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1 Introduction

Einstein's general relativity is a generally covariant theory of gravity, which
encompasses the law of universal gravitation in its lower order approximation. The
following theory starts with the law of universal gravitation and makes it a covariant
theory by combining it with special relativity. For the standard tests of general relativity,
our theory also gets the same results. Fortunately, GP-B test offers an opportunity to
distinguish between the two theories, because our predictions are different from that of
general relativity. In addition, our theory is much simpler than genera relativity in
forms.

2 The mass variation of body moving in static gravitational field

We know that Coulomb’s law applies to the interactions between rest charges, but
can be extended to the interaction of rest charge on a moving charge. Similarly, we
suppose Newton's law of universal gravitation also holds for the interaction of rest
gravitational source on a moving body.

We suppose, for simplicity, that a point mass M is fixed at point o, as shown in
Figure 1, and a point particle with the rest mass of m, is falling freely in the static

gravitational field produced by M . As it moves, the work done on it by the
gravitational field will be converted into its kinetic energy, and its inertial mass
increases. Then according to the principle of equivalence, its gravitational mass
increases and it experiences alarger gravitational force.

We suppose that the particle m moves a differential distance of dr, and the
change of massis dm. Based on the relationship of work-energy, we have

0 r

M - m

Figure 1. Particle fallsfreely in static gravitational field
1



dme® = —==—dr D)
dm__ GM
e S 2

Integrating on both sides of the equation, we find
GM
m= ke’ (3
where Kk is constant. As particle falls at rest from infinity, we have k =m,. If particle

GM /r,c?

isreleased at rest from the distance of r,, we have k =mye"

We know that the mass of photon is #w/c®. Suppose the frequency of light at
infinity is @,. As it travels in the gravitational field, according to Equation (3), its

GM
frequency will change to o =w,e"™ “wo(“%)’ which agrees in first order
rc

GM
rc?
relativity. Likewise, if the frequency of light at the surface of a star is «,, it becomes

approximation with the result o= w,/v1-2GM /rc? = w,(1+

) in genera

o =m,e ™™ ~ p,(1-GM / Rc?) asit propagates to infinity, which is the formula of

gravitational red shift.

We know that the expression of gravitational potential is —GM /r in Newton
dynamics. Now we calculate the correct formula of gravitational potential energy. Based
on the definition, the potential energy of body equals to the negative value of the work

done by the gravitational field as it moves from infinity. Thus we have
GM GM

E, = J'r GMZmdr = jr GM2 e dr = mc’(1-e™) @)
=y r

0

3 The motion of body in static gravitational field
3.1 The effects of time dilation and length contraction in gravitational field

As light travels in gravitational field, its speed at each point is different. Thus we
cannot define synchronous clocks as in special relativity. As pointed out in Ref [1], we
cannot observe time dilation effect by merely measuring the interval of the ticks of a
clock and comparing it with the time standard defined by the maker, because the
gravitational influence on the time standard is equal to that on the clock. That is to say,
if aclock reads one second for a physical process without gravitational influence, it will
still read one second in the presence of gravitational field, because clock and process are
affected with gravitational field in the same manner.

In order to synchronize the clocks at different positions in gravitational field, we
compare the rest clock in gravitational field with the clock at infinity. We may think that
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the gravitational force at infinity is zero and in this inertial system the speed of light is
c. Suppose a sequence of oscillating wave propagates from infinity to r, whose
frequency is @, and the interval between two adjacent wave crests is At =27/, a

infinity. Then when measured by the rest clock in the gravitational field the interval is
still At , because the delays needed for the two wave crests to travel from infinity to r
are the same. This is just as what we have pointed out in the above that gravitational

field has the same influence on the clock and the process. But it can be seen from our
GM

above calculation that the local frequency of the light now becomes w,e'™ , which is
relative to the frequency at infinity. That is to say, when observed from the distant

GM

inertial frame, the local frequency becomes w,e™ and the local interval between two

