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| will aim to explain the minimum about string perturbation theory
that every quantum physicist should know.
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we assign a propagator 1/(p? + m?) to each line. We can write
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where t is the Schwinger parameter or proper time.
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It is convenient to
think of the Feynman graph I' as a singular 1-manifold, with
singularities at the vertices. What it means to assign the length
parameters t; to the graph is just that we have a Riemannian
metric on I'. Up to diffeomorphisms of the internal lines in I, the
only invariants of such a metric are the lengths of the line
segments, that is, the t;.



Although each internal line in I has its own momentum p;, we do
not just integrate over the p; independently: we have to impose
momentum conservation. Momentum conservation must be
imposed at each vertex.



Although each internal line in I has its own momentum p;, we do
not just integrate over the p; independently: we have to impose
momentum conservation. Momentum conservation must be
imposed at each vertex. For a typical vertex
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we want a delta function

(2m)*6*(p1 + P2 + p3).



We can conveniently get that delta function from
[ x> piex) = @05 (Y )
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So we assign a spatial coordinate to each vertex, and we write the
propagator in position space as

d4p eip'(x_y)
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So now we have a slightly new way to interpret a Feynman
diagram:
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We integrate over a position parameter x for each vertex, and a
length parameter t for each line. In addition, each line has a factor

d* iD-(x—y)— m
G(x,y; t):/(27r1;4 P (x=y)=t(p*+m?).



However, in addition to inventing Feynman diagrams, Feynman
also taught us how to interpret the function

d4

G(x,yit) = / ﬁ e"p‘(X—y)—t(Pz-I-mZ).

We think about a non relativistic point particle with Hamiltonian
H = p?+ m?, p = —id/dx.

The action for such a particle is

dx \ 2
I=[dt| (= 2
/ (<dt> +m ) ,
which is just the action for a non relativistic point particle with
2m =1, and a constant m? added to the Lagrangian density.



According to Feynman, G(x,y; t) can be obtained as an integral
over all paths X(t") for which X(0) =y, X(t) = x, or in other
words all paths by which the particle travels from y to x in time t:
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This is the basic Feynman path integral of non-relativistic quantum
mechanics, which you can read about in for example the book by
Feynman and Hibbs.
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[

we integrate over all possible Riemannian metrics on the graph,
which amounts to integrating over all length parameters t, to, .. ..
We also integrate over all possible locations of the vertices x, y, z
in space-time, and also over all possible maps of the lines
connecting the vertices into space-time. In other words, we
integrate over all possible maps of I' into space-time.



In short, to evaluate the amplitude associated to a graph I', we
integrate over (1) all possible metrics on I', modulo
diffeomorphisms of I', and (2) all possible maps of I into
space-time.
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Relativity, with the fields being a metric on I and a map from T to
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In short, to evaluate the amplitude associated to a graph I', we
integrate over (1) all possible metrics on I', modulo
diffeomorphisms of I', and (2) all possible maps of I into
space-time. This amounts to a version of 1-dimensional General
Relativity, with the fields being a metric on I and a map from T to
space-time. If we write h for the 1 x 1 metric tensor of I, and g
for the d x d metric tensor of space-time (for example d = 4),
then the action in this one-dimensional General Relativity is

dX’dXJ
= [dsvh|h? , m? .
/r sf( ng ds ds )

Some points to note: (1) There is no purely Einstein action

Jr dsv/det h R, because there is no curvature R in 1 dimension. (2)
We can go to a gauge in which h =1 and the integral over metrics
reduces to an integral over the Schwinger parameters t;. (3)
Previously, we took the space-time metric to be just gj(x) = dj;,
with space-time being flat, but we do not have to assume this.



An important point is that the integral over each Schwinger
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An important point is that the integral over each Schwinger
parameter t has two ends. There is t — oo which generates the
pole of the propagator:
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We do not want to do without this region since the physical
interpretation of quantum field theory depends crucially on the
pole of the propagator!



The other end of the t integral is responsible for the fact that the
propagator is singular at short distances:

A d
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This singular short distance behavior of the propagator comes
completely from the small t part of the integral.
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region because if we put a lower cutoff on t, we would spoil
space-time locality.



In quantum field theory, there is no way to get rid of the small t
region because if we put a lower cutoff on t, we would spoil
space-time locality. This is the reason that quantum field theories
are at risk of ultraviolet divergences.
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particles are chosen.



Another important point is that we have ignored a lot of extra
trappings that come with Feynman diagrams. Different particles
can have different masses and spins. A vertex
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should be labeled by which types of particles are attached to it. A
vertex has a coupling constant, which may depend on which
particles are chosen. The Feynman rules may tell us to place at a
vertex not just a coupling “constant” but a more general factor
that may depend on the momenta or possibly the polarizations of
the particles.



