1 Wigner’s theorem

Let H be an arbitrary Hilbert space. We define a relation ~ on H by x ~ y
if there’s a ¢ € C such that |¢| = 1 and x = cy. This is clearly an equivalence
relation. For each x € H, the equivalence class that x belongs to will be
denoted by [z]. The set of equivalence classes will be denoted by S. For each
a € C and each z,y € H, we define

alz] = [ax] (1)
(2] - [y] = (2, 9)]. (2)

Note that the right-hand sides don’t depend on the representatives x,y from
the equivalence classes [z], [y]. We will be particularly interested in the equiv-
alence classes [z] such that ||| = 1. These classes are called the unit rays
of H. (A ray of H is a 1-dimensional subspace of H). The set of unit rays of
‘H will be denoted by R.

In this section, the symbols 6 and 7 will denote automorphisms of C. For
all a € C, we will write a’ and a” instead of §(a) and 7(a).

Definition 1.1 (f-unitary). Suppose that € is an automorphism of C. An
operator U : H — H is said to be -linear if for all a,b € C and all x,y € H,

Ulaz + by) = Uz + Uy.
A f-linear operator U : H — H is said to be @-unitary if for all z,y € H,
(Uz,Uy) = (w,y)".
Let I be the identity map on C. Denote the complex conjugation map
A= A on C by I*.

Theorem 1.2 (Wigner’s theorem). If T is a permutation of R such that
Tlx] - Tly] = [x] - [y] for all z,y € H — {0}, then there’s a 0 € {I,I"} and a
O-unitary U : H — H such that Uz € T[x] for allx € H—{0}. IfdimH > 2,
then 6 is uniquely determined by T', and U is unique up to multiplication by
a complex number of absolute value 1.

The proof is very long, so instead of trying to prove it all at once, we're
going to state and prove a number of lemmas that lead up this result. Lemma
1.15 will be the final step.

Lemma 1.3 (Extension of T from R to S). For each x € H, we define
T|x] = ||z||T[e], where e is the unit vector in the direction of x. The map
T:S8 — S defined this way has the following properties.
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(a) Tlax] = aT[z] for all a € C and all v € H.
(b) Tlz]-Ty] = [z| - [y] for all x,y € H.

(¢) For all x € H, and all ' € Tx], we have ||z'|| = ||x]|.
Proof. Let a € C and x,y € H be arbitrary. Define e = ﬁ and f = HZ_H
(a):
Tlaz] = T[a||z|le] = al|z||T]e] = aT [||z|le] = aTx]. (3)
(b): Let ¢’ € Te] and f” € T[f] be arbitrary. Since
Tlz) = T(llzlle] = = Tle] = l|=[l [e] = [llz]l€]
Ty = [llyllf]. (4)

we have

Tla] - Tlyl = [llze] - [IlllF'] = [Cllzlle’, 1wl ]
= lllllyll [{e', £ = [llelle, Il )] = 1, )| =[] - [y]. (5)
——

(c): For all ' € T[z],
l2']|* = ', 2")] = [&'] - [2] = T[] - T[a] = [2] - [] = [, 2)| = ||=]|*. (6)
[

The following lemma is the only theorem in this section that’s not a part
of the proof of Wigner’s theorem. We're proving it because it answers a
question suggested by the previous theorem.

Lemma 1.4 (The extended 7" is a bijection). The T : S — S defined above
1s a permutation of S.

Proof. Injectivity: Let z and y be arbitrary members of H such that T'[x] =
Tly]. Let 2/ € T[z] be arbitrary. Since 2’ € T[y], lemma 1.3(c) tells us
that ||2'|| = |ly||. Similarly, ||¢/|| = ||z||. Since 2’ and " belong to the same
equivalence class, we also have ||2’|| = ||¢/||. So ||z|| = ||I¥/]| = [|Z/]| = l|yll-
Define e = 7 and f = g Let ¢’ € Tle] and f’ € T[f] be arbitrary.