GM
adjacent wave crests is e " At. Now that the interval measured by the local clock is

At the clock rested in gravitational field slows down. In order to be consistent with the

clock at infinity we must multiply the interval that the local clock measures by a factor
GM

of e,

Now we turn to the length contraction effect in gravitational field. Suppose we
have a ruler and a pole. When there is no gravitational field, the length of the pole that
the ruler measures is one meter. Then in gravitational field, if we place the ruler and the
pole in the radial direction of the gravitational field, the length measured by the ruler is
still one meter, i.e., the ruler and the pole experience the same contraction. In order to
see the length contraction effect in gravitational field, we suppose the wavelength of
light at infinity is 4, and the distance it travels within unit time is n4,. As it
propagatesto r,thereare still n waves within unit time. Now that the local frequency

GM
increases, the local wavelength becomes e " 4, when observed from infinity, and the

GM

distance that light travels within unit time is eff?zn/”to. We define length to be the

distance that light travels within certain time. Thus compared with the length at infinity,

the local length contracts. In order to be consistent with the length at infinity, we should
GM

multiply the local length in the radial direction of gravitational field by afactor e’ .
Note that the length in the tangential direction of the gravitational field does not
contract, because light will be unaffected with gravitationa field as it travels in the
tangential direction.
We summarize as follows. In order to establish synchronous time standard and
unified length standard in gravitational field, we must multiply the local time interval by

GM M
afactor of e © and the local radia length a factor of e™ . In doing so, the clocks



and the rulers in gravitationa field will be consistent respectively with the clock and
ruler at infinity.

3.2 The motion equations in static gravitational field

In general relativity, Schwarzschild metric is used to solve the motion problem in
static gravitational field. We see that considering the effects of time dilation and length
contraction, the expression of spherically symmetrical line element in datic
gravitational field can be written

_26M 26m
ds®’ =c’e " dt’—e '@ dr? —r?d6? —r?sin® &de? (5)
which in first order approximation becomes Schwarzschild metric
ds? = 21— Mgz 1= M yagezr2gp7 ez adp? (6)
rc rc

The motion equations in static gravitational field can be obtained from variation
principle by solving the following equation

s[ds=0 (7)
For the motion of light, there is another equation
ds=0 (8)

The above method is applied in genera relativity. Now we want to obtain the
motion equations by directly applying the conservation laws of angular momentum and
energy, whose physical meanings are very explicit to us.

We first write down the equations of angular momentum and energy conservation
without gravitationa field. Then we make corresponding substitutions based on the
effects of time dilation and length contraction in gravitationa field. The equations of
angular momentum and energy conservation without gravitationa field can be written

(suppose the motion takes place in the plane of 6 = % )

m, 2 dop
7 _L 9
rﬂzr ol 9
2
M mc?=E, (10)

V1-p°

where f? =—2[(E)2 +r2(%)2]. In the presence of gravitational field, we should
c

make such substitutions: r — re®’™" | dr — dre®™’™" | dt — dte ', rdp — rde,

and now energy includes kinetic energy and potential energy. Thus we get the equations

of angular momentum and energy conservation as

2GM
rnO erc2 r2d_(0: |_O (11)

1- B2 dt




2 GM

m,C

—myc? +mci(l-e” ) =E, (12)
1- B2
1, 5 dr = . d
where g% =—"J[e"™ (E)ZJrerc2 rz(d—(tp)z]. For the motion of light, we should
c
substitute following equation for Equation (12).
S odr, 2, de
e’ ()2 +e r’ (=)’ =¢c’ 13
(dt) (dt) (13)

3.3 The perihelion advance of the Mercury

Now we solve the perihelion advance problem for the Mercury using above
equations. As S <<1, we simplify Equations (11) and (12) as

