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1 Introduction 
Einstein’s general relativity is a generally covariant theory of gravity, which 

encompasses the law of universal gravitation in its lower order approximation. The 
following theory starts with the law of universal gravitation and makes it a covariant 
theory by combining it with special relativity. For the standard tests of general relativity, 
our theory also gets the same results. Fortunately, GP-B test offers an opportunity to 
distinguish between the two theories, because our predictions are different from that of 
general relativity. In addition, our theory is much simpler than general relativity in 
forms.  

2 The mass variation of body moving in static gravitational field 
We know that Coulomb’s law applies to the interactions between rest charges, but 

can be extended to the interaction of rest charge on a moving charge. Similarly, we 
suppose Newton’s law of universal gravitation also holds for the interaction of rest 
gravitational source on a moving body. 

We suppose, for simplicity, that a point mass M  is fixed at point o, as shown in 
Figure 1, and a point particle with the rest mass of  is falling freely in the static 

gravitational field produced by 
0m

M . As it moves, the work done on it by the 
gravitational field will be converted into its kinetic energy, and its inertial mass 
increases. Then according to the principle of equivalence, its gravitational mass 
increases and it experiences a larger gravitational force. 

We suppose that the particle  moves a differential distance of , and the 
change of mass is . Based on the relationship of work-energy, we have  

m dr
dm

  

m

r 
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o 
  
  

Figure 1. Particle falls freely in static gravitational field 
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Integrating on both sides of the equation, we find 

2rc
GM

kem =                                                         (3) 

where  is constant. As particle falls at rest from infinity, we have . If particle 

is released at rest from the distance of , we have . 

k 0mk =

0r
2

0/
0

crGMemk −=

We know that the mass of photon is . Suppose the frequency of light at 
infinity is 

2/ cωh

0ω . As it travels in the gravitational field, according to Equation (3), its 

frequency will change to )20
2e rc

GM

≈= ωω 1(0 rc
GM

+ω , which agrees in first order 

approximation with the result )1(/21/ 20
2

0 rc
GMrcGM +≈−= ωωω

0

 in general 

relativity. Likewise, if the frequency of light at the surface of a star is ω , it becomes 

 as it propagates to infinity, which is the formula of 

gravitational red shift.  

)/1( 2
00 RcGMe GM −≈= − ωωω / 2Rc

We know that the expression of gravitational potential is rGM /−  in Newton 
dynamics. Now we calculate the correct formula of gravitational potential energy. Based 
on the definition, the potential energy of body equals to the negative value of the work 
done by the gravitational field as it moves from infinity. Thus we have 
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3 The motion of body in static gravitational field 
3.1 The effects of time dilation and length contraction in gravitational field 

As light travels in gravitational field, its speed at each point is different. Thus we 
cannot define synchronous clocks as in special relativity. As pointed out in Ref [1], we 
cannot observe time dilation effect by merely measuring the interval of the ticks of a 
clock and comparing it with the time standard defined by the maker, because the 
gravitational influence on the time standard is equal to that on the clock. That is to say, 
if a clock reads one second for a physical process without gravitational influence, it will 
still read one second in the presence of gravitational field, because clock and process are 
affected with gravitational field in the same manner. 

In order to synchronize the clocks at different positions in gravitational field, we 
compare the rest clock in gravitational field with the clock at infinity. We may think that 
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the gravitational force at infinity is zero and in this inertial system the speed of light is 
. Suppose a sequence of oscillating wave propagates from infinity to c r , whose 

frequency is 0ω  and the interval between two adjacent wave crests is 0/2 ωπ=∆t  at 

infinity. Then when measured by the rest clock in the gravitational field the interval is 
still , because the delays needed for the two wave crests to travel from infinity to t∆ r  
are the same. This is just as what we have pointed out in the above that gravitational 
field has the same influence on the clock and the process. But it can be seen from our 

above calculation that the local frequency of the light now becomes 2

0
rc
GM

eω , which is 

relative to the frequency at infinity. That is to say, when observed from the distant 

inertial frame, the local frequency becomes 2

0
rc
GM

eω  and the local interval between two 

adjacent wave crests is te rc
GM

∆
− 2 . Now that the interval measured by the local clock is 

, the clock rested in gravitational field slows down. In order to be consistent with the 
clock at infinity we must multiply the interval that the local clock measures by a factor 

of 

t∆

2rc
GM

−
e . 

