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C H A P T E R

3 Plunging1

Edmund Bertschinger & Edwin F. Taylor *

Ever since Francis Bacon, it had been believed that the laws of2

Nature were there to be “discovered,” if only one made the3

right experiments. Einstein taught us differently. He stressed4

the vital role of human inventiveness in the process. Newton5

“invented” the force of gravity to explain the motion of the6

planets. Einstein “invented” curved spacetime and the7

geodesic law [that describes the path of a free particle]; in his8

theory there is no force of gravity. If two such utterly different9

mathematical models can (almost) both describe the same10

observations, surely it must be admitted that physical theories11

do not tell us what nature is, only what it is like. The marvel12

is that nature seems to go along with some of the “simplest”13

models that can be constructed in the context of various14

mathematical formalisms.15

— Wolfgang Rindler16

1 GOING STRAIGHT17

“Go straight!” spacetime shouts at the stone.18

The stone’s wristwatch verifies that its path is straight.19

All the exotic talk about curved spacetime near stars and black holes leaves us20

unprepared for a revelation about motion right at home: Schwarzschild21

geometry correctly describes the motions of footballs and stones near Earth’s22

surface. Even more surprising: Analyzing trajectories of near-Earth objects23

using Schwarzschild geometry prepares us to go back and describe trajectories24

around stars, white dwarfs, neutron stars, and black holes.25

Throw a stone and let it fall back to Earth. In the uniform gravity nearWhy the particular
parabolic path?

26

Earth’s surface the stone follows a parabolic path in space, tracing out the27

solid curve in the diagram in the left panel of Figure 1. At the beginning and28
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2 Chapter 3 Plunging

FIGURE 1 Parabolic path of a stone (solid line, left panel) connecting launch
(Event 1) and impact (Event 2). Dashed lines show alternative spatial paths between
these two events, alternatives that the stone does not take. On the right is a free-fall
frame that rises and falls with the stone. With respect to this inertial frame, the stone
follows a straight path (solid line, right panel). Plotting its motion as a function of
time yields a straight worldline (Figure 2).

end of this path fix two events in space and time: Event 1, initial launch;29

Event 2, final impact. Why does the stone follow the particular path in space30

between Event 1 and Event 2, shown as a solid curve in Figure 1? Why not31

hurry faster along a higher, longer parabolic path, the upper dashed line in the32

figure, to get back in time for the appointed impact? Or move slower along a33

lower, shorter parabolic path, the lower dashed line? Why not take some34

entirely different trajectory between these two events? What command does35

spacetime give to the stone telling it how to move?36

Spacetime shouts, “Go straight!” The free stone obeys. What doesSpacetime to stone:
“Go straight!”

37

“straight” mean? Straight with respect to what? We know the answer: The38

path of the stone is straight in all local free-fall (inertial) frames. Ride in an39

inertial frame that rises and falls vertically in concert with the stone, as shown40

in the right-hand panel of Figure 1. With respect to the free-fall frame the41

stone moves on a straight path during the entire trip between launch (Event 1)42

and impact (Event 2). None of the alternative trajectories on the left panel43

would be straight in the right panel.44

Not only must the trajectory of a free stone be straight in an inertial“Straight” means
a straight worldline.

45

frame, but the stone must also move with constant velocity as measured in46

that frame. Figure 2 shows a plot of the position of the stone (horizontal axis)47

as time passes (vertical axis). The straight line in spacetime traced out by the48

moving stone is a worldline (Chapter 1, page 7). Constant velocity results in49

a straight worldline. “Follow a straight worldline in an inertial frame!” is the50

command by which spacetime grips mass, telling it how to move. No51

instruction could be simpler.52

During the trip between Event 1 and Event 2 in Figure 2, the stone’s53

wristwatch ticks off intermediate events along the worldline (event-points on54

the straight worldline of Figure 2).55
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FIGURE 2 Spacetime diagram of the stone’s worldline in the inertial frame that
rises and falls with the stone (right diagram of Figure 1). This worldline is straight
between launch (Event 1) and impact (Event 2). Intermediate clock ticks are shown as
event-points along the worldline. Curved dashed lines between Events 1 and 2 represent
alternative worldlines of smaller aging, alternative worldlines that the stone does not
take.

How is the straight worldline different from all other possible worldlines56

that connect Event 1 and Event 2 (dashed lines in Figure 2)? We know the57

answer to that question too, from the Principle of Maximal Aging in flat58

spacetime: The actual worldline has the longest total wristwatch time of all59

possible worldlines between fixed events in an inertial frame. The free stone60

progresses uniformly from one event to the other, without jerks, jolts, or any61

other kind of acceleration, thereby recording the longest possible time on itsNatural motion has
maximum wristwatch
time: maximum aging.

62

wristwatch between these two end-events. In contrast, a frantic traveler63

starting at the same Event 1 races at near-light speed to the Moon, then64

streaks back in time for obligatory Event 2. The frantic traveler’s wristwatch65

reads less elapsed time between Events 1 and 2 than does the wristwatch of66

the relaxed stone. The essential lesson of the twin “paradox” (Section 4 of67

Chapter 1) is that the natural motion between two events has maximum68

wristwatch time in an inertial frame.69

No frantic trip as far as the Moon is necessary to demonstrate the basic70

principle: any deviation whatsoever from the straight worldline, no matter71

how small, leads to a shorter elapsed wristwatch time. The stone’s wristwatch,72

accurate beyond all human timepieces, detects this difference and traces out73

the worldline of maximum wristwatch time. Wonder of wonders, the stone74

sniffs out and follows the worldline of maximum proper time without any75

wristwatch at all! How? Simply by going straight in inertial spacetime. AndWristwatch time is
an invariant, the same
for all observers.

