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1 Problem

W. Lewin of MIT has given an example of a deceptively simple circuit with somewhat
paradoxical behavior [1].1,2,3 As sketched below, a loop containing resistors R1 and R2

surrounds a solenoid magnet that is excited by a time-dependent current.

This circuit is probed by two voltmeters as sketched in the righthand figure above. Each
voltmeter consists of a resistor R � R1, R2 and an ammeter that measures the currents
Ii and reports the “voltage” Vmeter,i = IiR.4 The “positive” leads of the voltmeters are
connected to points a and c, such that the directions of currents I1 and I2 are as shown when
positive.

The paradox is that Vmeter1 does not equal Vmeter2, which is particularly surprising in the
case that points a and c are the same, and points b and d are the same.

Discuss.

2 Solution

This problem has a long history in pedagogic lore, some of which can be traced in [7]-[24].
A position sensor base on the principles of this problem is described in [25].

2.1 Analysis via Kirchhoff’s Circuit Laws

A circuit diagram for the system is shown on the top of the next page. The solenoid magnet is
the primary of a transformer that is excited by a time-dependent current Ip which is assumed
to be known. The loop with resistors R1 and R2 is the secondary of the transformer. The

1https://www.youtube.com/watch?v=nGQbA2jwkWI
2May 1, 2018: A video that illustrates much of the analysis of this note is

https://youtu.be/JpVoT101Azg by Cyriel Mabilde. Explicit mention of this note begins at time 20:40.
3Another example of the delicacy of “ordinary” circuit analysis is the two-capacitor paradox [2].
4The ambiguous meaning of “voltage” is noted, for example, in [3]. A general discussion of what AC

voltmeters measure is given in [4], and the concepts of “voltage drop” and EMF are reviewed in [5, 6].
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(small) self inductance of the secondary is L, and M � L is the mutual inductance between
the primary and secondary.

Kirchhoff’s circuit (loop) equation5 for the secondary loop is

0 = (I + I1)R1 + (I − I2)R2 + Lİ + Mİp. (1)

We restrict the analysis to low frequencies such that the term Lİ is negligible. Since İp is
known, we define

E = −Mİp = −Φ̇p, (2)

where Φp is the magnetic flux from the primary through the secondary loop. Then, eq. (1)
can be written as

E = (R1 + R2)I + R1I1 −R2I2. (3)

Similarly, Kirchhoff’s equations for the voltmeter loops are

0 = I1R + (I1 + I)R1 ≈ R1I + RI1, (4)

0 = I2R + (I2 − I)R2 ≈ −R2I + RI2. (5)

Solving the three simultaneous linear equations (3)-(5) for the currents, we find

I ≈ E
R1 + R2

, I1 ≈ − ER1

R(R1 + R2)
, I2 ≈ ER2

R(R1 + R2)
. (6)

The meter readings are therefore,

Vmeter1 = I1R ≈ − ER1

(R1 + R2)
, Vmeter2 = I2R ≈ ER2

(R1 + R2)
. (7)

which have opposite signs, and also obey |Vmeter1| + |Vmeter2| = E.

5Lewin’s has supplemented his circuit paradox with YouTube videos titled “Kirchhoff’s Loop Rule is
for the Birds,” https://www.youtube.com/watch?v=LzT_YZ0xCFY, and “Is Kirchhoff’s Loop Rule for the
Birds?” https://www.youtube.com/watch?v=5be3zpj_eCY. Since Kirchhoff’s loop equation is based on
conservation of energy, as reviewed in the Appendix, many of the statements in these videos are more in the
nature of misdirection than explanation.
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The meter readings do not depend on the locations of points a, b, c and d, so long as
a and c are both between resistors R1 and R2 on the upper wire between them, and b and
d are both between resistors R1 and R2 on the lower wire between them, and the leads are
connected in the sense of the figure below (from [17]).6

These results were validated by experiment during Lewin’s lecture demonstration.
However, if both meters were outside the secondary loop and their leads both attached

to that loop from its “right” side as shown in the figure below, both meters would read
ER2/R1 + R2), while if all leads were attached from the “left” side they would both read
−ER1/R1 + R2).