These bells and whistles are what model-building in quantum field
theory is all about.
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These bells and whistles are what model-building in quantum field
theory is all about. However, we have ignored them. We have just
described the properties that are common to all quantum field
theories.
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Now we move on to string theory, and | doubt it will surprise
anyone to be told that instead of doing 1-dimensional General
Relativity, we are now going to do 2-dimensional General Relativity.
Now in the starting point, we replace graphs by 2-dimensional
manifolds, which are also called Riemann surfaces.

. will call
such a 2-manifold “the string worldsheet.”



One thing we note immediately is that there is no need to assume
singularities and hence a lot of the bells and whistles of quantum
field theory will not have analogs.



One thing we note immediately is that there is no need to assume
singularities and hence a lot of the bells and whistles of quantum
field theory will not have analogs. Unlike a Feynman graph, which
is divided into different lines, which can represent particles of
different types with different masses and spins, any part of a string
worldsheet is equivalent to any other so “there is only one string.”



One thing we note immediately is that there is no need to assume
singularities and hence a lot of the bells and whistles of quantum
field theory will not have analogs. Unlike a Feynman graph, which
is divided into different lines, which can represent particles of
different types with different masses and spins, any part of a string
worldsheet is equivalent to any other so “there is only one string.”
Whatever particles there are going to be represent different states
of vibration of one basic string.



One thing we note immediately is that there is no need to assume
singularities and hence a lot of the bells and whistles of quantum
field theory will not have analogs. Unlike a Feynman graph, which
is divided into different lines, which can represent particles of
different types with different masses and spins, any part of a string
worldsheet is equivalent to any other so “there is only one string.”
Whatever particles there are going to be represent different states
of vibration of one basic string. Also there are not any vertices in
the string worldsheet so we do not have the freedom to tell the
string how to interact.
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To get an interesting analog of the 1-dimensional story requires one
more key idea. Unlike a 1-manifold, a 2-manifold can be curved
and the space of metrics modulo coordinate transformations is
infinite-dimensional. Indeed, a 2 x 2 metric tensor

b <h11 h12)
hi2 h2

has 3 independent components, but a diffeomorphism generator
x" — x" 4+ €/(x), i = 1,2 only depends on 2 functions, not enough
to gauge fix the three components of h. One field is left over. One
way to proceed is to accept the fact that we will have to do a path
integral over this field, and try to make sense of it. It is not easy
to go down that road, and it turns out to be a longer way to get to
a destination at which we can arrive more directly (and incisively)
by another route.
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The other route is as follows. We get something nice if we impose
an extra symmetry that eliminates 1 component of h. We do that
by requiring conformal or Weyl invariance

for any function o.



A 19th century result says that, up to diffeomorphisms and
conformal or Weyl transformations, a two-manifold ¥ only depends
on finitely many parameters:
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T, T
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The moduli 7; of the Riemann surface are rather analogous to the
proper times t; of the edges of a corresponding Feynman graph,
except that they are complex while the t; are real.



t2

More concretely,
T, = S; + it;

where t; is the “length” of a tube and s; is a “twist angle.”
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Just as in 1 dimension, we are going to add “matter” to our
2-dimensional gravity theory. Since we are trying to use conformal
invariance to improve the analogy between 2 dimensions and 1
dimension, by reducing the integral over 2-dimensional metrics to
an integral over finitely many parameters 7;, the "matter” part of
the action has to be conformally invariant. For instance, in 2
dimensions, the usual action for massless scalar fields is
conformally invariant:

/:/dza\/detg(gaﬁﬁaXlagXJGU(X)).
X

The X's describe a map from the two-manifold ¥ to a spacetime
M, which can have D dimensions and which I've endowed with a
metric tensor Gy;(X).



There is still (almost) no purely gravitational action in two
dimensions since the Einstein-Hilbert action
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is a total derivative (topological invariant).



There is still (almost) no purely gravitational action in two
dimensions since the Einstein-Hilbert action
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is a total derivative (topological invariant). So just as in ordinary
quantum field theory, we basically have to only consider the action
for the matter fields.



To develop the theory, we are supposed to (i) for a fixed ¥, do a
Feynman path integral over the fields X = (X1,..., XP), and (ii)
then integrate over the moduli 74, 75,... and sum over all
topological choices for . The last step is the analog of summing
over all Feynman graphs in ordinary field theory.
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To understand why the ultraviolet divergences go away, let us
consider the basic 1-loop contribution to the vacuum energy. A
simple example of a divergent 1-loop contribution to the vacuum
energy comes from a scalar field of mass m. Its path integral gives

1
V/det(—V2 + m2)

1
= exp(—ETr log(—V? + m?)).
This means that the 1-loop contribution to the effective action is

1 1 [>dt
I* = ZTr log(—V? + m?) = / — exp(—tH)
2 2)o t

where H = p? + m?> = —V? + m?.
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The divergence is at t = 0:

It is very
instructive in field theory to see that the factor 1/2t comes from
the symmetries of the graph.