2GM

2 d@
e rr—=C=1L 14
m, praia (14)
—mye™ (—)"+e“ r°(—)]+mec-(1l-e*)=E 15
> Mol (dt) (dt)]mo( )=E, (15
| Cdp L, |
From Equation (14), we obtain E:—Ze e, Substituting it into Equation (15),
m,r
we have
2 2 _2GM GM.
% Ly %e @ _2c(1-e) = 2o (16)
mpr® de”  mpr
GM
Let u=1/r.Expanding e in series, we get
2 2.A2 3 31aA2
(g e 2O OV, G, o TG o 28N (7
do c L5 cLy 3 C'L Lo

As the latter two terms that comprise u® and u® respectively are much less than the
former two and can be ignored, we obtain

> 2GM ug_ZGMnfu_ 2E,m,

du,,
Y24y 18
( d(p) 2 B ¥ (18)
Differentiating the equation with respect to ¢, we have
2 2
d lj+u—3GLVI UZZGMsz (19)
de o Lg

Now we get the same equation as in genera relativity [2],[3]. We apply the method
used in Ref [2], let u=GMny /L2 +u, and substitute it into above equation. In first
order approximation, we get



d?u 6G*M *m¢
e (20)
0
. / 6G°M *m;
whose solution is u, = kcos 1—L2—2m°(p. Thus we get
C
0
M 2 2M2 2
u:Gz—ToJrkcos 1—662—2mo (21)
L;c L;c

For the above equation, we see that when ¢ revolves 27z, Mercury must advance
another value A can u returntoitsinitial valueat ¢ = 0. We expand the square root

and get
3GZM2 2
(1—T2m°+ ------ )27 +A) = 27 (22)
0
67ZGZM2 2
0

We now solve for the orbital angular momentum L,. As the angular momentum is

conservative, we calculate L, at perihelion for simplicity. At perihelion we have

mv>  GMm
R r

(24)

where R isthe radius of curvature at perihelion. The orbit of the Mercury is elipse,
which can be written

X2 y2

? + F = 1 (25)
where a,b are semimgor axis and semiminor axis, respectively. The expression of
the radius of curvatureis

R= (1+ y12)3/2

(26)
|yl

So at perihelion we find R=b*/a=a(l-e*), where e is eccentricity. The angular

momentum of Mercury at perihelionis

L, =myr? z—f = myvr = mvGMR = m,,/GMa(1- €?) (27)
Substituting it into Equation (23), we find
672GM
Ar———— 28
c’a(l-¢e) (28)



which agrees with the result of general relativity [1],[3]. From Kepler’s second law, we
obtain [4]

27ab = hT (29)
where h isthe angular momentum for unit mass, i.e., h=L,/m,. Substituting it into
Equation (27), we have

h2 4 22182 4 2,3
M = - 27zab2 _ 7z2a (30)
a(l-e?) T a(l-¢€9) T
Substituting it into Equation (28), we find
2473’
~ 31
c’T?*(1-¢%) (31)

Maybe someone will be suspicious that whether it is appropriate to use the
potential energy expression of Equation (4) in above equations since Mercury cannot
run to infinity. In fact, the zero point of potential energy can be taken anywhere. For the
motion of Mercury, we can choose any point in orbit as the zero point of potential
energy. For example, we choose aphelion r, as the zero point of potential energy.

Then we use the relation between work and energy to derive the equation of energy
conservation. As Mercury moves from aphelion r, to r, the increase of the kinetic

2 2

energy is \/mOC =— \/moc =, and the work done by the gravitational field is
1- ﬂ 1- 130
GM GM GM
W= r—%dr: r—G—'\fkesz dr =ke?(e™® —e™) (32)

o r

We now solve for the constant k. As Mercury isat r =r,, its massis m,/1- ;.

From Equation (3), we have
GM

M _ e’ (33)
1- 55

k= Al e_"? (34)
V1= 55
As Mercury moves from aphelion r, to r, theincrease of the kinetic energy equals to
the work done by the gravitational field. Thus we have

2 GV oM

e " _1 (35)

2 2

mec ~ mc  mcC
V1-8° -4 \1-B;
For the motion of Mercury, Equation (12) should be replaced by the above equation.