Now we turn to the length contraction effect in gravitational field. Suppose we 
have a ruler and a pole. When there is no gravitational field, the length of the pole that 
the ruler measures is one meter. Then in gravitational field, if we place the ruler and the 
pole in the radial direction of the gravitational field, the length measured by the ruler is 
still one meter, i.e., the ruler and the pole experience the same contraction. In order to 
see the length contraction effect in gravitational field, we suppose the wavelength of 
light at infinity is 0λ  and the distance it travels within unit time is 0λn . As it 

propagates to r , there are still  waves within unit time. Now that the local frequency 

increases, the local wavelength becomes 

n

0
2 λrc

GM

e
−

 when observed from infinity, and the 

distance that light travels within unit time is 0
2 λne rc

GM
−

. We define length to be the 

distance that light travels within certain time. Thus compared with the length at infinity, 
the local length contracts. In order to be consistent with the length at infinity, we should 

multiply the local length in the radial direction of gravitational field by a factor 2rc
GM

e . 
Note that the length in the tangential direction of the gravitational field does not 

contract, because light will be unaffected with gravitational field as it travels in the 
tangential direction. 

We summarize as follows. In order to establish synchronous time standard and 
unified length standard in gravitational field, we must multiply the local time interval by 

a factor of 2rc
GM

e
−

 and the local radial length a factor of 2rc
GM

e . In doing so, the clocks 
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and the rulers in gravitational field will be consistent respectively with the clock and 
ruler at infinity. 

 
3.2 The motion equations in static gravitational field 

In general relativity, Schwarzschild metric is used to solve the motion problem in 
static gravitational field. We see that considering the effects of time dilation and length 
contraction, the expression of spherically symmetrical line element in static 
gravitational field can be written 

222222
2

2
2

22 sin22 ϕθθ drdrdredtecds rc
GM

rc
GM

−−−=
−

                        (5) 
which in first order approximation becomes Schwarzschild metric 

2222221
2

2
2

22 sin)21()21( ϕθθ drdrdr
rc
GMdt

rc
GMcds −−−−−= −             (6) 

The motion equations in static gravitational field can be obtained from variation 
principle by solving the following equation 

∫ = 0dsδ                                                         (7) 

For the motion of light, there is another equation 
0=ds                                                            (8) 

The above method is applied in general relativity. Now we want to obtain the 
motion equations by directly applying the conservation laws of angular momentum and 
energy, whose physical meanings are very explicit to us. 

We first write down the equations of angular momentum and energy conservation 
without gravitational field. Then we make corresponding substitutions based on the 
effects of time dilation and length contraction in gravitational field. The equations of 
angular momentum and energy conservation without gravitational field can be written 

(suppose the motion takes place in the plane of 
2
πθ = ) 

0
2

2

0

1
L

dt
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m
=

−

ϕ

β
                                                     (9) 
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                                              (10) 

where ])()[(1 222
2

2

dt
dr

dt
dr

c
ϕβ +=

GMrer →

. In the presence of gravitational field, we should 

make such substitutions: , , , 
2/ rc 2/ rcGMdredr →

2/ rcGMdtedt −→ ϕϕ rdrd → , 
and now energy includes kinetic energy and potential energy. Thus we get the equations 
of angular momentum and energy conservation as 

0
2

2

2

0 2

1
L

dt
dre

m rc
GM

=
−

ϕ

β
                                               (11) 
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where ])()([1 22
2

2
4

2
2 22

dt
dre

dt
dre

c
rc
GM

rc
GM ϕβ += . For the motion of light, we should 

substitute following equation for Equation (12). 
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3.3 The perihelion advance of the Mercury 

Now we solve the perihelion advance problem for the Mercury using above 
equations. As 1<<β , we simplify Equations (11) and (12) as 

0
2

2

0
2 L

dt
drem rc

GM

=
ϕ                                                (14) 
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dt
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GM
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GM

rc
GM
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From Equation (14), we obtain 2
2