Tl2] =Tl = T[ll=lle] =T[llyllf] = llzll Tle] = ll=[| T(f]
= Nzl [eT=ll=Il[f] = [lI=le] = [l=l]. (7)



This result implies that there’s a ¢ € C such that |c| = 1 and ||z||e = ¢||z||f.
Clearly, any such c also satisfies ¢/ = c¢f’. So [¢/] = [f’]. This means that
Tle] = T[f]. Since the original T is a permutation of R, this implies that
le] = [f]. Let ¢ be a complex number such that e = ¢f. Clearly, ||z|e =
clle)f = ely]f- 8o [lalle] = [l - This means that 1] = [y

Surjectivity: Let y € ‘H be arbitrary. Define f = H I Let e € H be unit
vector such that T'[e] = [f]. We have

[yl = [yl f] = Iyl [ = llyll TTe] = T [[lylle]- (8)
O

Lemma 1.5 (Properties of any partially defined U). Let D be an arbitrary
subset of H. Let U : D — H be an arbitrary map such that U0 =0 if 0 € D,
and Ux € Tx] for all x € D such that x # 0.

(a) For all 2,y € D, (U, Uy)| = |{z, ).
(b) For allx € D, ||Ux| = ||z

(c) For each x € D such that x # 0, there’s a unique function p, : C — C
such that U(ax) = py(a)Ux and |p.(a)| = |a| for all a € C.

Proof. Let x,y € D and a € C be arbitrary.

(a): If x = 0 or y = 0, we have |(Uz,Uy)| =0 = |(z,y)|. If z # 0 and
y # 0, we have |(Uz,Uy)| = T[z] - Tly] = [] - [y] = [(z,y)|.

(b): Part (a) implies that [|Uz||* = |(Ux,Uz)| = [(z,z)| = ||z|*.

(c): Suppose that & # 0. We have [U(az)] = Tlaz| = aT'[z] = alUx] =
[aUzx]. So there’s a unique ¢ € C such that |¢|] = 1 and U(ax) = caUxz.
Define p,(a) = ca.

Suppose that ¢, : C — C is such that U(bx) = ¢,(b)Ux for all b € C.
Then ¢,(a)Uz = U(ax) = p,(a)Uz, and therefore (¢,(a) — p.(a))Ux = 0. If
¢:(a) # pz(a), we can multiply this by 1/(g.(a) — p.(a)) to get Uz = 0. This
contradicts part (b) or the assumption that x # O So q.(a) = p(a). Since
a is an arbitrary member of C, this implies that ¢, = p,. O]

Lemma 1.6 (Linear combinations of orthonormal vectors). Let (ej)}_, be an

arbitrary orthonormal finite sequence in H. Define I = {1,...,n}. For each
keI, let ey, € Tleg] be arbitrary. If x ="} _, axey, then for each «’ € T'[x],
there are complex numbers a,...,a, € C such that ' = >} _, aje,, and

\a,| = |ag| for all k € I.



Proof. For all 7,5 € I, we have

(€l €5 = [ei] - [e5] = Tlei] - Tles] = lea] - [e;] = [(ei, €5)] = dij-

This implies that (e}, e’) = 6;; for all 4,5 € I. Note that for all k € I, we
have a;, = (ey, z). This follows from x = ", _, aie;, and the fact that {e;}res
is an orthonormal set. We're going to define aj, for each k € I. Since {e} }rer
is an orthonormal set and 2/ = Y ,_, aj.€}, there’s only one definition that
can possibly work: For each k € I, we define aj, = (e}, 2'). For all k € I, we
have

Jar| = (e, @) = lex] - [2'] = T'lex] - Tla] = [e] - [2] = [ew, 2)| = lax].  (9)

We will prove that ' = >"7_, aje}. First note that

= ||2’||*> — 2Re <IL‘/,ZG;€€;€> +

k=1

n

x — E aje),

k=1

2 n

/AN
§ A€y,

k=1

2

(10)

Since (aje})_, is an orthogonal finite sequence in #, the Pythagorean the-
orem tells us that the third term is equal to Y ;_, [Jape}ll* = D p_; lai]*. To
evaluate the second term, we note that

<a:',zn:a;€e;€> = zn:ak (o' e) Z |a,|* € R. (11)

k=1 k=1
These results imply that

2 n n
= |2'1* =Y Ml = ll= > = > axl® =
k=1 k=1

n

x — E €}

k=1

n 2
Tr — E arer
k=1

(12)

]

Let e be an arbitrary unit vector in H. e will denote the same vector
until the end of the section.

