Available: June 30 Summer 2014 Due: July 5

Separately assume there is a 1-by-T row-vector of nonnegative numbers named TaskWeights.
For notational purposes, denote the TaskWeights vector as

[wl wWo wT]

Using this notation, the weighted task score is defined as

T
Weighted TaskScore := Z wW; 8;
i=1

Write a function named weightScores with the function-declaration line
begin code

1 function [GradeBookWeighted, B90] = weightScores(GradeBook, TaskWeights)
end code

The function weightScores should use a for loop to add the field WeightedTaskScore to
GradeBook, and for each element in GradeBook, sets its value to be the weighted task score,
computed by combining the ArrayTaskScores with the TaskWeights as defined. The resulting
struct array should be assigned to the variable GradeBookWeighted. Remember that adding a
field to any one element of a struct array adds that field to all elements (i.e. all elements in a
struct array have the same fields).

weightScores should also assign to the variable B90 a 1-by-B cell array of the names of the
students whose WeightedTaskScore is greater than 90. This should take approximately 3 lines of
code (a for loop should not be used for this task).

In your published file, create a small example (with, say, N = 5 and 7" = 3) and illustrate the
functionality of weightScores.

Creating a Word Index

In the following problems you will write code that builds an index for text documents. This index will
be a struct array where each element corresponds to a unique word in a group of documents. In each
element of the struct array the word is stored in the Word field, the document numbers that the word is
contained is in the Documents field, and the locations of the word in each document is in the Location
field.

2. First, write a function named InitializeIndex.m with the following code:
begin code

1 function Index = InitializeIndex()

2 cl0 = cell(1,0);

3 Index = struct(’Word’, c10, ’Documents’, c10, ’Locations’, c10)
end code

This function has no input arguments and one output argument, an empty 1-by-0 struct array
with the following fields:

e Word

e Documents

2 of 10



Available: June 30 Summer 2014 Due: July 5

e Locations

Elements to this struct array fields will be appended with the InsertDoc function that you will
create in the next problem.

3. Now, write a function named InsertDoc with the function-declaration line
begin code

1 function Index = InsertDoc(Index, newDoc, DocNum)
end code

The three input arguments are:

e Index: a 1-by-N struct array with the fields:

— Word, where Index (k) .Word is a char array(single row containing a word)

— Documents, where Index (k) .Documents is a 1-by-7 double that contains the docu-
ment numbers of documents that within which Index (k) .Word appears,

— Locations, where Index (k) .Locations is a 1-by-7 cell whose m-th element is a
double row array that contains the locations of the appearance of Index (k) .Word in
the document specified by Index (k) .Documents (m).

e newDoc: a 1-by-W cell array of words that represents a document to be added to the index;
and

e DocNum: an integer identifying newDoc.

The process for inserting the data in newDoc into the Index is as follows: Loop through all of
the words in newDoc,

e If a word is not one of Index (1) .Word, ... , Index(N) .Word, then a new element should be
added to Index with the word(with all elements made lowercase) assigned to the Word field,
the document number DocNum assigned to the Documents field, and a 1-by-1 cell array
whose contents is a scalar double whose value is the location of the word in newDoc assigned
to the Locations field. Comparison of words should be case-insensitive, so if matlab’
is in the index then ’Matlab’ or *MATLAB’ should not be added as a new element of the
index.

e If a word is already one of Index(1) .Word, ... , Index(N) .Word and the document identified
by DocNum is already included in the Documents field for this word, then the location of the
word in newDoc should be appended to the corresponding array in the contents of the cell
array in the Locations field.

e If a word is already one of Index (1) .Word, ... , Index (N) .Word, but the document identi-
fied by DocNum is not already included in the Documents field for this word, then the DocNum
should be appended to the array in the Documents field, and the index of the word in newDoc
should be appended to the contents of the appropriate cell array in the Locations field.

The proper behavior of this function can be illustrated with an example. Let's create an index
assigned to the variable E7 and add the three “documents” shown below to the index.

3 0of 10



Available: June 30 Summer 2014 Due: July 5

begin code

1 Docl = {’Matlab’, ’is’, ’awesome’};
2 Doc2 = {’Programming’, ’is’, ’very’, ’very’, ’fun’};
3 Doc3 = {’I’, ’love’, ’Matlab’};
end code
begin code
1 E7 = InitializeIndex;

2 E7 = InsertDoc(E7, Docl, 1);
3 E7 = InsertDoc(E7, Doc2, 2);
4 E7 = InsertDoc(E7, Doc3, 3);

end code

After running the code above E7 will be a 1-by-8 struct array, since there are 8 unique words
in Docl, Doc2, and Doc3. The first element of E7 is shown below. As can be seen the char
array *matlab’ is the first element of the document corresponding to DocNum = 1 and the third
element of the document corresponding to DocNum = 3.

begin code

1 Word: ’matlab’
2 Documents: [1 3]
3 Locations: {[1] [3]1}

end code

Similarly, the second element of E7 is:
begin code

1 Word: ’is’
2 Documents: [1 2]
3 Locations: {[2] [2]}

end code

The fifth element of E7 is:
begin code

1 Word: ’very’
2 Documents: [2]
3 Locations: {[3 4]}

end code

Note that for the element E7(5) as shown above, the Locations field is a 1-by-1 cell array
containing a 1-by-2 array, since the char array ’very’ appears only in the document with
DocNum = 2, but it appears twice in this document (the third and fourth elements).