2
0

0 rc
GM

e
rm

L
dt
d −

=
ϕ . Substituting it into Equation (15), 

we have 
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Let . Expanding ru /1= 2rc
GM

e  in series, we get 
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As the latter two terms that comprise  and  respectively are much less than the 
former two and can be ignored, we obtain 

2u 3u
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Differentiating the equation with respect to ϕ , we have 

2
0

2
02

22

2 3
L

GMm
u

c
GMu

d
ud

=−+
ϕ

                                       (19) 

Now we get the same equation as in general relativity [2],[3]. We apply the method 
used in Ref [2], let  and substitute it into above equation. In first 

order approximation, we get 
1

2
0

2
0 / uLGMmu +=
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whose solution is ϕ22
0

2
0

22

1
6

1cos
cL

mMG
ku −= . Thus we get 
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k

cL
GMm
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For the above equation, we see that when ϕ  revolves π2
0

, Mercury must advance 
another value  can  return to its initial value at ∆ u =ϕ . We expand the square root 
and get 

ππ 2)2)(
3

1( 22
0

2
0

22

=∆++− LL
cL

mMG
                                  (22) 

22
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2
0

226
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We now solve for the orbital angular momentum . As the angular momentum is 

conservative, we calculate  at perihelion for simplicity. At perihelion we have 
0L

0L

2

2

r
GMm

R
mv

=                                                     (24) 

where R  is the radius of curvature at perihelion. The orbit of the Mercury is ellipse, 
which can be written 

12

2

2

2

=+
b
y

a
x                                                      (25) 

where ,b  are semimajor axis and semiminor axis, respectively. The expression of 
the radius of curvature is 

a

||
)1( 2/32

y
yR
′′
′+

=                                                   (26) 

So at perihelion we find , where  is eccentricity. The angular 

momentum of Mercury at perihelion is 

)1(/ 22 eaabR −== e

)1( 2
000

2
00 eGMamGMRmvrm

dt
drmL −====
ϕ                    (27) 

Substituting it into Equation (23), we find 

)1(
6

22 eac
GM
−

≈∆
π                                                   (28) 
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which agrees with the result of general relativity [1],[3]. From Kepler’s second law, we 
obtain [4] 

hTab =π2                                                        (29) 
where  is the angular momentum for unit mass, i.e., h 00 / mLh = . Substituting it into 

Equation (27), we have 

2

32

22

222

2

2 4
)1(

4
)1( T

a
eaT
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ea
hGM ππ

=
−

=
−

=                                 (30) 

Substituting it into Equation (28), we find 

)1(
24

222

23

eTc
a
−

≈∆
π                                                  (31) 

Maybe someone will be suspicious that whether it is appropriate to use the 
potential energy expression of Equation (4) in above equations since Mercury cannot 
run to infinity. In fact, the zero point of potential energy can be taken anywhere. For the 
motion of Mercury, we can choose any point in orbit as the zero point of potential 
energy. For example, we choose aphelion  as the zero point of potential energy. 

Then we use the relation between work and energy to derive the equation of energy 
conservation. As Mercury moves from aphelion  to 

0r

0r r , the increase of the kinetic 

energy is 
2
0

2
0

2

2
0

11 ββ −
−

−

cmcm , and the work done by the gravitational field is  
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2
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2

0

2
22
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GM
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GM

r

r
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GM

r

r
eekcdre

r
GMkdr

r
GMmW −=−=−= ∫∫                    (32) 

We now solve for the constant . As Mercury is at k 0rr = , its mass is 2
00 1/ β−m . 

From Equation (3), we have 
2

0

2
0

0

1
cr

GM

ke
m

=
− β

                                                 (33) 

2
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2
0

0

1
cr

GM

emk
−

−
=

β
                                                (34) 

As Mercury moves from aphelion  to 0r r , the increase of the kinetic energy equals to 
the work done by the gravitational field. Thus we have 
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2
0
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0
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−
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−
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                             (35) 

For the motion of Mercury, Equation (12) should be replaced by the above equation. 
But it can be seen that insignificant differences exist between them in weak 
gravitational field and they lead to the same precession magnitude. 
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It should be noted that Equation (28) or (31) only holds for the motion of planets 
about the Sun. In this case, the masses of the planets are much less than that of the Sun 
and we may think that the Sun is at rest and it is an inertial frame. In the case of binary 
system, the masses of two component stars are matched and they both move round the 
center of mass. As the center of mass of binary is an inertial frame, we should observe 
the motion of binary from the center of mass. 