Definition 1.7 (Definition of Ux for all x € H with (e, z) € {0,1}). We will
define Uz for all = in the subset {e + y|y L e}, and then define Uz for all =
in the Hilbert subspace {e}~.

Let y € {e}* be arbitrary. Define f by f = y/|ly|l. Let ¢/ € T[e] and
f' € T[f] be arbitrary. Lemma 1.6 tells us that since {e, f} is an orthonormal
set and e +y = e + ||y|| f, there exist a,b € C such that ae’ + bf" € Tle + y],
and |a| =1, |b| = ||y||. Since T'[e 4 y| is an equivalence class whose members
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differ only by complex factors of absolute value 1, this means that there’s a
unique member of T'le + y| that can be expressed as e’ + bf’, where b € C.
Let b be the unique member of C such that ¢ + bf’ € Tle + y]. Define
U(e+y) =€ +bf’. Since y is an arbitrary member of {e}*, this defines Uz
for all z in {e+yly L e}. Since |b| = ||y||, the definition implies that Ue = ¢€'.

For each y € {e}*, we define Uy = U(e+y) — Ue. This defines Uz for all
z in {e}*. So Uz is now defined for all z in {z € H|(e,z) € {0,1}}. This
set will be denoted by D.

Lemma 1.8 (Useful facts about complex numbers). Let a,b € C be arbitrary.
(a) If Rea = Reb and |a|] = |b|, then b = a or b = a*.

(b) If Re(ab*) = Re(ab), then (Ima)(Imb) = 0.

(¢) If Re(]al?b) = Re(a®b) and Tma # 0, then (Rea)(Imb) = —(Ima)(Reb).

Proof. Let (p,q,r,s) be the unique 4-tuple of real numbers such that a =
p+iqg and b =1 + is.
(a): By assumption, p = r and |a| = |b|. So

PP =a? = b =r* + 5% =p* + 57

This implies that s = +q. So either b = r+1s = p-+1iq, or b =r+is = p—igq.
(b): Since

Re(ab) = Re ((p + iq)(r +is)) = pr — gs,
Re(ab*) = Re ((p +iq)(r — is)*) = pr +gs, (13)

the assumption implies that that 0 = ¢s = (Ima)(Imb).
(c): Since

Re(|a|?b) = Re ((p* + ¢*)(r +is)) = (0> + ¢*)r
Re(a’h) = Re ((p* — ¢* + 2ipq)(r + is)) = (p* — ¢*)r — 2pgs (14)

the assumption that Re(|a|?b) = Re(a?b) implies that
—2pgs = (p* + ¢*)r — (p* — ¢*)r = 2¢°r. (15)

Since ¢ = Ima # 0, we can cancel ¢ from this equality. So (Rea)(Imb) =
ps = —qr = —(Ima)(Reb). O

Let U : D — H be the map defined by definition 1.7.
Lemma 1.9 (Properties of U). (a) U0=0
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(b) For all x € D such that x # 0, Uz € T|x].

(c) For ally,z € {e}*, Re(Uy,Uz) = Re(y, 2).

(d) For ally,z € {e}~, [(Uy,Uz)| = [y, 2)|.

(e) For ally,z € {e}*, we have (Uy,Uz) = (y,z) or (Uy,Uz) = (y, z)*.

Note that part (e) implies that when (y,z) € R, we have (Uy,Uz) =
(Y, 2).
Proof. Let y,z € {e}* and a € C be arbitrary.

(a): UO=U(e+0) —U(e) = 0.

(b): U(e+y) is by definition a member of T'[e + y]. We will prove that if
y # 0, then Uy € T[y]. Suppose that y # 0. Define f = y/||y||. We saw in
definition 1.7 that there’s an f’ € T[f] and a b € C such that |b| = ||y|| and
Uy =>bf". So

Uyl = [bf] = blf'] = 0T [f] = T[bf] = Tlllyll f] = Tly). (16)

(c): Lemma 1.5 tells us that |[(U(e+y),U(e+ 2))| = [{e +y,e+ z)|, and
that

(U(e+vy),U(e+ 2))| = [{Ue+ Uy, Ue + Uy)]
= H]UeH2 + (Ue,Uz) + (Ue,Uy) + (Uy, Uz)}
=14+ (Uy, Uz)|?> =1+ 2Re(Uy, Uz) + |[(Uy, Uz)|?
=1+ 2Re(Uy, Uz) + |{y, 2)|?,
e +y.e+2)| = [llell* + (e, 2) + {e.y) + (v, 2)] = |1+ (5, 2)|”
=1+ 2Re(y, z) + |(y, 2)|*. (17)

(d): This follows from parts (a) and (b), and lemma 1.5(a).
(e): This follows from parts (c¢) and (d), and lemma 1.8(a). O

For each x € D such that x # 0, let p, be the unique function such that
U(az) = py(a)Uz for all a € C.