2.1.1 Which Way Does Current I1 Go Around the Secondary Loop?

In the preceding analysis we tacitly assumed that the current I1 flows only on the left side
of the secondary loop between points a and b, as shown on the left in the figure on the next
page.

But it could be that the current flowed on the right side of the secondary loop, as shown
on the right in the figure on the next page. In this case Kirchhoff’s law for the secondary
loop is

E = IR1 + (I − I1)R2 = (R1 + R2)I −R2I1, (8)

while Kirchhoff’s law for the voltmeter loop is

− E = I1R + (I1 − I)R2 ≈ −R2I + RI1, (9)

6If the solenoid is “short”, the voltmeter loops can intercept the return magnetic flux which affects the
voltmeter readings. As indicated in the video cited in footnote 2, this issue can be avoided by minimizing
the area of the voltmeter loops.
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noting that now all the magnetic flux in the solenoid is linked by the voltmeter loop, but
since the sense of current I1 is defined to be opposite to that of current I the effective EMF
in the voltmeter loop is −E rather than E. Solving eqs. (8)-(9) for the currents we find

I =
E

R1 + R2
, I1 = − ER1

R(R1 + R2)
, (10)

as found in eq. (6) assuming that current I1 flowed on the left side of the secondary loop.

Hence, the value of the current I1 does not depend on whether it flowed on the left or on
the right side of the primary loop, and the circuit analysis based on Kirchhoff’s law cannot
determine the partitioning of current I1 between the left and right sides.

However, the amount of heat dissipated in resistors R1 and R2 depends on the par-
titioning of current I1 between them. We suppose that the partition minimizes the heat
dissipation.7 Defining f to be the fraction of current I1 that passes through resistor R1, the
power dissipated in the two resistors is

P = (I + fI1)
2R1 + [I − (1− f)I1]

2R2 = 2fII1(R1 −R2)+ f2I2
1(R1 + R2) + constant. (11)

On minimizing the power P we find that

f = − I

I1

=
R

R1

� 1. (12)

Since f cannot be larger than 1, we infer that f = 1, and all the current I1 flows through
resistor R1 as initially assumed.

2.1.2 The Voltmeter Leads Pass Through the Interior of the Secondary Loop

Suppose the voltmeter leads cross the interior of the secondary loop, such that a fraction
f of the magnetic flux of the solenoid passes through the voltmeter loop, as shown in the
sketches on the next page.

As discussed in sec. 2.1.1, it suffices to suppose that all of current I1 passes through
resistor R1. Then, Kirchhoff’s law for the secondary loop is

E = (I + I1)R1 + IR2 = (R1 + R2)I + R1I1, (13)

while Kirchhoff’s law for the voltmeter loop is

fE = I1R + (I1 + I)R1 ≈ R1I + RI1, (14)

7Here, we follow Heaviside, p. 303 of [26].
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noting that the sense of current I1 is the same as that of current I , such that the EMF
which drives the voltmeter loop is fE. Solving eqs. (13)-(14) for the currents we find

I =
E

R1 + R2

, I1 = −E[R1 − f(R1 + R2)]

R(R1 + R2)
. (15)

The limiting cases for the current I1 are

I1(f = 0) = − ER1

R(R1 + R2)
, I1(f = 1) =

ER2

R(R1 + R2)
, (16)

which correspond to the previous results for the voltmeter on the “left” and on the “right”,
respectively. Thus, there is a continuum of possible readings of the voltmeter between the
“left” and “right” readings, depending on the routing of the voltmeter leads.

2.2 Scalar and Vector Potentials

The fact that the two meters give different readings when a = c and b = d (in sec. 2.1)
indicates that the meter readings are not simply related to the electric scalar potential V at
those points, as would be the case for a DC circuit.

In DC circuit analysis, ideal conductors (such as we have tacitly assume all wires in the
system to be) are equipotentials. However, in time-dependent circuit analysis the proper
assumption is that the electric field tangential to the wires is zero (in the limit of perfectly
conducting wires).

