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Spatial Resonances and Superposition Patterns in a Reaction-Diffusion Model
with Interacting Turing Modes
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Spatial resonances leading to superlattice hexagonal patterns, known as “black-eyes,” and superposi-
tion patterns combining stripes and/or spots are studied in a reaction-diffusion model of two interacting
Turing modes with different wavelengths. A three-phase oscillatory interlacing hexagonal lattice pattern
is also found, and its appearance is attributed to resonance between a Turing mode and its subharmonic.
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Resonance phenomena often occur when a nonlinear
pendulum is subjected to periodic forcing, becoming
entrained at a frequency that is rationally related to the
applied frequency [1]. The “pendulum” can be a physical
oscillator, a chemical system such as the Belousov-
Zhabotinsky reaction [2], or even a biological oscillator.
Depending on the source of the forcing, the resonance
can be classified as either external or internal. Resonance
is generally thought of as being associated with temporal
oscillations, but it can also arise when a periodic spatial
pattern is subjected to spatial forcing.

Reaction-diffusion systems can produce Turing patterns
[3], which are stationary in time and periodic in space.
Most experimental studies of Turing patterns [4—6] have
explored structures with a single characteristic wavelength.
An interesting exception is the black-eye pattern, inter-
preted as a resonance between two hexagonal lattices [7].

In many systems, a Turing instability interacts with a
Hopf instability, a phenomenon explored in the Brussela-
tor [8], in a semiconductor model [9], and in the Lengyel-
Epstein model [10]. However, with the exception of a
single recent study of a bistable system [11], the problem
of interaction between Turing modes has been neglected,
despite experimental evidence [7,12] of superposition
patterns that may arise from such interactions. Natural
patterns such as fish skins [13] and morphogenetic phe-
nomena [14] provide examples of superlattice patterns
with more than one wavelength. Superlattice patterns
have been found in an equivariant bifurcation analysis of
reaction-diffusion models [15], where the mechanism for
complex pattern formation involves interactions between
modes of equal wave number and different spatial phase.
Black-eye patterns have been observed experimentally in
optical systems with a spatial Fourier filter in a feedback
loop [16].

Black-eye patterns were first seen in a reaction-
diffusion experiment involving the chlorite-iodide-malonic
acid (CIMA) reaction in a thin layer gel reactor [7]. A
subsequent study [17] suggested that black-eye patterns
are not two-dimensional, but rather projections of a
three-dimensional body-centered cubic lattice. Recent
experimental results suggest that the three-dimensional
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interpretation is not appropriate [18], but until now no
model has been developed that reproduces the black-eye
patterns in two dimensions. Here we propose a model that
generates not only black-eye patterns but also a variety of
other spatial resonant patterns that result from interactions
between different Turing modes, or between a single
mode and its harmonics.

In order to construct a model with two interacting Tur-
ing modes, we linearly couple two systems, each possess-
ing a single Turing mode. Physically, such a model might
represent two thin layers of gel that meet at an interface.
Each layer contains the same set of reactants with the same
kinetics; the difference between the layers arises from dif-
ferential diffusion due to physical (density or viscosity)
or/and chemical (complex formation) factors. The layer
with faster diffusion gives rise to the longer wavelength
Turing mode.

The interaction between two such coupled layers can be
described by a set of partial differential equations:

X;

atl =D, Vx; + alx; — x;) + f(xi, 1),

; (1
("));l = Dy,v2yi + B(y] - yl) + g(xi?yi)’

where the reactive species, x and y, and their diffusion
coefficients, D, and D,, are distinguished by subscripts
i,j = 1,2,i # jthat specify which layer they are in. The
Laplacian terms describe two-dimensional diffusion in the
(horizontal) plane of the interface, while vertical diffusion
between the layers is represented by the linear coupling
terms involving the parameters a and 8. The functions f
and g specify the kinetic behavior of the system.

We present here results for the Brusselator model [19],
whose kinetics are given by f(x,y) =a — (1 + b)x +
x?y, and g(x,y) = bx — x*y. We performed a series of
two-dimensional simulations; in each, the initial condition
was a small random perturbation of the uniform steady
state. When the system reached a stable state (stationary
or oscillatory), we took a snapshot showing gray levels
linearly proportional to x|, with white (black) correspond-
ing to high (low) concentration. Unless otherwise speci-
fied, the physical size of the system was 200 X 200 space
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units. Periodic boundary conditions were employed in all
cases. The dominant mode (long wavelength) was fixed
at k; = 0.2, while the secondary mode (short wavelength)
was located at various values of k to study the resulting
resonance behavior or superposition patterns. The parame-
ter values used in our simulations are given in Table L.