Lemma 1.10 (py and p, when {e, f, g} is an orthonormal set). For all a,b €
C and all f,g € {e*} such that [f]| = gl = 1 and (f,g) = 0, we have
Ulaf +bg) = pr(a)Uf +py(b)Ug.

Proof. Let a,b € C be arbitrary. If a = 0 or b = 0, then we clearly have
Ulaf +bg) = pr(a)Uf + py(b)Ug. (If @ = b = 0, the equality follows the



result U0 = 0. If only one of a and b is zero, the equality follows from the
definitions of py and p,).

Suppose that a,b # 0. Define x = af + bg. Lemma 1.6 tells us that since
{f, g} is an orthonormal set, there exist a’, b’ € C such that Uz = a'U f+0'Uyg,
and |a’| = 1, |V/| = 1. We will prove that o' = ps(a) and V' = p,(b). First
note that since

(LN =IfIP=1€R,
(w,af) = (af +bg,af) = (af af) = |a]* €R, (18)

we have (Uf,Uf) = (f, f) and (Uz,U(af)) = (x,af).

(Uz,U(af)) = (,af) = (af +bg.af) = (af,af) = |a* = |a',
(Uz,U(af )>= 1(@)(Uz,Uf) = psla)(aUf +bUg,Uf)
ps(a)a™(Uf,Uf) = ps(a)a™(f, f) = ps(a)a™.  (19)
So a™*a' = |d|* = pf(a)a’*. Since |a’| = |a|, the assumption that a # 0

implies that we can cancel a’* from this equality to get ps(a) = a’. A similar
argument shows that p,(b) = '. So

Ulaf +bg) = pr(a)Uf +py(b)Ug. (20)
]

Lemma 1.11 (All the p, such that y L e are the same). There’s a € {I,I*}
such that p, = 0 for all y € {e}* such that y # 0.

Proof. We will prove the theorem by proving the following statements:

(a) For all f € {e}* such that |f|| = 1, and all a € C, we have p,(a) €
{a,a*}.

(b) For all f € {e}* such that ||f|| =1, p; € {I,I*}.

(c) For all f,g € {e*} such that [If] = llgll = 1 and (£, 9) =0, ps = p,

() For all f,g € {e} such that |f]| = gl = 1 and (f,g) #0, py = p,

(e) Forally € {e}*—{0}, we have p, = py, where f is defined by f = y/||y]|.

These results imply that p, is the same function for all y € {e}* such that
y # 0, and that this function is either I or I*. If this function is denoted by
0, we have U(ay) = a’Uy for all a € C and all y € {e}~.

(a): Lemma 1.9(e) tells us that (U f,U(af)) = (f,af) = aor (Uf,U(af)) =
(f,af)* = a*. But we also have (Uf,U(af)) = pr(a)(Uf,Uf) = ps(a).
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(That last equality follows from lemma 1.9(d), because (f, f) = [|f]| =1 €
R).

(b): Define Ay = {a € C|ps(a) = a} and By = {a € C|ps(a) = a
will prove that one of these sets is equal to C. Note that Ay N By =
a € Ay and by € B be arbitrary. 1.9(c) tells us that

Re(U(af), U(bf)) = Re(af,bf) = Re(a’b),
Re(U(af), U(bf)) = Re (p(a) ps (b)(Uf.Uf)) = Re(a’"). (1)

So Re(a*b) = Re(a*b*). Lemma 1.8(b) tells us that this implies that (Im a)(Im b) =
0. So one of a and b is real. If @ is real, then a € R = Ay N By C By. Since
a is an arbitrary member of Ay, this implies that Ay C By. Similarly, if b is
real, then By C Ay. So one of these sets is a subset of the other. Since their
union is C, this implies that the larger of the two sets is = C. If Ay = C,
then py = 1. If By = C, then py = I*.