76
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BOX 1: More About the Black Hole
The term “black hole” was adopted in 1967 (by John
Wheeler), but the concept is old. As early as 1783, John
Michell argued that light must “be attracted in the same
manner as all other bodies” and therefore, if the attracting
center is sufficiently massive and sufficiently compact, “all
light emitted from such a body would be made to return
toward it.” Pierre-Simon Laplace came to the same conclusion
in 1795, apparently independently, and went on to reason that
“it is therefore possible that the greatest luminous bodies in
the universe are on this very account invisible.”

Michell and Laplace used Isaac Newton’s “action-at-a-
distance” theory of gravitation in analyzing escape of
light from or its capture by an already existing compact
object. (See “BOX 4. Newton Predicts the Black Hole?”.)
But is such a static compact object possible? In 1939, J.
Robert Oppenheimer and Hartland Snyder published the
first detailed treatment of gravitational collapse within the
framework of Einstein’s theory of gravitation. Their paper
predicts the central features of nonspinning black holes
described in this book.

Ongoing theoretical study has shown that the black hole is
the result of natural physical processes. A nonsymmetric
collapsing system is not necessarily blown apart by its
instabilities but can quickly—in seconds!—radiate away its
turbulence as gravitational waves and settle down into a
stable structure. In its final form a black hole has three
properties and three properties only: mass, charge, and
angular momentum. No other property remains of anything
that combined to form the black hole, from pins to palaces.
This absence of all detail beyond these three properties has
led to the saying (also by Wheeler) “The black hole has no
hair.”

An uncharged nonspinning black hole is completely described
by the Schwarzschild metric, derived in 1915 by Karl

Schwarzschild from Einstein’s equations for general relativity.
The energy of a nonspinning black hole is not available for
use outside its horizon. For this reason, a nonspinning black
hole is called a “dead black hole.”

In contrast to the spinlessness of a dead black hole, the
typical black hole, like the typical star, has a spin, sometimes
a great spin. The energy stored in this spin, moreover, is
available for doing work: for driving jets of matter and for
propelling a spaceship. In consequence, the spinning black
hole deserves and receives the name “live black hole.” It has
an angular momentum of its own.

A spinning black hole—or any spinning mass—drags around
with it spacetime in its vicinity (see Project 7, The Spinning
Black Hole). Near the Earth it is a small effect and has not
yet been unambiguously measured directly. Theory predicts
that near a rapidly-spinning black hole, the such effects can
be large, even irresistible, dragging along nearby spaceships
no matter how strong their rockets.

Black holes in Nature appear to be divided roughly into two
groups: Some have several times the mass of Sun. Others are
monsters with millions—even billions—of times the mass of
our Sun and are typically located near the centers of galaxies,
where a concentration of matter helps them grow.

Roy P. Kerr derived a metric for an uncharged spinning
black hole in 1963, followed in 1967 by a more convenient
global coordinate system devised by Robert H. Boyer and
Richard W. Lindquist. In 1965 Ezra Theodore Newman
and others solved the Einstein equations for the spacetime
geometry around an electrically charged spinning black hole.
Subsequent research has proved that around a steady-
state black hole of specified mass, charge, and angular
momentum, Kerr-Newman geometry is the only solution to
Einstein’s field equations.

the wristwatch time is proper time, an invariant, with the same value as77

observed in any frame, and verified by direct observation by anyone.78

Figures 1 and 2 reflect the fact that, for slow speed and weak gravitational79

interaction, Newton’s mechanics correctly describes the contrast between a80

straight worldline in spacetime and a curved path in space. So what’s new81

about relativity? Einstein says that you can do away entirely with Newton’sEinstein: Gravity
is fictitious!

82

gravitational force. Gravity is fictitious in the sense that you can eliminate it83

locally by dropping into a free-fall frame.84
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2 PRINCIPLE OF MAXIMAL AGING85

Try all possible worldlines across two adjoining patches.86

The free stone chooses the worldline of maximal aging.87

The Principle of Maximal Aging was introduced in special relativity, where itHow to apply the
Principle of Maximal
Aging to curved
spacetime?

88

applies to entire worldlines in flat spacetime. In contrast, curved spacetime is89

effectively flat only on local patches, which must be tiled together for a global90

span. We change the Principle of Maximal Aging as little as possible in curved91

spacetime by applying it across each pair of adjoining flat patches.92

Principle of Maximal Aging (curved spacetime): The93

worldline that a free stone takes across two adjoining spacetime94

patches is the worldline for which the total wristwatch time (the95

total aging) across the two patches is a maximum.96

The Principle of Maximal Aging determines the worldline across every pair ofGeneral relativity
stitches together
“quilt squares” of
local patches.