In time-dependent situations the electric field E is related to both the scalar potentials
V as well as to the vector potential A according to

E = −∇V − ∂A

∂t
. (17)

Supposing that the secondary loop is circular, its tangential component Eφ is given

Eφ = −1

r

∂V

∂φ
− ∂Aφ

∂t
. (18)

Since B = ∇ × A, we have from Stoke’s theorem that
∮

A · dl =
∫

B · dArea = Φ, so
the azimuthal component Aφ if the vector potential is given by

Aφ =
Φ

2πr
, (19)
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where r is the radius of the secondary loop. In the present example the magnetic flux Φ
through the secondary loop has contributions from the magnetic fields due to all four currents
Ip, I , I1 and I2. Of these only the contribution Φp from the primary current Ip is significant.

Applying this to wire segments in the central loop, for which Eφ = 0, we have that

∂V

∂φ
= −r

∂Aφ

∂t
= − Φ̇

2π
≈ −Φ̇p

2π
=

E
2π

, (20)

recalling eq. (2), and so the scalar potential along a wire segment has the form

V (φ) = V0 +
Eφ

2π
(21)

where φ increases for counterclockwise movement around the loop.

The voltage drops8 across resistors R1 and R2 are

ΔV1 ≈ IR1 ≈ ER1

(R1 + R2)
, ΔV2 ≈ IR2 ≈ ER2

(R1 + R2)
, (22)

if the azimuthal extent of the resistors is negligible, and we now move in a clockwise sense
around the loop. In this convention the voltage drop along each of the wire segments of the
secondary loop are −E/2, so the total voltage drop around the loop is zero, as expected for
the scalar potential. Finally, the voltage drops between the points where the voltmeters are
attached to the central loop are

Va − Vb ≈ Eφ1

2π
− ER1

(R1 + R2)
, Vc − Vd ≈ −Eφ2

2π
+

ER2

(R1 + R2)
. (23)

Only if the meter leads were connected directly to the ends of resistors R1 and R2 (as would
be good practice) would the meter readings equal the voltage differences (differences in the
electric scalar potential) between the tips of the leads.9

For additional examples of the relation of voltmeter readings to the scalar and vector
potentials in time-varying situations, see [4].

8In this note we use the term voltage drop to mean the difference in the electric scalar potential V
between two points. Calling those points a and b, the voltage drop between them is ΔV = Va − Vb. In
Lewin’s example, a meter reading, Vmeter, does not equal the voltage drop between the tips of its leads.

9If the meter leads cross the region of magnetic flux from the solenoid, intercepting fraction f of that
flux as in sec. 2.1.2, there is always a set of points {a, b} such that the meter reading equals Va − Vb. In
particular, if f = 1/2 the desired points are halfway between the two resistors, as noted in [16]. However, in
these cases the meter leads cannot be short.
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2.2.1 Secondary Loop of Resistive Wire

In an early statement [10] of the present problem, resistors 1 and 2 were not localized objects.
Rather, the secondary loop was made of a resistive wire of total resistance R0. Then, the
current I in the loop would be E/R0. In this case, the IR drop between points a and b that
subtend angle φ is IR0φ/2π = Eφ/2π = Va −Vb. That is, in this version the IR drop equals
the difference in the scalar potential between two points, which is perhaps less instructive
than the case with localized resistors.

2.2.2 On the “Reality” of the Vector Potential

The example of a long solenoid (or toroid) with “zero” magnetic field, but nonzero vector
potential, outside the coil, is often used to argue that the vector potential (or at least
differences in the vector potential) should be considered as “real” (i.e., having measurable
effect). The best known of the arguments in the quantum example of Aharonov and Bohm
[27], although this independently restates an earlier argument by Ehrenberg and Siday [28].
A related argument for classical electrodynamics has been given by Konopinski [29]; see also
[30, 31].