(c): Since 0 = U0 = U(0f) = ps(0)Uf, and ||Uf|| = ||f|| = 1, we have
pf(0) = 0. Similarly, p,(0) = 0. So ps(0) = p,(0).

Let a € C' — {0} be arbitrary. Lemma 1.10 (applied to the linear combi-
nations f + g and af + ag) implies that

Ula(f +9)) = prag(@)U(f +9) = pyrg(a)Uf + pyig(a)Uyg,

*1. We
R. Let

Ula(f +g)) =Ulaf + ag) = ps(a)U f + py(a)Ug. (22)
This implies that
(Pr+g(a) = pr(a)Uf + (prigla) — pp(a))Ug = 0. (23)

Uf and Ug are orthogonal (lemma 1.9), and therefore linearly independent.
So this implies that ps(a) = pri4(a) = py(a). Since a is an arbitrary non-zero
complex number, and we have already proved that p;(0) = p,(0), this implies
that pr = p,.

(d): Suppose that py # p,. Then either py = I and p, = I*, or py = I*
and p, = I. Suppose that py = I* and p, = I. (The other possibility can be
dealt with by swapping f for g and g for f in the argument we're about to
make). Let a be an arbitrary complex number such that Ima # 0.

Re(U(af),Ulag)) = Re(af, ag) = |a|* Re(f, 9) = |a* Re(U f, Ug)
=Re (la*(Uf,Ug)),
Re(U(af),Ulag)) = Re(ps(a)U f,py(a)Ug) = Re (a*(Uf,Ug))  (24)
Since Ima # 0, lemma 1.8(c) tells us that this implies that
(Rea)(Im(U f,Ug)) = —(Ima)(Re(U f,Ug)). (25)



We have proved that this equality holds for all a € C such that Ima # 0. If we
can prove that this result is actually false, this will disprove the assumption
that py # p,. It’s sufficient to prove that there’s an a € C that doesn’t satisfy
(25) and has a non-zero imaginary part.
Lemma 1.9(d) and the assumption that (f, g) # 0 imply that (U f,Ug) #
0. If Re(Uf,Ug) # 0, then (25) implies that
Im(Uf,Ug)

Ima = _MU—M Rea. (26)

So (25) is false for all a that don’t satsify this condition, for example 1 — it,
where t is any real number such that ¢ # gr; g; gz andt # 0. HIm(U f,Ug) #
0, then (25) implies that

_ Re(Uf,Uyg)
oo = 10U f.Ug)

So (25) is false for all a that don’t satisfy this condition, for example ¢ — i,
Im(Uf,Ug)

Ima. (27)

where ¢ is any real number such that ¢ # & (U T . So for all possible values
of (Uf,Ug), there’s an a € C that doesn t satisfy (25) and has a non-zero
imaginary part. This contradicts the assumption py # py, s0 pf = p,.

(e): We will prove that ps(a) = ps(a)ps(llyll). If py = I, then py(ally]]) =
allyll = prla)ps(lyll)- I py = I*, then py(allyl]) = a*[lyll = ps(a)ps(llyll)-

U(ay) = py(a)Uy,
Ulay )- Ulallyllf) = prlallylDUf = prla)ps(lyINU f
= pr(a)U (Hyllf) ps(a)Uy. (28)

This implies that (p,(a) — ps(a))Uy = 0. If p, # p(a), we can multiply this
by 1/(py(a) — ps(a)) to get Uy = (. This contradicts the result ||Uy| = ||yl
(which is implied by lemma 1.8(c)) or the assumption that y # 0. So p,(a) =
ps(a). Since a is an arbitrary complex number, this implies that p, = py. O

Let 6 be the unique member of {I, [*} such that p, = 6 for all y € {e}*
such that y # 0.

Lemma 1.12 (U is 6-linear and f-unitary on {e}t). (a) Foralla,b € C and
all y, z € {e}*, Ulay + bz) = a’Uy + U 2.

(b) For ally,z € {e}*, (Uy,Uz) = (y, 2)°.

Proof. Let a,b € C be arbitrary. Let y,z € {e}* be arbitrary. If y = 0 or
z =0, we clearly have U(ay + bz) = a’Uy + b°Uz. So suppose that y, z # 0.
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These two vectors span a subspace of {e}* that’s either 1-dimensional or
2-dimensional. Suppose that it’s 1-dimensional. Define f by f = Hz_ﬂ We

have y = ||y||f, and z = ||z]| f or z = —||z||f. We will use the &+ notation to
deal with both cases at once.