97

adjoining patches in curved spacetime. Curved spacetime can be completely98

tiled with adjoining patches, so the stone learns—step by step—how to move99

globally in curved spacetime. General relativity stitches together local quilt100

patches into a full quilt that spans global regions of spacetime.101

Suppose that the stone rebels; let it disobey the command issued by102

spacetime to follow the worldline of maximal aging across adjoining patches.103

Or more realistically, think of an external experimenter who grasps the stone104

and forces it to move along a worldline that it would not freely follow. This105

rebellion, this deviation from the natural, is partial: the stone is present at the106

two obligatory events at the leading edge of the first patch and at the final107

edge of the second patch. However, the rebel stone does not keep its108

appointments with the intermediate events along the standard, the natural,109

the actual worldline of the free stone. Perhaps it moves slower than normal110

between adjacent points on parts of the spatial path and faster than normal on111

other parts. Or perhaps it wanders off the spatial path entirely, taking some112

other trajectory. Nevertheless, its wristwatch continues conscientiously to tick113

off wristwatch time—accumulated aging—along this alternative worldline. In114

due course the stone arrives at the obligatory final event. The stone’s penalty115

for its errant behavior? A mild punishment! At the end-event on the second116

patch the stone’s wristwatch will read less time than it would if it had obeyed117

the command of spacetime. The errant stone’s aging for this segment of118

worldline will not be maximal among all possible worldlines between initial119

and final events on the adjoining patches.120

The disobedient stone shows us how to predict—simply, accurately,Pick the actual
worldline: the one
with maximal
wristwatch time.

121

powerfully—the worldline of any test object moving freely across adjoining122

patches of spacetime, no matter whether the spacetime region is curved or flat.123

The recipe could hardly be simpler: “Behave like a large number of rebellious124

stones!” Each rebellious stone follows a different worldline from initial event to125

final event. Compute the aging along each alternative worldline—the sum of126

incremental wristwatch times between each pair of adjacent events along the127
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BOX 2: THE PRINCIPLE OF MAXIMAL AGING IS OK IN CURVED SPACETIME
We know that the stone follows the Principle of Maximal
Aging in flat spacetime (Chapter 1). But why does it follow the
Principle of Maximal Aging in curved spacetime? Because the
stone thinks it is always in flat spacetime! Picture the stone
from instant to instant, always in the center of a flat patch,
with Cartesian coordinates making it a frame. In this frame the
stone does the most natural thing possible: it moves straight
in space at constant speed—that is, on a straight worldline.
In Newton’s words, the stone “perseveres in its state of being
at rest or of moving uniformly straight forward . . .” What could
be simpler?

Are we satisfied with this description of the stone’s motion:
“go straight in the local free-fall frame”? No, we want more;
we want to find the global motion of the stone entirely around
Earth or black hole. To start toward that goal we track the
stone across any two adjoining local frames each of which
is small enough to be effectively flat. We vary the time of
crossing between frames to maximize the total time across
both of them measured on the stone’s wristwatch. The result
is a quantity that has the same value across each adjoining

frame—a constant of the stone’s motion. These two adjoining
frames could be anywhere outside the horizon of a black
hole. Therefore the resulting expression is correct anywhere
in that space and for all time.

How do we know that the constant of motion we identified
is the energy of the stone and not some other quantity?
Because it reduces to the expression for energy in flat
spacetime when we let the mass M of the black hole goes to
zero.

Is there any circumstance in which the Principle of Maximal
Aging does not work to find the motion of the stone? Yes,
when the space curvature changes significantly from one
part of the stone to another. Then there is no patch small
enough so that the stone is effectively in a flat region of
spacetime. Where in the Universe will that happen? At the
singularity in a black hole, where space curvature increases
without limit.

candidate worldline. Among all these candidates, select the worldline with128

maximal aging. The maximal-aging worldline is the one taken by the real129

stone, the stone moving freely between fixed initial and final events.130

Your theory is fundamental and interesting—and useless! How can we131

predict the motion of the stone if we need to know from the beginning the132

“fixed” final event on the worldline—the place and time of impact? The133

location of that final event is just what the laws of motion are supposed to134

TELL us: Given the launch point and the initial velocity, where will the135

projectile impact? Usually we don’t even care WHEN it reaches that point.136

For such an analysis, your prescription is useless.137

No, not useless. Think of trapshooting (or skeet shooting), a sport in which138

we fire buckshot pellets at a ceramic target (“clay pigeon”) launched by a139

spring. We know the trajectory of the clay pigeon in advance, or we can140

predict this trajectory. Hitting the clay pigeon requires taking account of141

both location and time of impact between shot and clay pigeon. The tight142

packet of shotgun pellets must cross the trajectory of the clay pigeon143

WHEN the clay pigeon is at that particular point in space. In brief, fix both144

the space and time location of a final impact event. The initial launch event145

is the firing of the shotgun. Think of a computer program that selects146

spacetime events of launch and impact, tries out various alternative147

worldlines between the two events, selects the worldline of maximal aging,148
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BOX 2. What Then Is Time?
What then is time? If no one asks me, I know what it is. If I
wish to explain it to him who asks me, I do not know.

The world was made, not in time, but simultaneously with
time. There was no time before the world.

—St. Augustine (354–430 C.E.)

Time takes all and gives all.

—Giordano Bruno (1548–1600 C.E.)

Everything fears Time, but Time fears the Pyramids.

—Anonymous

Philosophy is perfectly right in saying that life must be
understood backward. But then one forgets the other
clause—that it must be lived forward.

—Søren Kierkegaard

As if you could kill time without injuring eternity.

Time is but the stream I go a-fishing in.

—Henry David Throeau

I do not define time, space, place and motion, [because they
are] well known to all.

—Isaac Newton

Time is defined so that motion looks simple.