The classical argument is weaker, being that the electric field outside the solenoid with a
time-varying current is due to the magnetic field inside the solenoid according to Faraday’s
law, but the magnetic field is “zero” outside the solenoid, so this effect appears to be action
at a distance. Since field theory was developed with the goal of eliminating action at a
distance, it seems that the “local” result,

Einduced = −∂A

∂t
, (24)

implies that we should consider the vector potential to be “real”. However, as noted by
Lodge in 1889 [7], the magnetic field outside the solenoid is not strictly zero, and we can
argue that the weak time-varying magnetic field outside the solenoid “creates” the induced
electric field there.10

The quantum argument seems stronger, in that even for a static magnetic field in the
solenoid, there is a detectable effect on the trajectories of electrons that pass outside the
solenoid [27, 28]. Independent of the skepticism expressed in articles such as [34], the author
notes that the supposedly “real” vector potential in the examples of Lewin, and of Aharonov
and Bohm, is the gauge-invariant rotational part of the vector potential,11 which is the total
vector potential in the Coulomb gauge. This vector potential includes terms that depend on
the instantaneous current distribution throughout the Universe, i.e., it incorporates action
at a distance. The author’s attitude is that any quantity which involves action at a distance
is not physically “real”,12 and hence even the gauge-invariant part of the vector potential
should not be regarded as “real”.13

10In greater detail, weak radiation fields exist outside a time-varying solenoid (and toroid), which must
be considered in a full classical description. See, for example, [30, 32, 33].

11See, for example, sec. 2.1 of [35].
12The wave function of nonrelativistic quantum mechanics is such a quantity, and thus not “real” in the

author’s view.
13The Aharonov-Bohm effect involves action at a distance in terms of the vector potential as well as the

fields if one uses the Poincaré gauge [36].
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2.3 Comments

Suppose a voltmeter were connected to two points on the upper wire between resistors 1
and 2, as shown in the sketch below. The voltmeter loop is not coupled to the solenoid, so
there is no (or extremely little) EMF induced in this loop, and hence I1 = 0, and the meter
reading would be Vmeter = 0.

However, the difference between the scalar potential at points a and b is

Va − Vb ≈ Eφ

2π
, (25)

where φ is the azimuthal angle between the two points, recalling CEQ. (21). While the
meter does not read the difference in the scalar potential between the tips of its leads, the
result Vmeter = 0 is appealing in that we might näıvely expect the “voltage drop” to be zero
between points along a good/perfect conductor.

This leads some people to argue that the term “voltage drop” should not be defined as
the (unique) difference in the scalar potential V between two points (as done in this note),
but rather this term should have only the operational meaning as the value measured by a
voltmeter when connected to those two points. While possibly appealing in examples such
as the present, this usage renders the concept of “voltage drop” to be more a property of
the voltmeter (and the routing of its leads) than of the circuit it probes. See [4] for further
discussion.

In the present example,

Vmeter =

∫ b

a

E · dlleads = −
∫ b

a

E · dlloop containing R1 and R2. (26)

While some people designate the integral
∫ b

a
E · dl as a “voltage drop”, we advocate calling

this the EMF between points a and b, and that the “voltage drop” between points a and b
be reserved to mean simply Va − Vb, the difference in the scalar potential between the two
points [37].
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A Appendix: Kirchhoff’s Circuit Laws

In 1845, Kirchhoff (age 21) gave his circuit laws [38, 39] for a network of batteries and
resistors, as a generalization of Ohm’s law (1827) [40] that a circuit consisting of a battery
with electromotive force E and electrical resistance R supports and electric current I related
by E = IR. For example, in a circuit consisting of a single loop with several batteries and
several resistors, the circuit (loop) equation is

∑ E = I
∑

R.
Kirchhoff never applied his laws to time-dependent circuits, such as in Lewin’s example.14

14In 1857, Kirchhoff published two papers [41, 42] on the motion of electricity in wires, based on Weber’s
(action-at-a-distance) electrodynamics [43]. The consideration of a single wire by Kirchhoff followed the
practice of telegraphy at the time [44]-[48], in which only a single wire appeared to be involved, and the role
of the “ground”/“earth” as a return path to “complete the circuit” was not yet recognized, as were neither
the capacitance between the wire and “ground” nor the self inductance of the wire + “ground” circuit. The
kind of derivation of the “telegrapher’s equation” for a two-wire telegraph “line” found in textbooks today,
using Kirchhoff’s circuit laws, was first given by Heaviside in 1876 [52]. See also the Appendix of [49].