Ulay +bz) = U((allyl £ 0ll=1)f) = (allyll £ bllz[N)°U f
= dy|Uf£0||2|Uf = a’U(lyll f) + VU (£]|2]| )
=a’Uy + U 2. (29)

Since (y,z) = {||lylf, £lzllf) = £|yl 2] € R, lemma 1.9(e) tells us that
(Uy,Uz) = (y,2z) € R. Since 7/ = r for all » € R, this implies that

({Uy,Uz) = (y,2)".
Now suppose that the subspace spanned by {y, z} is 2-dimensional. Define
f by f= ﬁ, and let g be an arbitrary member of {e}* such that {f, g}

is an orthonormal basis for that subspace. Let (¢, d) be the unique pair of
complex numbers such that z = c¢f 4+ dg. Lemma 1.10 tells us that

Uay + bz) = U(ally|| f + bcf + dg)) = U((ally|| + be) f + dg)

= (allyll +be)’Uf + (bd)°Ug = o’ |ly|Uf + ¥ (U f +d°Ug)
= d"U(||y|lf) +b°U(cf +dg) = a’Uy + °U=. (30)

Since (y, z) = (||yllf, cf + dg) = |ly||c, lemma 1.10 tells us that
Uy, Uz) = Uyl f),Ulef +dg)) = (llyllUf, U f +d°Ug)
= [yl = (llylle)’ = (y, 2)°. (31)
]

Definition 1.13 (Extension of U to all of H). Let U : D — H be the map
defined by definition 1.7. Let 6 be the unique member of {I, I*} such that
U(ay) = a’Uy for all @ € C and all y € {e}*. For each x € H — D, define
Uzx by

Uz = (e, x>9U<<;x>). (32)

Lemma 1.14 (U is #-linear and @-unitary). Let U : H — H be the map
defined by definition 1.13. Let 0 be the unique member of {I,1*} such that
Ulay) = a®Uy for all a € C and all y € {e}*.

(a) For all x € H such that x # 0, Uz € T|x].
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(b) For alla € C and all v € H, U(az) = a’Ux.
(c) Forallz,y e H, U(x+y) =Ux+ Uy.
(d) For all v,y € H, (Uz,Uy) = (z,y)°.

Proof. (a): Lemma 1.9 tells us that Uz € T'[z] for all x € D. Definition 1.13
and lemma 1.3(a) tell us that for all x € H — D,

Ua] = [WVU (ﬁ)] = {eo) [U(<>)}

0 Z <€a I>9

et | = |y = o &
(b): Let a € C and x,y € H be arbitrary. We will prove that U(ax) =

a®Ux. If a = 0 or z € {e}*+, we have already done that. So suppose that

a# 0 and x ¢ {e}*. The latter assumption implies that (e,z) # 0. Since

(e,azx) = ale,z) and a # 0, this implies that (e, az) # 0. So

Ulazx) = (e,aa:)eU((elex)) = ae(e,x)eU(@’x@) = a’Us. (34)

(c) and (d): Let z,y € H be arbitrary. The projection theorem tells
us that there’s a unique pair (a,b) of complex numbers and a unique pair
(z1,yy) of vectors in {e}*+, such that z = ae + z, and y = be + y, . Define
f and g respectively by f = ﬁ and g = H%\I‘ We have

v =ae+[lzL|f,
= be+ [lyLllg- (35)
Recall that for all z € {e}*, Uz is defined by Uz = U(e + z) — Ue. So for all

z € {e}*, U(e+z) = Ue+ Uz. This result, part (a), lemma 1.10 and lemma
1.12 imply that

Uz +y) =U((a+be+ [z | f +lyillg) = U((a+b)<e—|— HMHZ:L!MHQ))

_ (a+b)aU<€+ 1S + Hmllg) _ (a+b)9(U6+U(Hxl||f+HyLHg))

a+b a+b
=(a+b)Ue+U([lzr|lf + lyrllg) = ’Ue+ 6"Ue + ||a|Uf + lyL[|Ug

=q’ (Ue + —H:%’lUf) + b’ (Ue—l— —”ylHUg)
a b?