To study the resonant behavior, we set the Re(A) maxi-
mum at (k1,21) = (0.2,0.1), and set h, = —0.2 for the
secondary Turing mode (Fig. 1) [20]. Thus, the wave num-
ber k, served as our control parameter. If we vary r to
maintain both modes near onset, we obtain resonant be-
havior at both weak (¢« = 0.1) and strong (¢ = 1.0) cou-
pling, since the wave numbers at onset depend only weakly
on the coupling. As the ratio k,:k; was varied, we ob-
served clear evidence of phase-locking behavior near 2:1
and 3:1, with black-eye and white-eye patterns, respec-
tively (Fig. 2).

The black-eye patterns can be understood as a reso-
nance between two hexagonal lattices. The major modes,
as wave vectors, can be recognized from the two-
dimensional Fourier spectra (lower panels in Fig. 2).
Figure 2b displays a resonance around ~/3:1. This type of
black-eye pattern is the same as that reported in the CIMA
reaction [7] and in optical systems [16]. Figure 2c shows
another type of black-eye pattern, where the resonance is
located around 2:1. Switching between these two types
was found to be continuous.

In black-eye patterns, the center is black (low concen-
tration) and is surrounded by a white (high concentration)
ring, with these eyelike spots arranged in a hexagonal lat-
tice. The patterns found near a 3:1 wavelength ratio show
a “white-eye” [21] pattern (Fig. 2d). The center is white,
surrounded by a black ring and a white ring.

The parameters used in Fig. 2 (see Table I) represent
weak coupling. Stronger coupling makes the separation
between the two modes shallower, but does not change
the characteristic wavelength and has no significant in-
fluence on the resonance behavior. Both black-eye and
white-eye patterns were also obtained at stronger coupling
(a = 1.0).

The resonant behavior we have found in the Brussela-
tor appears to be generic for systems with two coexist-
ing Turing modes. For example, in the Lengyel-Epstein

model of the CIMA reaction [22], the kinetics are given by
fle,y) =a — f{f—xyz, and g(x,y) = b[x — 155=]. With
parameters (a,b) = (15,9), « = B = 0.1, and diffusion
coefficients D = (6, 80, 23, 380), simulations yielded the
same type of resonant patterns as described above.

A black-eye pattern can be decomposed into a linear
combination of the fundamental mode and superharmonic
modes of the underlying hexagonal lattice. The contribu-
tion of each mode can be retrieved from the spot density
in the power spectrum. Suppose that vy, v}, and v, denote
hexagonal lattices with wave numbers k = 1, V3, and 2,
respectively, which can be expressed as Neumann series

[16]:
6
va(r) = > explig) - rl, =012, (2
=

where qo, ), and (o are wave vectors, as illustrated in
the Fourier spectra in Fig. 2. The black-eye pattern in
Fig. 2b can be reconstructed as v = gvg — %vl - %vz,
while that in Fig. 2c is given by v = évo - %vl - %vz.
The white-eye pattern in Fig. 2d can be reconstructed in
the same fashion if higher order resonant wave vectors are
included.

The patterns described above arise from an internal spa-
tial resonance, which requires three conditions: (i) The
ratio of wavelengths of the two modes is close to 2:1, 3:1,
or /3:1; (ii) the two modes must have the same symmetry,
e.g., hexagonal; and (iii) the maxima of Re(A) lie within
the ranges 0 < iy < 0.3, and —0.5 < hy < 0. If these
conditions are not satisfied, there is no resonance, and su-
perposition patterns or single wavelength Turing patterns
are formed.

Figure 3 shows four different types of superposition pat-
terns. Each has two characteristic wavelengths (the ma-
jor peaks in the two-dimensional power spectrum fall on
two distinct circles). The longer wavelength Turing pat-
tern can be stripelike (Figs. 3a and 3b) or hexagon (spot)
like (Figs. 3c and 3d). The shorter wavelength pattern can
be composed of stripes (Fig. 3d) or of white (Figs. 3b and
3c) or black (Fig. 3a) spots. These patterns do not exhibit
resonant behavior, because each of them violates at least
one of the above requirements.

TABLE 1. Parameters used in simulations of model (1) with Brusselator kinetics (&« = ).

Figure a b a D,, D,, D,, D,, ky hy ky hy
1 3 9 1 5 14 549 1598 02 02 06 -0.2
2b 3 9 0.1 16.7 36.4 495 1176 02 01 035 -02
2¢c 3 9 0.1 12.6 27.5 494 1176 02 01 04 -0.2
2d 3 9 0.1 5.60 123 493 1175 02 0.1 0.6 -0.2
3a 3 9 0.1 12.6 27.5 475 1415 02 08 04 -0.2
3b 3 9 1 1.85 566 506 1860 02 08 1 0
3c 3 6 1 1.31 9.87 340 3449 02 08 1 0
3d 3 10 1 2.03 4.38 562 1353 02 02 1 -0.5
4 3 99 1 8.33 8.33 46.0 1200 02 0.1 xx xx
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FIG. 1. Typical dispersion curve for model (1). Solid line:

real part of dominant eigenvalue; dashed line: imaginary part.
Hopf (shadow) and Turing domains refer to regions where the
most positive eigenvalue has nonzero and zero imaginary parts,
respectively. Turing modes located at (ky, #,), and (k», hy).

