ⟨x− y, x− y⟩η = ∥x− y∥2. (38)

This implies that x = y. So V is injective.
Let {x, y} be an arbitrary linearly independent set in H. We will prove

that {V x, V y} is linearly independent. Suppose that a and b are complex
numbers such that aV x + bV y = 0. Then V (aηx + bηy) = 0. Since V is
injective, this implies that aηx+bηy = 0. Since {x, y} is linearly independent,
this implies that a = b = 0. So {V x, V y} is linearly independent.

For all x ∈ H − {0}, we have [V x] = T [x] = [Ux]. This implies that
there exists a function c : H → C such that for all x ∈ H, |c(x)| = 1 and
V x = c(x)Ux. We will prove that c is a constant function.

V (x+ y) = c(x+ y)Ux+ Uy = c(x+ y)Ux+ c(x+ y)Uy,

V (x+ y) = V x+ V y = c(x)Ux+ c(y)V y. (39)

This implies that
(
c(x+ y)− c(x)

)
Ux+

(
c(x+ y)− c(y)

)
Uy. Since {Ux, Uy}

is linearly independent, this implies that c(x) = c(x + y) = c(y). Since the
right-hand side is independent of x, c must be a constant function.
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We will prove that η = θ by deriving a contradiction from the assumption
that this is false. So suppose that η ̸= θ. This means that either θ = I and
η = I∗ or θ = I∗ and η = I. Suppose that θ = I and η = I∗. (The
other possibility can be dealt with by making a few obvious changes in the
argument we’re about to make). Let x ∈ H − {0} be arbitrary.

V (ix) = c(ix)U(ix) = c(ix)iUx, (40)

V (ix) = i∗V x = −ic(x)Ux. (41)

Since ∥Ux∥2 = ∥x∥2 ̸= 0, Ux ̸= 0. So the above implies that for all x ∈
H − {0}, c(ix) = −c(x). Since c is a constant function, this implies that
c(x) = 0. So V x = c(x)Ux = 0. This implies that 0 = ∥V x∥2 = ⟨V x, V x⟩ =
⟨x, x⟩η = ∥x∥2 ̸= 0, which is obviously false.

(b): Define V = λU . For all x ∈ H such that x ̸= 0,

[V x] = [(λU)x] = [λ(Ux)] = λ[Ux] = λT [x] = T [λx] = T [x]. (42)

The last equality follows from the assumption that |λ| = 1. This result
implies that V x ∈ T [x] for all x ∈ H − {0}.

For all a, b ∈ C and all x, y ∈ H,

V (ax+ by) = λU(ax+ by) = λ(aθUx+ bθUy) = aθV x+ bθV y,

⟨V x, V y⟩ = ⟨λUx, λUy⟩ = |λ|2⟨Ux, Uy⟩ = ⟨x, y⟩θ. (43)
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