For binary system, the center of mass must be in the line that connects the binary 
stars. Suppose the distance from the center of mass C to  is , and to m 1r M  , we 

have . The motion equation for  with respect to C is 
2r

21 Mrmr = m

1

1
2

21
1 )( rrr

GMmrm r
+

−=&&                                                (36) 

Substituting 12 r
M
mr =  into above equation, we have 

1

1
2

1
2

3

1
1

)( rrMm
mGMrm r

+
−=&&                                             (37) 

which is equivalent that there exists a gravitational source with the mass of 2

3

)( Mm
M
+

 

while the other component star does not exist. Compared with the instance of solar 

system, M  is equivalent to be 2

2

)( Mm
M
+

 times smaller. Thus Equation (28) or (31) 

must be multiplied by a factor of 2

2

)( Mm
M
+

 when we calculate the precession of the 

binary system.  

For DI Herculis, , SMm 52.4= SMM 15.5= , where  is the mass of the Sun. 

For the component star of , 
SM

m 489.0=e , d55T .10= , sRa 2.43= , where  is the 

radius of the Sun. The cumulative precession magnitude in 100 years according to 
Equation (31) is . Thus the actual precession value is 

sR

o34.2

o66.0=o

)15.552.4(
15.534.2 2

2

+
×

o18.065.0 ±

, which is in good agreement with the observed value of 

/100 yr [5] . 
  

3.4 The light deflection 

For the motion of light in gravitational field, if we regard light as a particle with 
unit mass, we can use Equations (11) and (13) to calculate the light deflection. 

0
2

2
2 L

dt
dre rc

GM

=
ϕ                                                   (38) 
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dt
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GM
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=+
ϕ                                      (39) 
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Following the similar steps in the above we get  

03
22

2

=−+ u
c
GMu

d
ud

ϕ
                                             (40) 

which agrees with the equation in general relativity [2],[3]. The bending angular of light 
at the limb of the Sun is  

2

4
Rc
GM

=α                                                       (41) 

 
3.5 The delay of radar echo 

For the delay of radar echo, we solve for d dt/ϕ  from Equation (38) and 
substitute it into Equation (39). Then we get the expression of  as dtdr /

22
6

2

2
0

4
2 rc

GM
rc
GM

e
r
L

ec
dt
dr −−

−=                                          (42) 

At perihelion , we have minrr = 0=
dt
dr . From Equations (38) and (39) we obtain 

2
min

min0
cr

GM

ecrL = . Substituting it into above equation, we get 

)21)(21(1)21( 22
min

2

2
min

2 rc
GM

cr
GM

r
r

rc
GMc

dt
dr

−+−−=                         (43) 

The result in general relativity is [6] 

)/21(
)/21(1)21( 2

min
2

22
min

2 crGMr
rcGMr

rc
GMc

dt
dr

−
−

−−=                             (44) 

The time needed for radar echo to travel in gravitational field can be obtained by 
integrating the above two equations with respect to dt . As , 
Equations (43) and (44) are the same, and the time delays are certainly the same. 

1/ 2
min <<crGM

  

4 The gravitational field produced by moving body 

4.1 The gravitational field produced by moving body 

We know that a rest charge produces only electrostatic field, but a moving charge 
produces electric field and magnetic field. Starting with Coulomb’s law and special 
relativity, we can obtain the expression of magnetic field. From the similarity between 
electrostatic force and gravitational force, we may think that a moving body can 
produce gravitomagnetic field, too. We now start with the law of universal gravitation 
and special relativity to get the corresponding gravitomagnetic field expression. 
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Let’s first see how to obtain magnetic field from Coulomb’s law and special 
relativity [7]. Suppose a charge  moves with a uniform velocity  relative to a rest 
inertial coordinate frame S, and another charge q  moves with a velocity  with 
respect to S. We first write down the interaction of  on  in the coordinate frame S' 
moving with charge , which is electrostatic force according to Coulomb’s law. Then 
according to the transformation formulas of force between inertial coordinate frames, 
we obtain the interaction of  on  in the rest coordinate frame S. The 
corresponding gravitomagnetic force term will appear. 