—Misner, Thorne, and Wheeler

Nothing puzzles me more than time and space; and yet
nothing troubles me less, as I never think about them.

—Charles Lamb

Either this man is dead or my watch has stopped.

—Groucho Marx

“What time is it, Casey?”

“You mean right now?”

—Casey Stengel

It’s good to reach 100, because very few people die after 100.

—George Burns

Time is Nature’s way to keep everything from happening all at
once.

—Graffito, men’s room, Pecan St. Cafe, Austin, Texas

What time does this place get to New York?

—Barbara Stanwyck, during trans-Atlantic
crossing on the steamship Queen Mary

and specifies for us the aiming direction (for a given muzzle velocity) to149

achieve a hit in terms of the specified events of launch and impact. In some150

cases this procedure can be more useful than the common analysis that151

starts from initial conditions and predicts subsequent motion. However,152

one can also do it your way: The following section uses the Principle of153

Maximal Aging to derive the expression for energy in curved Schwarzschild154

geometry. This result helps to carry out the more conventional analysis155

(“predict subsequent motion from data on initial position and velocity”).156

3 ENERGY IN SCHWARZSCHILD MAP COORDINATES157

Maximal Aging derives energy as a constant of motion.158

This section reveals a new expression for the energy of a free stone, in159

particular a constant of motion for a stone falling radially toward a160

nonspinning black hole. In Chapter 1 (page 10), we derived the expression forEnergy: constant
of motion

161

energy in flat spacetime. Our present derivation extends this analysis to curved162

spacetime near a nonspinning black hole. The leap forward is not as great as163
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you might think: Instead of a global flat coordinate system, our new analysis164

uses two flat patches stacked radially on top of one another. Figure 3 shows165

the space part of these two patches: higher Patch H and lower Patch L. The166

time part of each (spacetime) patch is the lapse of map time it takes for the167

plunging stone to cross that patch. As it enters Patch H the stone emits a flash168

at event labeled P. It emits a second flash (event K) at the boundary between169

Patches H and L. As it leaves Patch L, the stone emits a final flash at Q.170

Our goal is to divide up the stone’s total fixed map time between the twoFind maximal aging:
find natural motion.

171

patches so as to maximize the total wristwatch time (aging) across both172

patches.173

What is going on? Who cares how much time the stone spends on upper174

Patch H or on lower Patch L? What does map time have to do with175

wristwatch time, anyway? Don’t throw a lot of equations at me before176

explaining your goal and the strategy you use to reach this goal!177

Good advice. Here is the big picture as previewed in Interlude 3, The178

Patch: First, there are two different times in the analysis, which need to be179

distinguished: Schwarzschild map time and stone wristwatch time.180

Second, to satisfy the Principle of Maximal Aging we want the stone’s181

wristwatch to read the maximum total elapsed time as it crosses the two182

patches. We watch the stone enter at the top of the higher Patch H and183

exit from the bottom of lower Patch L. We choose to fix these entrance and184

exit events in both space and time in Schwarzschild map coordinates.185

Now, we know that a clock at rest runs faster at a higher altitude r̄H than at186

a lower altitude r̄L (Chapter 2, page 00), where the bar indicates the187

average radius of each patch. So a possible strategy for the stone is simply188

to stop on higher Patch H and let its wristwatch accumulate as much time189

as possible. But if the stone does that, it must zip across lower Patch L at190

high speed in order to reach the fixed exit event at the required (map) time.191

And that is the problem: We know that a super-fast wristwatch runs slow.192

While moving at high speed across lower Patch L the stone’s slowed193

wristwatch will lose some of the extra time it built up while at rest in upper194

Patch H.195

In practice the stone moves so as to compromise the two effects: Move196

slower in higher Patch H to in order to spend extra time at the higher radius197

where its wristwatch runs fast. Move faster in order to spend less time on198

lower Patch L where its wristwatch runs slower—but not so fast that199

speed-related clock slowing cancels the extra time built up on higher Patch200

H. Choose actual time of the intermediate event—Event K in Figure 3—to201

maximize the total wristwatch time across the two patches, thus satisfying202

the Principle of Maximal Aging.203

We find the maximum aging by varying the map time of intermediate204

event K while keeping fixed all other space and time coordinates of events P,205

K, and Q. Maximum aging leads to an expression for a quantity that remains206

constant as the stone falls. That constant of motion is the energy of the stone.207
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FIGURE 3 Deriving the expression for energy in Schwarzschild geometry using the
Principle of Maximal Aging. The plunging stone crosses higher Patch H, then lower
Patch L, emitting flashes at events P, K, and Q. Vary the relative times of transit across
Patches H and L by varying the time of intermediate event K. Use this variation to
maximize the total aging across both patches between fixed events P and Q. The result
is an expression for energy as a constant of motion.