But it can be seen that insignificant differences exist between them in weak
gravitational field and they lead to the same precession magnitude.
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It should be noted that Equation (28) or (31) only holds for the motion of planets
about the Sun. In this case, the masses of the planets are much less than that of the Sun
and we may think that the Sun is at rest and it is an inertial frame. In the case of binary
system, the masses of two component stars are matched and they both move round the
center of mass. As the center of mass of binary is an inertia frame, we should observe
the motion of binary from the center of mass.

For binary system, the center of mass must be in the line that connects the binary

stars. Suppose the distance from the center of massCto m is r,,andto M r,, we
have mr, = Mr,. The motion equation for m with respect to Cis

mi; =~ oMM L (36)
(rl + r2) rl

- m_ . :
Substituting r, = M r, into above equation, we have

3
mp = oMM 11 (37)
(mM+M)“r°r
3
which is equivalent that there exists a gravitational source with the mass of W
m+

while the other component star does not exist. Compared with the instance of solar
2

system, M is equivalent to be times smaller. Thus Equation (28) or (31)

(m+M)?

2

must be multiplied by a factor of when we calculate the precession of the

(m+M)?

binary system.
For DI Herculis, m=4.52M4, M =5.15Mg, where Mg isthe mass of the Sun.

For the component star of m, e=0.489, T =10.55d, a=43.2R,, where R, isthe
radius of the Sun. The cumulative precession magnitude in 100 years according to

Equation (31) is 234" . Thus the actual precesson vaue is
2
2.34 >15 =0.66", which is in good agreement with the observed value of

X e —
(4.52+5.15)*
0.65+0.18°/100 yr [5] .

3.4 The light deflection

For the motion of light in gravitational field, if we regard light as a particle with
unit mass, we can use Equations (11) and (13) to calculate the light deflection.

2GM

2 d(ﬂ
e 2= 38
il (38)
4GM 2GM
>, dr, ) d(D 2 2
e () +e“r (=) =c 39
(dt) (dt) (39)



Following the similar steps in the above we get
2
Oll;Jru—?’GMu=0 (40)
do

CZ
which agrees with the equation in general relativity [2],[3]. The bending angular of light
at thelimb of the Sunis

4GM
o = 2
Rc

(41)

3.5 The delay of radar echo

For the delay of radar echo, we solve for de/dt from Equation (38) and
substitute it into Equation (39). Then we get the expression of dr/dt as

dr , _4Gl;/1 Lg _GGI;/I
—_=.lce © —Yeg rc 42
dt \/ r2 (42)

At perihélion r =r

wins We have %=O. From Equations (38) and (39) we obtain
GM

L, =cr,, e . Substituting it into above equation, we get

min

2
I _ ca-2M, \/1- in 9, 25M ) 2GM, (43)
dt rc r r.c rc

min

Theresult in general relativity is[6]

(44)

dt rc?

2 (1 2
dr _ c(i— ZGM) 1- r;nm(l 2GM /rc 2)
r(1-2GM™m/r,.,c”)

The time needed for radar echo to travel in gravitational field can be obtained by
integrating the above two equations with respect to dt . As GM/r  c*<<1,
Equations (43) and (44) are the same, and the time delays are certainly the same.

4 The gravitational field produced by moving body
4.1 The gravitational field produced by moving body

We know that arest charge produces only electrostatic field, but a moving charge
produces electric field and magnetic field. Starting with Coulomb’s law and special
relativity, we can obtain the expression of magnetic field. From the similarity between
electrostatic force and gravitational force, we may think that a moving body can
produce gravitomagnetic field, too. We now start with the law of universal gravitation
and special relativity to get the corresponding gravitomagnetic field expression.
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Let's first see how to obtain magnetic field from Coulomb’s law and specidl
relativity [7]. Suppose acharge Q moves with a uniform velocity u relative to arest
inertial coordinate frame S, and another charge q moves with a velocity v with
respect to S. We first write down the interaction of Q on g inthe coordinate frame S
moving with charge Q, which is electrostatic force according to Coulomb’s law. Then
according to the transformation formulas of force between inertial coordinate frames,
we obtain the interaction of Q on q in the rest coordinate frame S. The
corresponding gravitomagnetic force term will appear.