Q

Q

u
v

Q q
Q

q

We wish to deal with the law of universal gravitation in the same manner. But we 
encounter difficulty for there are no synchronous clocks and unified rulers in the 
gravitational field. As shown in Figure 2, two particles move in gravitational field with 
their speed are  and , respectively with respect to the gravitational source u v M . 
When gravitational field does not exist, according to the velocity addition formulas in 
special relativity, the relative speed for each particle is 

u v   

r2 r1 M  

Figure 2. Two particles move relative to gravitational source 

2/1 cuv
vuu

−
+

=′                                                    (45) 

When gravitational field exists, considering the effects of time dilation and length 
contraction, we should first perform transformations, and then apply the velocity 
addition formula in special relativity. We make such transformations: 

uedtdru cr
GM

2
1

2

11 / →= , vedtdrv cr
GM

2
2

2

22 / →= . Then applying Equation (45), we obtain 

2
22

22

/)(1
2

2
2

1

2
2

2
1

ceuv

veueu
cr

GM
cr

GM

cr
GM

cr
GM

+

−

+
=′                                           (46) 

It can be seen that the circumstance becomes extraordinarily complicated when 
gravitational field exists. The reason that gravitational field is more complex than 
electromagnetic field is as follows: The existence of electromagnetic forces does not 
affect the speed of light, and we can establish synchronous clocks and unified rulers in 
space. While the existence of gravitational force affects the speed of light, and we 
cannot establish synchronous clocks and unified rulers in space. In order to apply 
Lorentz transformation to obtain gravitational field and gravitomagnetic field, we must 
first revise the standards of time and length in gravitational field. Of course, the results 
may be very complicated. We do not solve for the complicated transformation here, 
instead we solve for the approximate transformation formulas in weak gravitational 
field and nonrelativistic instance. 
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In weak gravitational field, , the effects of time dilation and length 
contraction can be ignored. For nonrelativistic motion, the mass of body can be 
regarded as constant  when making coordinate transformation. Thus we can make 

similar transformations as in electromagnetism. The force that a uniformly moving 
gravitational source 

1/ 2 <<rcGM

0m

M  exerts on body  is m

)](1[
)sin1( 1212/3222

00 ruvr ××+
−

−=
cr

mGM
F

θβγ
                         (47) 

where  is the velocity of the gravitational source u M  relative to the rest frame,  
is the velocity of body  relative to the rest frame,  is the unit vector pointing 

from 

v
m 1r

M  to , m θ  is the included angular between the vectors  and r , u 1 cu /=β , 
21/1 βγ −= . If we calculate the gravitational field and the gravitomagnetic field 

produced by a moving gravitational source, the expressions are 

12/3222
0

)sin1(
r

θβγ −
−=

r
GM

Eg                                       (48) 

12/32222
0

)sin1(
sin

φ
θβγ

θ
−

−=
rc

uGM
Bg                                     (49) 

where  and  are the gravitational field intensity and the gravitomagnetic field 

intensity, respectively,  is the unit vector in the direction 
gE gB

1φ 1ru× . 
  
4.2 The predictions for GP-B test 

“Gravity probe B” test is an example of weak gravitational field and nonrelativistic 
instance. The precession angular velocity of gyroscope in general relativity is [1] 

22
3

2
1

c
φ∇×

−×∇−=
vζΩ                                            (50) 

The first term on the right-hand side of the equation is frame-dragging effect, and the 
second term geodetic effect, where  

r
GM ⊕−=φ     )(2

23 ⊕×= Jx
c

ζ
r

G                                    (51) 

Now we analyze GP-B test based on weak gravitational field and nonrelativistic 
hypothesis. Let’s first see the Thomas precession in special relativity [8]. Suppose a 
charged particle rotates with respect to a laboratory inertial frame. The charged 
particle’s rest frame of coordinate is defined as a co-moving sequence of inertial frames 
whose successive origins move at each instant with the velocity of the charged particle. 
The total time rate of the spin with respect to the laboratory inertial frame, or more 
generally, any vector  is given by the well-known result G
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GωGG
×+






=








T
framerestnotrot dt

d
dt
d                                  (52) 

where  is the angular velocity of rotation found by Thomas, whose expression is Tω