This integral diverges for t — 0. What we are about to see is that
the string theory problem is similar, except that the integral only
goes over t > 1, so there will be no divergence.



This integral diverges for t — 0. What we are about to see is that
the string theory problem is similar, except that the integral only
goes over t > 1, so there will be no divergence.

(I will take a shortcut and assume the torus is conformally
equivalent to a rectangle with opposite sides glued together rather
than a more general parallelogram. This doesn't affect the
conclusion, but it shortens the explanation.)
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We could view the rectangle as
describing a string of circumference s propagating through a
proper time s’ or a string of circumference s’ propagating through
a proper time s. Either picture is correct. In any event, in string
theory, because of conformal invariance, only the ratio s/s’ (or its
inverse s'/s) is meaningful.



The string theory formula will reduce approximately to field theory
if, say, s >> s’. Then we can think in terms of a string of
circumference s’ propagating for a proper time s. Because of
conformal invariance we can set s’ = 1 and identify s with the
proper time t of a field theory: t = s/s’ =s. So the integral that
in field theory is an integral over the proper time t is in string
theory replaced by an integral over the ratio s/s’.



The difference between field theory and string theory comes in
because the string theory has a symmetry s <+ s’:
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The difference between field theory and string theory comes in
because the string theory has a symmetry s <+ s’:
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Because of this symmetry, we are free to
restrict the integration region to s > s’. In other words, if we set
t =s/s’, we are restricted to t > 1.
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In short, in field theory we integrate over t from 0 to oo and we
typically find ultraviolet divergences for t — 0. (Depending on the
theory, we may find infrared divergences for t — c0.) In string
theory, we integrate over t from 1 to co. There is no ultraviolet
divergence since the integral begins at 1. (Depending on the
theory, there may be an infrared divergence for t — c0.)
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| have explained this in a slightly naive way, but the point holds
true in general. Technically, the moduli space of Riemann surfaces
has a region “at infinity” that corresponds to the infrared region
t — oo in field theory. But it has no region corresponding to the
ultraviolet region t — 0 in field theory. So string theory is free of
the ultraviolet divergences of field theory.

What is true but much less trivial is the following statement: The
infrared behavior of string theory matches the infrared behavior of
a field theory with appropriate light particles and interactions.
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By now | have done what | said at the beginning, but the
organizers are so generous with the time that | will explain one
more thing: why string theory describes gravity in the target
spacetime, which | call M. This isn't up to us; it happens
automatically. To explain this takes a couple of steps.
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First of all, what are the fields in the target space theory? In the
familiar case, they are the external lines in a Feynman diagram. So
in the present case, the fields in the target space are the external

strings:

=

In other words, the fields are the vibrational states of a string.
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If we change the metric G;; of M a little bit, by G — G + G, the
action changes by

5l = / d2a\/deth(haﬁaax’aﬁxJac,J(X)).
>

This causes an operator insertion on the Riemann surface
somewhere (we have to integrate over where):

For the case that the

change in the action comes from a change in the metric in
spacetime, the operator is O = haﬁaaXlangéGU(X).



By the magic of conformal invariance, the point where we inserted
the operator can be projected to infinity:
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By the magic of conformal invariance, the point where we inserted
the operator can be projected to infinity:

= T

So it corresponds
to one of the external fields — and if we shift the expectation value
of that field, this amounts to shifting the metric G;; in spacetime.



So the dynamics of gravity in spacetime is part of what string
theory describes.



So the dynamics of gravity in spacetime is part of what string
theory describes. A shift in the metric of spacetime is a shift in the
expectation value of one of the string fields; or differently put, one
of the string fields is the spacetime metric.



Going down this road (and incorporating spacetime supersymmetry
to avoid some infrared problems), one arrives at a systematic way
to calculate quantum processes involving gravitons, free of the
ultraviolet divergences that one gets if one tries to quantize
Einstein's theory directly.



Going down this road (and incorporating spacetime supersymmetry
to avoid some infrared problems), one arrives at a systematic way
to calculate quantum processes involving gravitons, free of the
ultraviolet divergences that one gets if one tries to quantize
Einstein's theory directly. The ultraviolet divergences are absent
because two-dimensional conformal invariance completely
eliminates the ultraviolet region from the Feynman diagrams.