We wish to deal with the law of universal gravitation in the same manner. But we
encounter difficulty for there are no synchronous clocks and unified rulers in the
gravitational field. As shown in Figure 2, two particles move in gravitational field with
their speed are u and v, respectively with respect to the gravitational source M .
When gravitational field does not exist, according to the velocity addition formulas in
special relativity, the relative speed for each particleis

u \'
n M on

Figure 2. Two particles move relative to gravitational source

u+v
u=——— 45
1-uv/c? (49)
When gravitationa field exists, considering the effects of time dilation and length
contraction, we should first perform transformations, and then apply the velocity

addition formula in specia relativity. We make such transformations:
2GM 2GM

"y, v=dr,/dt, >e

r,c2

u=dn/dt, »>e v. Then applying Equation (45), we obtain

2GM 2GM

2 2
e"™ u+e™ v
u' = (46)

2GM +2GM
1-uv(e™ = )/c?

It can be seen that the circumstance becomes extraordinarily complicated when
gravitational field exists. The reason that gravitational field is more complex than
electromagnetic field is as follows: The existence of electromagnetic forces does not
affect the speed of light, and we can establish synchronous clocks and unified rulersin
space. While the existence of gravitational force affects the speed of light, and we
cannot establish synchronous clocks and unified rulers in space. In order to apply
Lorentz transformation to obtain gravitational field and gravitomagnetic field, we must
first revise the standards of time and length in gravitational field. Of course, the results
may be very complicated. We do not solve for the complicated transformation here,
instead we solve for the approximate transformation formulas in weak gravitational
field and nonrelativistic instance.
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In weak gravitational field, GM /rc® <<1, the effects of time dilation and length
contraction can be ignored. For nonrelativistic motion, the mass of body can be
regarded as constant m, when making coordinate transformation. Thus we can make

similar transformations as in electromagnetism. The force that a uniformly moving
gravitational source M exertsonbody m is

__ GM,m,
y2r2(1_182 s'ne)3/2

[+ vx () (47)

where u is the velocity of the gravitational source M relative to the rest frame, v
Is the velocity of body m relative to the rest frame, r, is the unit vector pointing

from M to m, @ istheincluded angular between the vectors u and r,, f=ul/c,
y =1/4J1- % . If we calculate the gravitational field and the gravitomagnetic field
produced by a moving gravitational source, the expressions are

B GM, )
g 7/2r2(1_182$'n9)3/2 1

(48)

GM,usinéd
B, = _Czyzrz(l_oﬂz sing)*2 @, (49)

where E, and B, are the gravitational field intensity and the gravitomagnetic field

intensity, respectively, ¢, istheunit vector inthedirection uxr,.

4.2 The predictions for GP-B test

“Gravity probe B” test is an example of weak gravitational field and nonrelativistic
instance. The precession angular velocity of gyroscope in general relativity is[1]
1 3vxVg

Q=——Vx{——
2 C2c2

(50)

The first term on the right-hand side of the equation is frame-dragging effect, and the
second term geodetic effect, where
_GM, 2G

E=—5(xxJgy) (51)
r ric

Now we analyze GP-B test based on weak gravitational field and nonrelativistic
hypothesis. Let’s first see the Thomas precession in specia relativity [8]. Suppose a
charged particle rotates with respect to a laboratory inertial frame. The charged
particle’ s rest frame of coordinate is defined as a co-moving sequence of inertial frames
whose successive origins move at each instant with the velocity of the charged particle.
The total time rate of the spin with respect to the laboratory inertial frame, or more
generaly, any vector G isgiven by the well-known result