22

2

2
1

1 ccT
vavaω ×

≈
×

+
=
γ
γ                                           (53) 

Suppose a charged particle moves with the speed of  in the external field of  
and . In the charged particle’s rest coordinate frame, the motion equation of the spin 
is 

v E
B

BµJ ′×=







framerestdt
d                                               (54) 

where µ  is the magnetic moment of the charged particle, and  is the magnetic 
induction intensity in the charged particle’s rest coordinate frame, which can be written 

B′

)()( 22 ΕvBΕvBB ×−≈×−=′
cc

γ                                     (55) 

We know that the classical relation between magnetic moment µ  and angular 
momentum  of charged particle is [4] J

Jµ
m
q

2
=                                                        (56) 

Thus the motion equation of the spin of charged particle with respect to the laboratory 
inertial frame is 

JωBEvJωBµJ
×+−×=×+′×= ])(

2
[ 2 TT cm

q
dt
d                       (57) 

Based on the similarity between gravitational force and electromagnetic force, we 
replace charge  with mass ,  and B  with  and , respectively. Thus 

we obtain the motion equation of gyroscope’s spin as 

q m E gE gB

JBJvaBavJωBEvJ
×−=×

×
+−×=×+−×= ggTgg cccdt

d
2
1]

2
)(

2
1[])(

2
1[ 222  (58) 
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It can be seen that the Thomas precession term is compensated with the term 
arising from the gravitational field intensity , and the geodetic precession is right 

zero. It may be a coincidence at first glance. In fact this is guaranteed by the principle of 
equivalence. We know that as the gyroscope falls freely in the gravitational field, the 
gravitational force on the gyroscope is balanced against its acceleration, and the 
gyroscope is a local inertial system. So the spin axis of the gyroscope remains 
unchanged with respect to the inertial coordinate frame at infinity. In fact, besides the 
centripetal attractive force, the gyroscope experiences gravitomagnetic force in the 
transverse direction. The principle of equivalence ensures that the free-falling gyroscope 

gE



is shielded from not only the gravitational force but also the gravitomagnetic force. The 
change of the spin axis originates from the external gravitomagnetic moment on the 

spinning gyroscope, and the precession angular velocity is gB
2
1

−

gB

gA

gB

. 

∇=

If this were not the case, the Thomas precession arising from the motion of the 
gyroscope round the Sun with the Earth could not be neglected. We know that the Sun 
is a precise inertial system, and it is at rest relative to the distant quasar(more generally, 
the distant quasar is at rest relative to the center of the Milky Way). Thus the motion of 
the spin with respect to the distant star equals to the motion relative to the Sun. We 
calculate and find it to be 6.3 milliarcseconds per year. Because the included angular 
between the equatorial plane and the orbital plane of the Earth is , only part of 

 milliarcseconds per year can lead to the precession of the 
gyroscope with the direction perpendicular to equatorial plane, i.e., in the direction of 
the frame-dragging effect. The other part is parallel to the spin axis of the gyroscope and 
cannot lead to precession. The principle of equivalence ensures that we can ignore all 
the external forces acted on the gyroscope and only consider the influence of external 
moment on the spin of the gyroscope. 

o5.23
8.55.23cos3.6 =× o

In order to compute the gravitomagnetic field intensity  produced by the spin 

of the Earth, we introduce gravitomagnetic vector potential , which is similar to the 

magnetic vector potential in electrodynamics with the difference of replacement of 
current density with momentum density, and we also have gA× . 

xdt
c
Gtg ′

′−
′

−= ∫ 3
2 ||

),(),(
xx

xvxA ρ                                        (59) 

Thus the precession angular velocity of gyroscope in external gravitomagnetic field is 

gg AB ×∇−=−=
2
1

2
1ω                                              (60) 

While in general relativity, vector  is introduced with the meaning similar to . 
But it is four times of  in magnitude [1]. 

ζ gA

gA

xdtT
c
Gt

i

′
′−
′

−= ∫ 3

1
0

2 ||
),(4),(

xx
xxζ                                        (61) 

The field of  is given in Equation (51) for the Earth. Thus it can be seen that the 
frame-dragging effect in general relativity is four times larger than ours. The 
frame-dragging precession is 41 milliarcseconds per year in general relativity, so our 
result is  milliarcseconds per year. 