The pattern shown in Fig. 3a has a wavelength ratio of
exactly 2:1, but fails to show resonance because it violates
symmetry matching. Stability analysis shows that the first
Turing mode in this case lies far above the onset point,
which results in a striped Turing pattern. The second mode
produces black spots, and the interaction between them
causes the spots to arrange themselves along the stripes
(Fig. 3a). The stripe-spot patterns in Figs. 3b and 3d also
violate symmetry matching.

All the patterns in Figs. 3b—3d show superpositions
rather than resonance, because the wavelength ratio is
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FIG. 2.

Internal spatial resonance and typical resonant pat-
terns. Upper panels: (a) phase-locking range; (b) black-eye
pattern near +/3:1; (c) black-eye pattern near 2:1; (d) white-eye
pattern near 3:1. Corresponding Fourier spectra (lower panels)
show basic mode and superharmonic modes of hexagonal lat-
tices; arrows (o, q,qy, and q3 are wave vectors pointing to
typical modes.
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much larger (5:1) than one of the aforementioned resonant
ratios.

The resonances examined above are superharmonic
resonances, where the basic mode resonates with modes
at higher wave numbers.  Subharmonic resonances,
involving secondary modes with lower wave numbers,
also arise in our model. The fundamental Turing mode
has (k1, #1) = (0.2,0.3), which gives rise to a hexagonal
lattice. Its spatial subharmonic mode (sub-T") has wave
number kg, = k;/+/3 = 0.12, and lies within the Hopf
domain (Fig. 1). The existence of sub-7, with w # O,
results in the development of a temporally oscillating
subhexagonal lattice.  This oscillation breaks the Dg
symmetry of the original lattice, which degenerates to the
subgroup D3. The hexagonal array of spots thus separates
into three sets, each forming a hexagonal sublattice with
wavelength /3 times the wavelength of the original lattice
and shifted in phase by %77 from the other sublattices
(Fig. 4).

Each type of spot falls into one hexagonal sublattice
(Fig. 4a). In the absence of defects, the three sublattices
are interlaced as shown in Fig. 4b. The striking manner
in which each spot in the pattern cycles through the three
manifestations shown in Fig. 4a—black, gray, and white-
circled —Ileads us to dub this new resonance a “twinkling-
eye” pattern.

Twinkling-eye patterns are found when the basic Turing
mode lies just above the onset point and sub-T is also
close to onset but within the Hopf domain. When the
basic mode is too far above onset, the Turing pattern is
striped. The stripes themselves do not move, but their
midlines serve as sinks (or as sources if half a period away)

FIG. 3. Superposition patterns: (a) black dots on long stripes;
(b) small white dots on stripes; (c) small white dots on back-
ground of large hexagons; (d) short thin stripes on hexagonal
array of spots.
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FIG. 4. Twinkling-eye pattern: (a) single snapshot, 300 X
300 space units; (b) the three hexagonal sublattices indicated

by empty circles, filled circles, and dot-center circles; (c) three-
phase oscillations (solid, dashed, and dotted lines) at center

. . . e 2
points of eyes in the three sublattices. Phase shift: 37; pe-
riod: 4.8 time units.

of the localized traveling waves that arise from the Hopf
instability. Such patterns have been reported to arise from
subharmonic Turing-Hopf interaction [23].

The black-eye, white-eye, and superposition patterns de-
scribed here are generic in that they arise from the inter-
action of unstable spatial modes with appropriate ratios
of wave numbers. Similar resonant patterns are found in
experiments on optical systems [16] and with periodic spa-
tial (external) forcing of Turing structures [24], and can be
obtained by analysis of general amplitude equations near
a bifurcation point [15,25]. The twinkling-eye pattern, on
the other hand, requires interaction between a Turing mode
and its subharmonic located within an oscillatory Hopf do-
main, a situation less likely to occur generically. While
these complex behaviors can occur in other types of sys-
tems, particularly when they are subject to spatial forcing,
we expect them to be most common in reaction-diffusion
systems, where the possibility of species diffusing at sig-
nificantly different rates can give rise to multiple, poten-
tially resonant, length scales.

This work was supported by the Chemistry Division of
the National Science Foundation.
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