Entries by Micromass

Some Misconceptions on Indefinite Integrals

Integration is an incredibly useful technique taught in all calculus classes. Nevertheless, there are certain paradoxes involved with integration that are not easily solved. At least, I asked in my topology class whether anybody could resolve the paradox, and nobody found the correct answer. The first paradox arises in the following integral: [tex]\int \frac{1}{x} dx…

How to Self Study Abstract Algebra

There are three big parts of mathematics: geometry, analysis, and algebra. In this insight, I will try to give a roadmap towards learning basic abstract algebra for self-study. This includes the study of groups, ring fields, and many other structures. Abstract Algebra Prerequisites The requirements for self-studying abstract algebra are surprisingly low. You should be…

An Interesting Ramsey Theory Riddle

Ramsey theory has its origins in a very nice riddle Consider a party of 6 people. Any two of these 6 will either be meeting each other for the first time (in which case they are strangers), or they will know each other (in which case they are friends). Show that in this party of…

How to Self Study Intermediate Analysis Math

If you wish to follow this guide, then you should know how to do analysis on ##\mathbb{R}## and ##\mathbb{R}^n##. See my previous insight if you wish to know what kind of topics you need to know and for suggestions of books: https://www.physicsforums.com/insights/self-study-analysis-part-intro-analysis/ Also in many parts, you should be comfortable with linear algebra, see my…

How to Self Study Linear Algebra for Students

In this insight, I will give a roadmap to learn the basics of linear algebra for students. Aside from calculus, linear algebra is one of the most applicable subjects of all of mathematics. It is used a lot in engineering, sciences, computer sciences, etc. The right way to see linear algebra is with a focus…

Am I Cut Out for Mathematics or Sciences?

We often get threads from new members asking whether they are cut out for mathematics/physics/engineering/whatever. For some reason, they have become discouraged in high school and don’t think they can make it. I am using this insight to provide an answer to those questions. 1. My IQ is too low This is a very common…

How to Self Study Geometry for Students

Geometry is one of the oldest parts of mathematics. It has been studied and advanced by the greatest minds humankind has to offer. It has been described as a subject of great beauty. How do we approach such an amazing work of art as a student? In this section, I will attempt to give you…

Things Which Can Go Wrong with Complex Numbers

At the first sight, there are many paradoxes in complex number theory. Here are some nice examples of things that don’t seem to work: Example A [itex]-1=i^2=\sqrt{-1}\cdot\sqrt{-1}=\sqrt{(-1)(-1)}=\sqrt{1}=1[/itex] Example B We know that [itex]\sqrt{-1}=i[/itex]. But at the same time, we have [tex]i=\sqrt{-1}=(-1)^\frac{1}{2}=(-1)^\frac{2}{4}=[(-1)^2]^\frac{1}{4}=1[/tex] Example C Eulers identity tells us that [itex]e^{2\pi i}=1[/itex]. So [itex]\log(1)=2\pi i[/itex], but at…

Learn Axioms for the Natural Numbers

** Bloch Chapter 1.2 The Peano system in Bloch has a special element ##1\in \mathbb{N}##. The intuitive idea here is that ##\mathbb{N} = \{1,2,3,…\}##. However, we can also present much of the same material if we instead choose ##\mathbb{N} = \{0,1,2,3,…\}##. The axioms for this remain the same: A Peano system is a set ##\mathbb{N}## with…

An Intro on Real Numbers and Real Analysis

It is important to realize that in standard mathematics, we attempt to characterize everything in terms of sets. This means that notions such as natural numbers, integers, and real and rational numbers are defined in mathematics to be certain sets. Also, the very notion of a function is defined as a set. Why is this…

How to Self-Study Basic High School Mathematics

  Introduction We often get questions here from people self-studying mathematics. One of those questions is what mathematics should I study and in what order. So to answer those questions, I have decided to make a list of topics a mathematician should ideally know and what prerequisites the topics have. Basic stuff Of course, we…

A Guide to Self Study Calculus

  We often get questions here from people self-studying mathematics. One of those questions is what mathematics should I study and in what order. So to answer those questions, I have decided to make a list of topics a mathematician should ideally know and what prerequisites the topics have. Calculus After high school stuff comes…

The Essential Guide to Self Study Mathematics

  How to self-study mathematics? People self-study mathematics for a lot of reasons. Either out of pure interest, because they want to get ahead, or simply because they don’t want to take formal education. In this guide, I will try to provide help for those people who choose to self-study mathematics. Is it even possible…

Dealing with Doubt as a Science Student

Doubt, as odd as this may sound, can be essential to our living.  We all make decisions and later have questions on whether we made the right choice or not so doubt will help influence our next decision when it comes to the same question or choice.  While doubt is a natural part of the…

Informal Introduction to Cardinal Numbers

Cardinal numbers We will now give an informal introduction to cardinal numbers. We will later formalize this by using ordinal numbers. Informally, cardinal numbers are “numbers” that measure the cardinality of a set. So for every set, we can introduce a cardinal number of this set. Let’s start with finite sets, cardinal numbers here are…

The Best Methods to Deal with Procrastination

It’s 6:30 in the morning. You’ve just woken up and you feel so sleepy you think to yourself “A few more minutes can’t hurt.” And so you drift on to sleep under your warm comforter. The sounds of kids playing outside, mixed with the sunlight and birds chirping at your window wakes you up three hours later….

Learn the Top 5 Misconceptions About Infinity

Introduction Understanding the behavior of infinity is one of the major accomplishments of mathematics. Sadly, the infinite is often misunderstood and could lead to various paradoxes when used or interpreted the wrong way. This FAQ attempts to explain the role of infinity in mathematics and tries to resolve a few apparent paradoxes. 1. Infinity is…

Is There a Rigorous Proof Of 1 = 0.999…?

Yes. First, we have not addressed what 0.999… means. So it’s best first to describe what on earth the notation [tex]b_0.b_1b_2b_3…[/tex] means. The way mathematicians define this thing is [tex]b_0.b_1b_2b_3…=\sum_{n=0}^{+\infty}{\frac{b_n}{10^n}}[/tex] So, in particular, we have that [tex]0.999…=\sum_{n=1}^{+\infty}{\frac{9}{10^n}}[/tex] But all of this doesn’t make any sense until we define what the right-hand side means. There is…

The History and Concept of the Number 0

The goal of this FAQ is to clear up the concept of 0 and specifically the operations that are allowed with 0. The best way to start this FAQ is to look at a bit of history A short history of 0 Historically, there are two different uses of zero: zero as a placeholder and…

Is Zero a Natural Number?

Using: Anderson-Feil Chapter 1.1 Is zero a natural number? This is a pretty controversial question. Many mathematicians – especially those working in foundational areas – say yes. Another good deal of mathematicians say no. It’s not really an important question, since it is essentially just a definition and it matters very little either way. I…