The Schwarzschild metric for a radially plunging stone (dφ = 0) tells us208

the relation between advance dτ of its wristwatch time and change of map209

time and radius: (#Schwarz)210

dτ2 =
(

1− 2M
r

)
dt2 − dr2

1− 2M
r

(radial plunge) (1)

The following analysis examines the wristwatch time and SchwarzschildApproximating the
Schwarzschild metric

211

map time separations between events P, K, and Q. For simplicity, replace the212

differentials dτ and dt with symbols τ and t, respectively. We make this213

replacement to facilitate the maximization of wristwatch time below. Strictly214

speaking, replacing coordinate differentials by finite quantities is illegal in215

curved spacetime. But it is okay on each single patch, defined to be a region216

small enough that curvature effects are negligible. At the end we will return to217

strictly correct differential notation.218

Let T represent the fixed total Schwarzschild map time for the stone to219

cross both patches and t represent the map time for the stone to cross Patch220

H. Then the stone takes map time T − t to cross Patch L. In the following we221

vary time t to maximize the stone’s total wristwatch time across both patches.222

The symbol r̄H represents an average radius of higher Patch H and r̄L an223

average radius of lower Patch L. (The kind of average does not matter because224

ultimately we go to the differential limit of narrow radial patch dimension,225

squeezing every average to the resulting single radial coordinate.)226
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As long as Patches H and L and transit times t and T − t are very small,Wristwatch time
(aging) across
each patch.

227

we can use approximate forms of the Schwarzschild metric (1). We will also be228

interested only in the parts of the metric that contain the variable t, because229

we will be taking a derivative with respect to this time. The stone’s wristwatch230

times τH and τL (aging) while passing across higher and lower patches can231

then be written: (#tauA)232

τH =
[(

1− 2M
r̄H

)
t2 + (terms without t)

]1/2
(2)

and (#tauB)233

τL =
[(

1− 2M
r̄L

)
(T − t)2 + (terms without t)

]1/2
(3)

To prepare for the derivative that leads to maximal aging, take the derivative234

of τH with respect to t : (#dtauAdt)235

dτH
dt

=

(
1− 2M

r̄H

)
t[(

1− 2M
r̄H

)
t2 + (terms without t)

]1/2 =
(

1− 2M
r̄H

)
t

τH
(4)

The corresponding expression for dτL/dt is: (#dtauBdt)236

dτL
dt

= −

(
1− 2M

r̄L

)
(T − t)[(

1− 2M
r̄L

)
(T − t)2 + (terms without t)

]1/2 = −
(

1− 2M
r̄L

)
T − t
τL

(5)
Add the two wristwatch times to obtain the total wristwatch time between237

first and last events P and Q: (#TotalTau)238

τtotal = τH + τL (6)

The Principle of Maximal Aging says that the natural motion yields aMaximize
total aging.

239

maximum for the total wristwatch time τtotal (total aging) across the two240

patches. To find this maximum, take the derivative of both sides of (6) with241

respect to t, substitute from (4) and (5). and set the result equal to zero:242

(#dtautotal)243

dτtotal
dt

=
dτH
dt

+
dτL
dt

=
(

1− 2M
r̄H

)
t

τH
−
(

1− 2M
r̄L

)
(T − t)
τL

= 0 (7)

From the last equality in (7), (#EnergyA)244 (
1− 2M

r̄H

)
t

τH
=
(

1− 2M
r̄L

)
(T − t)
τL

(8)
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Define tH ≡ t and tL ≡ T − t, so (8) becomes (#EnergyB)245 (
1− 2M

r̄H

)
tH
τH

=
(

1− 2M
r̄L

)
tL
τL

(9)

The expression on the left side of (9) depends only on the parameters of the246

higher Patch H; the expression on the right side depends only on the247

parameters of the lower Patch L. Hence the value of either side of thisEnergy in
Schwarzschild map
coordinates

248

equation must be independent of which adjoining pair of segments we choose249

to look at: equation (9) displays a quantity that has the same value on every250

segment of the path. We have found the expression for a quantity that is a251

constant of motion. Contract the patches to their differential limits. The result252

is an expression that we can identify as the stone’s energy:(#FinalEnergy)253

E

m
=
(

1− 2M
r

)
dt

dτ
(10)

254

Equation (10) in differential form gives E/m at the single radius r, so the255

average bar over the symbol can be omitted. Identification with energy EEnergy takes special
relativity form far from
black hole.

256

follows by noting that when the mass M of the center of attraction goes to257

zero—or for locations far from the center of attraction where 2M/r � 1—the258

expression reduces to that for energy in special relativity, E/m= dt/dτ259

(Chapter 1, page 13).260

Rather than focus on E alone, we use the dimensionless ratio E/m. Why?261

For two reasons: (a) We recognize that stones of different mass m follow the262

same worldline through spacetime. What counts for motion is neither the mass263

of the plunging stone by itself nor its energy by itself but only the ratio of the264

two, the energy per unit mass. (b) The ratio E/m has no units provided we265

express E and m in the same unit, a unit that we may choose according to266

convenience and the experiment being described. Both numerator and267

denominator in E/m may be expressed in kilograms or joules or the mass of268

the proton or million electron-volts, and so on.269

This derivation employs only the time part of the metric. It makes no270

difference in the outcome—expression (10) for energy—whether dr and dφ are271

zero or not. This has an immediate practical consequence, namely that theEnergy expression
also correct
for non-radial
motion of stone.

272

same expression for energy is as valid for a stone moving around a spherically273

symmetric center of attraction as for one plunging radially inward or coasting274

radially outward. We will use this generality of (10) for predicting orbits in275

Chapter 4.276

4 MAP ENERGY VS. MEASURABLE ENERGY277

Map energy as a unicorn: a mythical beast278

The expression on the right side of equation (10) is a unicorn: a mythical279

beast. What does this mean: a mythical beast? It means that nobody280
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measures directly either the radius r or the differential time lapse dt. Why281

not? Because these are Schwarzschild map coordinates, entries in theMap energy E/m
is a unicorn.