Weber followed Neumann (1845) [50] who had introduced the concept of mutual inductance M of two
circuits (but not the self inductance L of a single circuit), as well as the vector potential A. For example, the
magnetic flux Φ12 through circuit 1 due to current I2 in circuit 2 is related by Φ12 = M12I2 =

∫
B2 ·dArea1 =∮

A2 · dl1. We would add that the integral form of Faraday’s law then tells us that if current I2 varies with
time, a (scalar) EMF is induced in circuit 1 related by E12 = −Φ̇12 = −M12İ2. However, Neumann, Weber
and Kirchhoff did not say this, but rather emphasized the (vector) electromotive force (electromotorische
Kraft) of one current element on another, and that the (scalar) EMF on current element 1 due to changes
in current element 2 as E12 = −k12İ2, where k12 is a geometric factor.

Rather impressively, Kirchhoff [41] deduced a wave equation for the current and charge on current elements
(conductors), finding the wavespeed to be c = 1/

√
ε0μ0, where the constants ε0 and μ0 can be determined

from electro- and magnetostatic experiments (Weber and Kohlsrausch (1856) [51]), and the value of c was
close to the speed of light as then known. However, as Weber’s electrodynamics was based on action-at-a
distance, and was not a field theory in the sense of Faraday, Weber and Kirchhoff did not infer that, since
electric waves on wire moved at light speed, light must be an electromagnetic phenomenon.

We now consider that electromagnetic waves associated with conductors are almost entirely outside the
conductors, and that the wavespeed of surface charge and current densities matches the wave speed in the
medium outside the conductor, i.e., c in case of vacuum. Kirchhoff’s argument was the first demonstration
of the latter result, which holds for waves propagating parallel to the surface of a conductor of “any”
shape. In this sense, Kirchhoff did not deduce the “telegrapher’s equation” (due to Heaviside (1876) [52]) for
transmission lines based on two, parallel conductors, for which the wave speed is v = 1/

√
LC, where L and

C are the inductance and capacitance per unit length. This behavior is consistent with Kirchhoff’s result
because of a general (geometrical) “theorem” that LC = ε0μ0 = 1/c2 for a one-dimensional transmission
line, if dielectric effects can be ignored and the current flows only on the surface of the conductors. See, for
example, [53, 54, 55].

In [41], Kirchhoff discussed waves on a straight wire, and a circular wire loop of circumference = nλ (which
now finds application as a self-resonant loop antenna, particularly for n = 1; see, for example, sec. 2.2.2 of
[56]). An ingredient in his analysis was that the electromagnetic potentials V and A were subject to the
condition ∇ · A = (1/c)∂V/∂t (in Gaussian units), now known as the Kirchhoff gauge [57], the first-ever
use of a gauge condition. In Maxwell’s theory and in the Kirchhoff gauge, the potential V can be said to
propagate with imaginary velocity, ic [57].

Kirchhoff also gave an analysis [42] for straight wires similar to that of Thomson [58], that the potential
(and electric charge density) on a wire of length l with resistance R and capacitance C obeys the diffusion
equation d2V/dx2 = (RC/l2)dV/dx (which does not involve the constant c), when effects of self inductance
are ignored.
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A.1 Helmholtz

An early, important development of DC circuit theory was made by Helmholtz in 1853 [59],
when he discussed what is now called Thévinin’s theorem [60], that any complicated but
“linear” circuit is equivalent to a single source of electromotive force and a single resistance
(or impedance in case of time-dependent circuits,15 which were not considered by either
Helmholtz or Thévinin).16

Joule (1841) [63] had established that a current I through a resistor R generates heat at
the rate I2R whether or not I is constant, as an example of conservation of energy.17

Perhaps the first quantitative study of time-dependent electrical circuits was reported by
Weber in 1846, sec. 14 of [43], who measured the characteristic time of the discharge of a
capacitor (Leyden jar) through a resistor, without offering any theoretical analysis of this
phenomenon.