ζ

4 ≈10/41
We summarize our predictions for GP-B test as follows: The geodetic precession is 

zero and the frame-dragging precession is about 10 milliarcseconds per year. 
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Gravity Probe B spacecraft was launched on April 20,2004 [9], it will helps to make 
correct judgment, and we will wait and see the result. 

  
4.3 Gravitational radiation 

It is well known that as an electrical charge makes accelerated motion, it produces 
electromagnetic radiation. Likewise, we expect that a body will produce gravitational 
radiation as it makes accelerated motion. For an isolated charge system, the strongest 
radiation is electric dipole moment radiation. The definition of dipole moment is 

∑=
i

iie e rd                                                      (62) 

where  and  are the charge and the position vector of particle , respectively. 

The radiant intensity of dipole moment is proportional to . If we replace  in 

above equation with , we obtain the definition of mass dipole moment of an isolated 

system. 

ie ir i

ed&& ie

im

∑=
i

iim m rd                                                     (63) 

whose first order derivative is the total momentum of the system. 

∑=
i

iim m rd &&                                                     (64) 

As the total momentum of an isolated system is conservative, we have . 

Thus mass dipole moment radiation cannot exist in gravity physics. 

0== pd &&&
m

In electromagnetics, the second strongest radiations are magnetic dipole moment 
radiation and electric quadrupole moment radiation. The radiant intensity of magnetic 
dipole moment is determined by its second order derivative. The magnetic dipole 
moment can be written 

∑ ×=
i

iie )(
2
1 vrµ                                                 (65) 

Replacing  in the above equation with , we obtain the gravitomagnetic dipole 

moment 
ie im

∑ ×=
i

iig m )(
2
1 vrµ                                                (66) 

which is just half of the angular momentum of the system. As the angular momentum of 
an isolated system is conservative, there does not exist gravitomagnetic dipole moment 
radiation. 

The gravitational radiation similar to electric quadrupole moment radiation does 
exist. For an isolated system, the main gravitational radiation is mass quadrupole 
moment radiation. The definition of mass quadrupole moment is  
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dVxxxx )3( γγβ
α

βα
αβ δρ∫ −=D                                      (67) 

The total radiant power is 

2
5 )(

45 αβD&&&
c

G
dt
dE

−==                                              (68) 

The above simple discussions of gravitational radiation can refer to [6], more 
detailed discussions may see [1],[3]. 

 
5 Black hole and quasar 

From Schwarzschild solution of Einstein’s gravitational field equation, one finds 
gravitational radius r , which raises the problems of black hole and 
singularity. But in our theory, there are no such odd things. We know that the energy 
source of quasars is generally believed to be due to the accretion of black holes. If black 
hole does not exist, where does the huge energy of quasar come from? 

2/2 cGM=

In Ref [1] a type of suppermassive star is discussed, whose equilibrium is 
maintained by radiation pressure instead of matter pressure and whose mass is given by 

22)(18 −= β
m

m
MM N

S                                              (69) 

where  is the mass of the Sun, SM β  is the ratio of matter pressure to radiation 

pressure. For the ionized hydrogen with the temperature between 105 K and 1010 K, m  
is the average mass of electron and proton. Under this circumstance, if radiation 
pressure is 10 times of matter pressure, i.e., β =0.1, we find SMM 7200= . According 

to Eddington’s mass-luminosity relation, the luminosity is  times 
brighter than that of the Sun and has reached the luminosity of common quasars. So 
quasars are most probable to be supermassive stars. The formations of supermassive 
stars require plenty of hydrogen gases, which are only possible at the earlier stage of the 
universe. We now see distant quasars only because the limited propagation speed of the 
light. 

13105.3 16.37200 ×=

  
6 Conclusion 

Our theory agrees with general relativity in the effects of time dilation and length 
contraction in gravitational field. As for the gravitational field equation, ours is based on 
the law of universal gravitation and the modified Lorentz covariant forms. While in 
general relativity, it is Einstein’s gravitational field equation. For such difference exists, 
the predictions for GP-B test are different. We expect it will give a decisive judgment in 
the near future. 
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