282

mapmaker’s spreadsheet or accounting form, not coordinates that any actual283

observer measures. If this is so, why did we bother to derive expression (10) in284

the first place? Because it has one primary virtue: it is valid anywhere near a285

nonspinning black hole. In contrast, individual viewers are local; they measure286

local coordinates, such as shell coordinates on a shell287

What will a real experimenter observe as as a stone plunges past him? In288

what kind of experiment will energy (10) be of practical use? How does E289

relate to measurements? Think of a shell observer: How much energy can he290

extract from a falling stone? Call the energy that the shell observer measuresShell observer’s
expression for
energy?

291

for the stone the shell energy Eshell. What is the equation for Eshell?292

To find the expression for shell energy from (10), we need to convert dt to293

dtshell. (It’s OK to leave r in the resulting expression, since the numerical294

value of r is stamped on every shell during construction.) Our standard295

conversion between map and shell time increments is: (#inertialshellenergy)296

dtshell =
(

1− 2M
r

)1/2

dt (11)

With substitution (13) of time conversion, equation (10) takes the form:297

(#ShellEnergy)298

E

m
=
(

1− 2M
r

)1/2
dtshell

dτ
=
(

1− 2M
r

)1/2
Eshell

m
=

 1− 2M
r

1− v2
shell


1/2

(12)

299

The final steps in this equation make use of the expression for energy in flat300

spacetime from page 00 of Chapter 1. Using shell coordinates, the301

flat-spacetime expression for energy is (#ShellConversion)302

Eshell

m
=
dtshell

dτ
=

1(
1− v2

shell

)1/2 (13)

This is permitted because the shell patch is, by definition, locally inertial. In303

an inertial frame the rest energy has the value one. (#restshellenergy)304

Eshell rest = m or Eshell rest conv = mc2 (14)

Equation (12) allows us to find the value of E/m for any plunging stone by305

measuring its shell velocity vshell and reading the r-value stamped on the shell.306

Note that for very large radius, (#EovermAtInfinity)“Energy at
infinity”

307

E

m
→ Eshell

m
(r � 2M) (15)

This is not surprising, since spacetime is flat far from the black hole. Indeed,308

far from the black hole E/m is not a unicorn, a mythical beast, because there309
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the coordinate time t is measured directly. For this reason energy E in (10)310

and (refShellEnergy) is sometimes called “energy at infinity.”311

From equation (12) we can illustrate the energy and the shell energy for312

various initial conditions: (#rainEnergy)313

E

m
= 1 (dropped from rest r � 2M) (16)

(#dripenergy)314

E

m
=
(

1− 2M
r0

)1/2

(released from rest at r0) (17)

(#hailEnergy)315

E

m
=

1

(1− v2
far)

1/2
(hurled inward at vfar from a great distance) (18)

In using these equations, the right hand sides remain constant as the stone316

plunges inward.317

Equation (16) is a case we will use extensively from now on. Our name for318

a stone released from rest at r0 →∞ is raindrop, because rain falls from aRaindrop:
dropped from
rest at infinity.

319

great height. The energy of a raindrop is m, its rest energy at infinity. Its shell320

energy comes from letting r0 →∞ in (35): (#RaindropShellEnergy)321

Eshell

m
=
(

1− 2M
r

)−1/2

(raindrop) (19)

The shell speed of a raindrop at r comes from the same limiting case of (37):322

(#RainShellSpeed)323

drshell

dtshell
= vshell = −

(
2M
r

)1/2

(raindrop shell speed) (20)

Combine (16) with (10) and use the Schwarzschild metric to find an324

expression for the map speed of a raindrop (see the exercises): (#drdt)325

dr

dt
= −

(
1− 2M

r

)(
2M
r

)1/2

(raindrop map speed) (21)

Equation(52) shows an apparently outrageous result, namely that as the326

raindrop approaches the horizon its Schwarzschild map speed decreases, and327

the stone coasts to zero map speed at the horizon. Repeated use of the word328

“map” reminds us that map speeds are simply spreadsheet entries for the329

Schwarzschild mapmaker and do not correspond to direct measurements by330

any local observer. Nothing could demonstrate more clearly the radical331

difference between map entries and direct observation.332
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FIGURE 4 Computer plot of the two values of speed for a raindrop. The raindrop
falling radially from rest at infinity has speed |drshell/dtshell| as measured by observers
on shells through which the stone plunges and speed |dr/dt| as derived from the records
of the Schwarzschild mapmaker. At the horizon, the shell speed rises to the speed of
light, equation (39), while the map speed drops to zero, equation (36). [CHANGE
“OR” TO “AND” IN LABEL OF VERTICAL AXIS AND PUT ABSOLUTE VALUE
SIGNS ON VERTICAL AXIS EXPRESSIONS.]