11
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(d_Gj = (d—Gj +0; xG (52)
dt notrot dt rest frame

where o, istheangular velocity of rotation found by Thomas, whose expression is

y® axv laxv

= ~ 53
@ y+1 ¢® 2 ¢ (53
Suppose a charged particle moves with the speed of v in the external field of E

and B. In the charged particle s rest coordinate frame, the motion equation of the spin

(d—Jj =puxB’ (54)

where n is the magnetic moment of the charged particle, and B’ is the magnetic
induction intensity in the charged particle’ s rest coordinate frame, which can be written

B = y(B——xE)~ (B-—xE) (55)
C C

We know that the classical relation between magnetic moment p and angular
momentum J of charged particleis[4]

p="3y (56)
2m
Thus the motion equation of the spin of charged particle with respect to the laboratory
inertial frameis

%:uXB'+(DTXJ= Z—?n(C—VZXE—B)-i-O)T]XJ (57)

Based on the similarity between gravitational force and electromagnetic force, we
replace charge g with mass m, E and B with E;, and B, respectively. Thus

g 1
we obtain the motion equation of gyroscope’s spin as

a 1,v 1l,v
E:[E(?XEQ _Bg)+wT]XJ:[E(FXa_Bg)+

axy
2c?

]xJ:—%Bg <J (58)

It can be seen that the Thomas precession term is compensated with the term
arising from the gravitational field intensity E, and the geodetic precession is right

zero. It may be a coincidence at first glance. In fact thisis guaranteed by the principle of
equivalence. We know that as the gyroscope falls freely in the gravitational field, the
gravitational force on the gyroscope is balanced against its acceleration, and the
gyroscope is a loca inertial system. So the spin axis of the gyroscope remains
unchanged with respect to the inertial coordinate frame at infinity. In fact, besides the
centripetal attractive force, the gyroscope experiences gravitomagnetic force in the

transverse direction. The principle of equivalence ensures that the free-falling gyroscope
12



is shielded from not only the gravitational force but also the gravitomagnetic force. The
change of the spin axis originates from the external gravitomagnetic moment on the

spinning gyroscope, and the precession angular velocity is — %B g

If this were not the case, the Thomas precession arising from the motion of the
gyroscope round the Sun with the Earth could not be neglected. We know that the Sun
iIsapreciseinertial system, and it is at rest relative to the distant quasar(more generaly,
the distant quasar is at rest relative to the center of the Milky Way). Thus the motion of
the spin with respect to the distant star equals to the motion relative to the Sun. We
calculate and find it to be 6.3 milliarcseconds per year. Because the included angular
between the equatorial plane and the orbital plane of the Earth is 23.5°, only part of

6.3xc0s23.5" =5.8 milliarcseconds per year can lead to the precession of the
gyroscope with the direction perpendicular to equatoria plane, i.e., in the direction of
the frame-dragging effect. The other part is parallel to the spin axis of the gyroscope and
cannot lead to precession. The principle of equivalence ensures that we can ignore all
the external forces acted on the gyroscope and only consider the influence of external
moment on the spin of the gyroscope.

In order to compute the gravitomagnetic field intensity B, produced by the spin

of the Earth, we introduce gravitomagnetic vector potential A, which is similar to the

magnetic vector potential in electrodynamics with the difference of replacement of
current density with momentum density, and weasohave B, =V xA .

G x',t ,
Ag(x,t):——zjgd’av( ,) 3% (59)
c Y | x—x'|
Thus the precession angular velocity of gyroscope in external gravitomagnetic field is
1 1
w:_EBg :_EVXAQ (60)

While in general relativity, vector ¢ is introduced with the meaning similar to A .