Hints:

(a) My version of insertDoc has 19 lines, including the function-declaration line. Yours may
be a bit longer, but there is no need for this to be a long function.

(b) Consider using the Matlab functions strcmp or strcmpi to perform comparison of char
arrays. For more information type help strcmpi in the command window.

4 of 10



Available: June 30 Summer 2014 Due: July 5

(c) Review all of the comma-separated-list syntax introduced in the module. Since Index is
a 1-by-N struct array, the expression {Index.Word} is equivalent to { Index(1).Word,
Index(2) .Word, ... , Index(N).Word}, and istherefore a 1-by-N cell array containing
all of the unique words current in Index

(d) For each word in a document under consideration, there are 3 cases to consider:

i. the word is not in Index (and must be appended properly)

ii. the word is in Index, but Document is not yet listed (in other words, the 1st occurance,
in the document, of a word that is already in Index)

iii. the word is in Index, and Document is listed (the 2nd, or later, occurance, in the
document, of a word that is already in Index)

Following that reasoning, here is some pseudo-code

begin code

1 function Index = InsertDoc(Index, newDoc, DocNum)
2 Given: Index, and a new document to insert into the Index
3 Get a cell-array of all words in Index
4 Loop through all words in the newDoc
5 If the word is not in Index (or Index is empty)
6 Add the word to Index (append at end, in .Word field)
7 Correctly set the .Documents and .Locations fields
8 Else (word is already in Index)
9 If this is the 1st occurance of this word in newDoc
10 Add this DocNum to the correct location in .Documents
11 Add the word location number into .Locations
12 Else (2nd, or later, occurance of this word in this newDoc)
13 Append the word location into .Locations
14 End
15 End
16 End
end code

Make sure that your InsertDoc function works properly for the example above. Check every
element of the 1-by-8 struct array E7 to ensure it is correct!

Now load the 3842-by-1 struct array SongLyrics contained in the SongLyrics.mat file. This
struct has two fields:

e Song: a char array of the song name;

e Lyrics: a cell array containing char arrays of each word in the song.

For each value of k, from 1 to 3842, the value of SongLyrics(k) .Lyrics represents a document
as described above. All of these documents are lyrics from popular music. For the purposes of
building the index, you will not use the values in the Song field.

Initialize an empty index, BigLyricIndex, and then use a for loop insert all of the documents
in SongLyrics into the index. The resulting index should be a 1-by-19001 struct array. Hint:
Before doing the large for loop, try (manually, calling insertDoc a few times) inserting the first
few documents, and examing BigLyricIndex to see that it's being constructed properly,

5 of 10



Available: June 30 Summer 2014 Due: July 5

begin code

1 BiglyricIndex = InitializeIndex;
2 BigLyricIndex = InsertDoc(BigLyricIndex, SongLyrics(1l).Lyrics, 1);
3 % examine BigLyricIndex

1 BigLyricIndex = InsertDoc(BigLyricIndex, SongLyrics(2).Lyrics, 2);
5 % examine BigLyricIndex
6 BigLyricIndex = InsertDoc(BigLyricIndex, SongLyrics(3).Lyrics, 3);
7 % examine BigLyricIndex

end code

4. Now that you have created functions to initialize and build the index, we want to be able to search
for documents that contain certain words or certain groups of words.

Write a function named FindDocsWithWords with function-declaration line
begin code

1 function matchingDocs = FindDocsWithWords(Index, words)
end code

The two input arguments are:

e Index: a 1-by-N struct array with the fields: Word, Documents, and Locations; and

e words: a char array of a word to search for (e.g. ’yellow’), or a cell array containing
multiple char arrays of the words to search for (e.g. {’submarine’, ’the’, ’walrus’}).

This function should return to the output argument, matchingDocs, an L-by-1 array that contains
the DocNum of each document that contains all of the char arrays in the input argument, words.
If no document in the index contains all of the char arrays in words then the output argument,
matchingDocs, should be empty, namely 0-by-1.

Hint: Use the Matlab function intersect in your FindDocsWithWords function. There is a
quiz question in the online module titled "More Cell Operations” about using intersect with
chars and cell arrays of chars that you should review.

You should first test your FindDocsWithWords function on a small index, like that given produced
from the example in the previous problem. Once you are confident that your FindDocsWithWords
function is working correctly you should try it on the larger index that you created from SongLyrics
with many different words.

Some things to try:

e how many songs have the word *I1°7

e how many songs have the word ’tonight’?

e how many songs have the word ’computer’?

e how many songs have the words *I’, >love’ and ’you’?

e how many songs have the words ’I’, am’, *the’, and ’walrus’?

How can you use the returned Document Numbers along with Index to get the song titles of the
matching songs?

6 of 10