Figure 00 shows plots of both shell and map speeds of the descending333

raindrop.334

335

SAMPLE PROBLEM 1. The Neutron Star Takes an Aspirin336

Neutron Star Gamma has a total mass 1.4 times that of our Sun and a map radius337

rsurface = 10 kilometers. An aspirin tablet of mass one-half gram falls from rest at a338

great distance onto the surface of the neutron star. An advanced civilization converts339

the kinetic energy of the aspirin tablet into useful energy. Estimate how long this340

energy will power a 100-watt bulb.341

SOLUTION342

From the value of our Sun’s mass inside the front cover, the mass of the neutron star343

is M ≈ 2× 103 meters. Hence 2M/rsurface ≈ 2/5. The total energy E of the aspirin344

tablet equals its energy at rest far from the neutron star, namely its mass m. From345
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(12), the shell energy of the aspirin tablet at the surface of the neutron star is346

(#SurfaceEnergy)347

Eshell

m
=
(

1− 2M

r

)−1/2

≈ 1.3 (22)

where r = rsurface. The shell kinetic energy of the half-gram aspirin tablet is the348

difference between its shell energy and its rest energy m, so from (14) its shell kinetic349

energy is 0.15 gram or 1.5× 10−4 kilogram. Multiply by c2 to obtain energy in joules.350

The result is 1.4× 1013 joules. One watt is one joule/second; a 100-watt bulb351

consumes 100 joules per second. At that rate, the bulb can burn for 1.4× 1011
352

seconds on the kinetic energy of the aspirin tablet. One year is about 3× 107
353

seconds. Result: The kinetic energy of the aspirin tablet at the surface of Neutron354

Star Gamma can light a 100-watt bulb for almost five thousand years.355

356

5 MASS OF A CENTER OF ATTRACTION MEASURED FROM A GREAT DISTANCE357

A new way to measure total energy358

How can we understand the conserved “energy at infinity” E when the359

Newtonian approximation breaks down? We call E an energy, but is it really?360

Can it be converted to other forms of energy? Can its value even be measured?361

To answer these questions, consider the quantity E − Eshell = Efar − Eshell362

for a stone, where we equate the energy E of a stone to the energy Efar it363

would have at infinity. But gravity acts in two ways: a satellite of mass mSatellite responds
to gravity, also
creates gravity.

364

creates its own gravitational field even as it responds to the gravity of a365

nearby star of mass Mstar. This suggests a new way to measure gravitational366

energy. Up until now our satellites have been stones, defined as free particles367

“whose mass warps spacetime too little to be measured” (inside back cover).368

But now, in order to measure the energy E of the satellite, we pay attention to369

the combined gravitational effect of the star plus the satellite.370

Figure 6 illustrates how the gravitational mass Mtotal of the combined371

star-plus-satellite system might be measured using the acceleration of a372

distant test particle so remote that Newtonian attraction supplies an accurate373

tool for measuring mass. In geometric units Newton’s expression for this374

acceleration is: (#NewtAccel)375

a = −Mtotal

r2
(Newton) (23)

What is Mtotal? In Newtonian mechanics gravitational masses add:376

(#NewtonGravMass)377

Mtotal = Mstar +m (Newton) (24)

where m is the mass of the satellite. Could this also be true in general378

relativity? No! Equations (13) and (15) show that the mass of the satellite far379
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FIGURE 5 Replacing the moving satellite of Figure 6 with an inward-falling
uniform sphere that satisfies the condition of Birkhoff’s theorem, so that the
Schwarzschild metric applies outside the contracting shell.

from a black hole is Eshell, not m. This suggests that we try380

Mtotal = Mstar + Eshell , where Eshell is given by (13). However, this formula381

implies incorrectly that Mtotal is not a constant: As a stone plunges to the382

surface of a neutron star, Eshell increases as shown by (22). Therefore Mtotal383

increases. Can this be right? No, and here is why.384

A mathematical theorem of general relativity due to G. D. Birkhoff inBirkhoff’s theorem 385

1923 states that the spacetime outside any spherical distribution of matter and386

energy is completely described by the Schwarzschild metric with a constant387

gravitational mass Mtotal. Figure 5 displays a circumstance in which Birkhoff’s388

theorem applies, so that the gravitational mass detected by the observer389

external to the shell is constant. In contrast, Mstar + Eshell changes as the390

satellite/shell plunges inward, so it cannot equal the gravitational mass Mtotal.391

To make the problem easier, we are going to approximate the moving392

satellite by an inward-falling uniform sphere that satisfies the condition of393

Birkhoff’s theorem, so that the Schwarzschild metric applies outside this394

inward-falling shell/satellite (Figure 5).395

Unfortunately, Birkhoff’s theorem does not tell us how to calculate the396

value of Mtotal, only that it is a constant for a spherical configuration of397

mass/energy. We need to replace Eshell by an energy that does not change as398

mass moves inward (or outward). Our constant-of-motion energy E is a399

possible candidate, an energy given by (12): (#SatelliteEnergyFormula)400

E =
(

1− 2M
r

)1/2

Eshell (25)
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FIGURE 6 Measuring the total mass-energy Mtotal of a central star-satellite system
using the acceleration of a test particle at a great distance.

So instead of the Newtonian expression (24) we have the trial generalAdd E to Mstar

to get Mtot.
401

relativity replacement: (#GRGravMass)402

Mtotal = Mstar + E (Einstein) (26)

403

How do we know that the energy-at-infinity E is the right constant to add404

to Mstar? One check is that when the satellite/shell is far from the star405

(r � 2Mtotal but the remote test particle is still exterior to the shell) then406