Butitisfour timesof A, inmagnitude[1].
1

4G  TO(x',t) 5.,

() == 2 [ D

The field of { is given in Equation (51) for the Earth. Thus it can be seen that the

frame-dragging effect in general relativity is four times larger than ours. The

frame-dragging precession is 41 milliarcseconds per year in genera relativity, so our
resultis 41/4~10 milliarcseconds per year.

We summarize our predictions for GP-B test as follows. The geodetic precession is
zero and the frame-dragging precession is about 10 milliarcseconds per year.

(61)

|x—x'|
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Gravity Probe B spacecraft was launched on April 20,2004 [9], it will helps to make
correct judgment, and we will wait and see the resullt.

4.3 Gravitational radiation

It iswell known that as an electrical charge makes accelerated motion, it produces
electromagnetic radiation. Likewise, we expect that a body will produce gravitational
radiation as it makes accelerated motion. For an isolated charge system, the strongest
radiation is electric dipole moment radiation. The definition of dipole moment is

de = Ze|ri (62)
where e and r, are the charge and the position vector of particle i, respectively.

The radiant intensity of dipole moment is proportional to d.. If we replace € in

above equation with m , we obtain the definition of mass dipole moment of an isolated

system.
dm = Z rniri (63)
whose first order derivative is the total momentum of the system.
dm = Z ml] (64)

As the total momentum of an isolated system is conservative, we have d,, =p =0.

Thus mass dipole moment radiation cannot exist in gravity physics.

In electromagnetics, the second strongest radiations are magnetic dipole moment
radiation and electric quadrupole moment radiation. The radiant intensity of magnetic
dipole moment is determined by its second order derivative. The magnetic dipole
moment can be written

1
H=EZFX(QVJ (65)
Replacing e in the above equation with m , we obtain the gravitomagnetic dipole
moment
1
ug zzzrx(mvi) (66)

which isjust half of the angular momentum of the system. As the angular momentum of
an isolated system is conservative, there does not exist gravitomagnetic dipole moment
radiation.

The gravitational radiation similar to electric quadrupole moment radiation does
exist. For an isolated system, the main gravitationa radiation is mass quadrupole
moment radiation. The definition of mass quadrupole moment is

14



D, = j P(BX*XP = 57X X )dV (67)

Thetotal radiant power is
dE G .
— = (M 68
dt 45C5( aﬂ) ( )
The above simple discussions of gravitational radiation can refer to [6], more
detailed discussions may see [1],[3].

5 Black hole and quasar

From Schwarzschild solution of Einstein’s gravitational field equation, one finds

gravitational radius r =2GM /c?, which raises the problems of black hole and
singularity. But in our theory, there are no such odd things. We know that the energy
source of quasarsis generaly believed to be due to the accretion of black holes. If black
hole does not exist, where does the huge energy of quasar come from?

In Ref [1] a type of suppermassive star is discussed, whose equilibrium is
maintained by radiation pressure instead of matter pressure and whose massis given by

M =18M S(%)2 B2 (69)

where Mg is the mass of the Sun, g is the ratio of matter pressure to radiation

pressure. For the ionized hydrogen with the temperature between 10° K and 10° K, m
is the average mass of electron and proton. Under this circumstance, if radiation
pressure is 10 times of matter pressure, i.e., £=0.1, wefind M = 7200M . According

to Eddington’s mass-luminosity relation, the luminosity is 7200°° = 3.16x10" times
brighter than that of the Sun and has reached the luminosity of common quasars. So
quasars are most probable to be supermassive stars. The formations of supermassive
stars require plenty of hydrogen gases, which are only possible at the earlier stage of the
universe. We now see distant quasars only because the limited propagation speed of the
light.

6 Conclusion

Our theory agrees with general relativity in the effects of time dilation and length
contraction in gravitational field. Asfor the gravitational field equation, oursis based on
the law of universal gravitation and the modified Lorentz covariant forms. While in
genera relativity, it is Einstein’s gravitational field equation. For such difference exists,
the predictions for GP-B test are different. We expect it will give a decisive judgment in
the near future.
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