In 1847, Helmholtz, p. 43 of [65], p. 142 of [66], considered the heat generated by the
discharge of a capacitor C and argued that the initial (potential) energy of the capacitor
was Q2/2C , where Q is the charge on one if its electrodes. He also considered the effect of
a moving magnet on an electrical circuit, p. 64 of [65], p. 158 of [66], using conservation of
energy to deduce a circuit equation, although this is for a phenomenon beyond the scope of
Kirchhoff’s laws (which apply to circuits “at rest”). Helmholtz did not consider the case of
a circuit with self induction at this time.

In 1850, Helmholtz studied the propagation of electrical signals in nerves, modeling this
as a resistor and a coil/inductor. When a sharp rise in electric potential was applied to this
circuit, the current took a characteristic time to approach its asymptotic value. Helmholtz
reported experimental results in [67, 68], and gave perhaps the first-ever time-dependent
circuit analysis in [69]. He did not derive a circuit equation, but simply stated a hypothesis
(Voraussetzung), p. 510 of [69], to be confirmed (or not) by experiment, that Ohm’s law
would be modified by the presence of the coil to read, Helmholtz’ eqs. (2)-(3),

IR = E − L
dI

dt
, I =

E
R

(
1 − e−Rt/L

)
, (27)

where I is the current, which is zero at time t = 0 when electromotive force E is applied
to the circuit that has resistance R and self-inductance L.18 The data agreed well with
this model, which can be said to provide the first extension of Ohm’s law/Kirchhoff’s loop
equation to a time-dependent circuit.

A.2 Thomson

In 1848-1853, W. Thomson [70, 71, 72, 73, 74] addressed Weber’s experiments [43] on the
discharge of a capacitor through a resistor, advocating consideration of conservation of en-

15The term impedance was introduced by Heaviside in 1886 [61].
16For historical comments on Helmholtz, Thévinin and others, see [62].
17This followed the much earlier demonstration of the mechanical equivalent of heat by Rumford [64].
18Helmholtz called the self inductance the Potential P , following Neumann [50], who invented the notion

of self inductance, and apparently was consulted by Helmholtz during these studies. Helmholtz may have
been the first to state that a changing current in a loop generates an EMF given by −Lİ , although this
result was implicit in Neumann’s work [50].
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ergy.
Thomson argued [73], following remarks by Faraday [75], that if the circuit carries current

I , it is also associated with a kind of “kinetic” energy equal to LI2/2, where L is the
self inductance of the circuit. Then, as the capacitor discharges, its (potential) energy is
transformed into “kinetic” energy plus heat, according to eq. (2) of [73],

− d

dt

Q2

2C
=

d

dt

LI2

2
+ I2R, I =

dQ

dt
, 0 = Lİ + IR +

Q

C
. (28)

Thomson noted that if the self inductance is negligible, the circuit equation becomes

I =
dQ

dt
= −RC, I = I0 e−t/RC, (29)

while in general the current exhibits a damped oscillation, with frequency approximately
1/
√

LC for small R.

A.3 Maxwell

Thomson did not consider the case of an R-L-C circuit with an impressed EMF (such as
a battery or electric generator), which may have first been done by Maxwell in 1868 [76].
Maxwell actually analyzed a coupled R-L-C circuit, shown below,19 which was driven by the
generator on the left, while P labels the potential difference Q/C across the capacitor, and
p is a resistor (not an inductor).

Maxwell simply stated without justification that the circuit equations are

P =
Q

C
= IyRp, C

dP

dt
=

dQ

dt
= Ix − Iy, −E + IxR + L

dIx

dt
+

Q

C
= 0, (30)

where our −E is Maxwell’s Mn cos nt, the electromotive force of the electromechanical gen-
erator. The third of eq. (30) is Kirchhoff’s loop equation as we know it today, for the left
loop of the above circuit. Since Maxwell was a disciple of Thomson, we infer that Maxwell
deduced the loop equation following Thomson’s energy method.