— an(e+ ij;“f) +69U(e+ Hy”’Ug;)
a b0
=Ule+ llzLllf) + Ule+llyLllg) = Uz + Uy. (36)
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We have proved (c¢). To prove (d), first note that (z,y) = (ae + ||z || f, be +
llyL]lg) = a*b, and that lemma 1.5 implies that {Ue, U f,Ug} is an orthonor-
mal set. These results and part (c) imply that

(Uz,Uy) = (Ulae + |lz_||f), Ube + |lyLll9))
= (a’Ue + |lz_|Uf,b°Ue + |lyL||Ug)
= (a"b)’ = (z,y)". (37)
O

Lemma 1.15 (U is unique up to a phase factor). Let U : H — H be the
map defined by definition 1.13. Let 0 be the unique member of {I,I*} such
that U is 0-unitary. Let V : H — H and n € {I,I*} be arbitrary.

(a) If dimH > 2, n € {I,I*}, V is n-unitary, and Vx € Tx] for all x €
H — {0}, then n =0 and there’s a A € C such that |[\| =1 and V = \U.

(b) For all X € C such that |\ = 1, AU is 8-unitary and (A\U)x € T'[x] for
all x € H — {0}.

Proof. (a): The assumption that V' is p-unitary implies that V0 =V (0-0) =
07V (0) = 0. Since we also assumed that Va € T[z] for all z € H such that
x # 0, V satisfies the assumptions of lemma 1.5.

We will prove that V' is injective. Let x and y be arbitrary vectors in ‘H

such that Vo = Vy. We have V(xz — y) = 0, and therefore

0=(V(z—y).Ve—y)=(r—yz—y"=z—y|" (38)

This implies that x = y. So V' is injective.

Let {z,y} be an arbitrary linearly independent set in H. We will prove
that {Vz,Vy} is linearly independent. Suppose that a and b are complex
numbers such that aVa 4+ bVy = 0. Then V(a"z + b"y) = 0. Since V is
injective, this implies that a"x+b"y = 0. Since {z, y} is linearly independent,
this implies that a = b = 0. So {Vz,Vy} is linearly independent.

For all z € H — {0}, we have [Vz| = T[x] = [Ux]. This implies that
there exists a function ¢ : H — C such that for all x € H, |¢(z)| = 1 and
Va = c(x)Ux. We will prove that ¢ is a constant function.

V(ie+y) =clz+y)Ux+ Uy =clzx+y)Uzx+ c(z+ y)Uy,
V(ie4+y) =Ve+Vy=clx)Uzx+ c(y)Vy. (39)

This implies that (c(z+y) —c(z))Uz + (c(z+y) —c(y))Uy. Since {Uz, Uy}
is linearly independent, this implies that c¢(z) = c¢(z + y) = ¢(y). Since the
right-hand side is independent of x, ¢ must be a constant function.
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We will prove that n = 6 by deriving a contradiction from the assumption
that this is false. So suppose that 1 # 6. This means that either § = I and
n = 1"or § = I* and n = I. Suppose that § = [ and n = I*. (The
other possibility can be dealt with by making a few obvious changes in the
argument we're about to make). Let € H — {0} be arbitrary.

V(ix) = c(iz)U (ix) = c(iz)iUx, (40)
V(ix) =i"Va = —ic(x)Ux. (41)
Since ||[Uzx||* = ||z]|* # 0, Uz # 0. So the above implies that for all = €
H — {0}, c(iz) = —c(z). Since c¢ is a constant function, this implies that
c(z) =0. So Vo = ¢(x)Ux = 0. This implies that 0 = ||Vz||* = (Va,Vz) =

(x,z)" = ||z||* # 0, which is obviously false.
(b): Define V= A\U. For all z € H such that = # 0,

Va] = [\D)a] = MUz)] = \[Uz] = AT[z] = T]ha] = Tla]. (42)

The last equality follows from the assumption that |[A| = 1. This result
implies that Vo € T[] for all z € H — {0}.
For all a,b € C and all x,y € H,

V(ax + by) = \U(azx + by) = Ma’Uz + °Uy) = o’V +0°Vy,
(Va,Vy) = (\Uz, A\Uy) = AUz, Uy) = (z,y)’. (43)

]
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