19This may be the first figure in which circuit elements were depicted (somewhat) abstractly, rather than
realistically. At this time, leading French artists were moving from realism to impressionism.
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Maxwell discussed Kirchhoff’s relations for circuits with only batteries and resistors in
Art. 282 of his Treatise (1873) [77]. He considered an R-C circuit (with no battery) in
Art. 355, noting that both of these circuit elements have the same electric potential difference
V across them,

V =
Q

C
= IR, I = −dQ

dt
,

dQ

dt
= − 1

RC
, Q = Q0 e−t/RC (Maxwell). (31)

where Q is the charge on one of the electrodes of the capacitor and I is the current through
the resistor. Maxwell’s analysis of Art. 355 was not quite the same as would follow from a
generalization of Kirchhoff’s loop equation to include a capacitor, as that would read

0 = IR +
Q

C
, I =

dQ

dt
,

dQ

dt
= − Q

RC
, Q = Q0 e−t/RC (Kirchhoff). (32)

While the final result is the same, the logic of the two analyses is somewhat different.
Maxwell considered R-L circuits via a Lagrangian (energy) method in Arts. 578-583 of

[78] (which suggests that he had also used this method in [76]). This has the advantage
of clarifying how the changes in energy associated with the mutual inductances between
multiple circuits appear in the various loop equations. Maxwell did not include capacitance
in his Lagrangian analysis, but simply added the capacitative EMF , Q/C, to the circuit
equations in specific examples, including R-L-C circuits in Arts. 778-779, and an R-C circuit
in Art. 780 (where the analysis was as in our eq. (32)).

Thus, Kirchhoff’s laws for R-L-C circuits as still used today appeared in Maxwell’s
Treatise, although not identified there with Kirchhoff.

A.4 Applicability of Kirchhoff’s Loop Equations

The energy methods of Helmholtz, Thomson and Maxwell clarify that the terms in Kirch-
hoff’s loop equations are EMF ’s, and not necessarily “voltages”.

It is common practice to associate the terms of the loop equations with “circuit elements”,
such as batteries, generators, resistors, capacitors and inductors. While use of Kirchhoff’s
laws permits computation of the currents, identifying where the associated EMF ’s are lo-
cated is not always crisp, and interpreting measurements of currents by “voltmeters” can lead
to misinterpretations of the results if one supposes that “voltmeters” measure “voltages”.

This issue is particularly acute if some loops have magnetic flux that is not contained in
a small coil of the “wire” of that loop. In Lewin’s example, the magnetic flux in the primary
solenoid may well be within a small coil, but the secondary consists of only a single “turn”,
so the associated inductive EMF is not well localized, but rather is distributed around the
entire secondary loop. Then, since inductive EMF ’s are associated with a vector potential,
rather than a scalar potential, it can be misleading to interpret the inductive EMF as related
to a “voltage”.

As Kirchhoff’s loop equation including capacitors and inductors is deduced from consid-
erations of energy conservation, it has rather general application.

However, if the circuit involves energy in other forms than Joule heating, and the “poten-
tial” and “kinetic” energies stored in the capacitors and inductors, one must proceed with
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care. An important case of this type is a circuit (antenna) that emits radiation which travels
away from the circuit (called the “waste” by Heaviside [79]).

A tacit assumption of Kirchhoff’s equation is that the current is the same in all elements
of the circuit if it consists of only a single loop. This is not the case at very high frequencies,
where the wavelength is smaller than the size of the circuit.

Even in these cases one can make a Thévinin-equivalent analysis with respect to two
terminals, so long as their spacing is small compared to a wavelength. Then, the circuit
can still be described as having an effective impedance, which permits use of Kirchhoff’s
laws. Of course, computation of the effective impedance requires techniques beyond those
of Kirchhoff.

Lewin’s circuit is within the range of applicability of Kirchhoff’s loop equations, which
can be used to predict measurements by the “voltmeters” in the experiment. However,
this case highlights the fact that “voltmeters” actually measure the current inside them, and
interpreting their measurements as being proportional to the “voltage drop” along a segment
of the test circuit is not valid, in general.
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