E → Eshell. For a slowly moving satellite/shell, Eshell → m, and we recover407

Newton’s formula (24), exactly as we should. And when the satellite/shell falls408

inward so that Eshell > m, equation (26) remains valid, because E(≈ m) does409

not change.410

If (26) is correct, then general relativity merely replaces Newton’s m with411

the conserved value E of the satellite/shell. The mass of a star or black hole412

grows by the energy E of a stone or collapsing shell that falls into it. The413

energy of the stone has been converted into gravitational mass.414

You checked equation (26) only in the Newtonian limit, where the remote415

shell is at rest or falls inward with small kinetic energy. Is (26) valid for all416

values of E? Suppose that the collapsing shell in Figure 5 is hurled inward417

(or outward) at relativistic speed. In this case does total E still simply add418

to Mstar to give total mass Mtotal for the still more distant observer?419

Yes it does, but we have not displayed the proof, which requires solution of420

Einstein’s equations. Let a massive star collapse, then explode into a421

supernova. If this process is spherically symmetric, then a distant observer422

will detect no change in gravitational attraction in spite of the radical423

conversions among different forms of energy. Actually, the distant observer424

has no way of knowing about these transformations before the425

outward-blasting shell of radiation and neutrinos passes her. When that426

happens she will detect a gravitational decline in the mass of the central427
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attractor because some of its original energy has been carried to a radius428

greater than hers.429

Is the Birkhoff restriction to spherical symmetry important? It can be: AGravity waves
carry off energy.

430

satellite orbiting or falling into a star or black hole will emit gravitational431

waves that carry away some energy, decreasing Mtotal. Project 9, Gravitational432

Waves, notes that a spherical distribution cannot emit gravitational waves, no433

matter how that spherical distribution moves in and out. As a result, equation434

(26) is okay to use only when the emitted gravitational wave energy is very435

much less than Mtotal. When that condition is met, the cases shown in Figures436

6 and 5 are observationally indistinguishable.437

We can, in principle, use (26) to measure the energy E of anythingMeasuring E
from a distance.

438

circulating about, plunging into, launching itself away from, or otherwise439

interacting with a center of attraction—as long as gravitational wave emission440

is not a factor and we are sufficiently far from the objects. Simply use441

Newtonian mechanics to carry out the measurement depicted in Figure 6, first442

with the satellite absent, second with the satellite/shell in place near the star.443

Subtract the second value from the first for the acceleration (23) and use (26)444

to determine the value of E = Mtotal −Mstar.445

6 FALLING RADIALLY INWARD: DRIPS, RAINDROPS, AND HAILSTONES446

Let go or hurl inward.447

The fact that E/m in (10) is a constant of motion for a free particle yieldsDrip:
dropped from
rest at r0.

448

great simplification in describing the motion of a radially plunging stone. As449

an example, think of a stone released from rest at initial map radius r0 near a450

nonspinning black hole. We call this falling object a drip because it drips from451

rest, as from a leaky faucet. The energy of a drip is given by (??), from which452

its shell energy can be derived using (12): (#DripShellEnergy)453

Eshell

m
=
(

1− 2M
r0

)1/2(
1− 2M

r

)−1/2

(drip) (35)

The map speed |dr/dt| of the drip is already given by (52), derived on the454

way to finding initial gravitational acceleration on the shell. (#drdtRepeat)455 ∣∣∣∣drdt
∣∣∣∣ =

(
1− 2M

r0

)−1/2(
1− 2M

r

)(
2M
r
− 2M

r0

)1/2

(drip speed) (36)

Radial shell speed follows from equation (??), so that (36) gives us:456

(#DripShellSpeed)457

|vshell| =
(

1− 2M
r

)−1 ∣∣∣∣drdt
∣∣∣∣ =

(
1− 2M

r0

)−1/2(2M
r
− 2M

r0

)1/2

(drip)(37)

Our name for a stone released from rest at r0 →∞ is raindrop, becauseRaindrop:
dropped from
rest at infinity.

458

rain falls from a great height. (The raindrop is a special case of a drip.) The459
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BOX 3. Baked on the Shell?
As you stand on a spherical shell close to the horizon
of a black hole, you will be crushed by an unsupportable
local gravitational acceleration directed downward toward the
center. If that is not enough, you will also be enveloped by
an electromagnetic radiation field. William G. Unruh used
quantum field theory to show that the temperature T of this
radiation field in degrees Kelvin is given by the equation
(#eq:42)

T =
hgconv

4π2kBc
(27)

Here gconv is the local acceleration of gravity in the
conventional units meters/second2, h is Planck’s constant, c
is the speed of light, and kB is the so-called Boltzmann’s
constant, which has the value 1.381 × 10−23 kilogram-
meters2/(second2degree Kelvin). The quantity kBT has the
unit joules and gives an average value for the thermal energy
this field can provide to local processes. (The same radiation
field surrounds you when you accelerate at the rate gconv in
flat spacetime.)

We are deriving an expression for the local gravitational
acceleration on a shell at radius r. This acceleration,
expressed in the geometric unit meter−1 is given in (59):
(#eq:43)

gshell =
gconv

c2
= −

M

r2

(
1−

2M

r

)−1/2

(28)

Substitute gconv from (28) into (27) to obtain (#eq:44)

T =
hc

4π2kB

M

r2

(
1−

2M

r

)−1/2

(29)

where M is in meters. This temperature increases without
limit as you approach the horizon at r = 2M . Therefore
one would expect the radiation field near the horizon to shine
brighter than any star when viewed by a distant observer.
Why doesn’t this happen? In a muted way it does happen.
Remember that radiation is gravitationally red-shifted as it

moves away from any center of gravitational attraction. From
equation [C] in Selected Formulas at the end of this book we
can show that every frequency is red-shifted by the factor
(1 − 2M/r)1/2, which cancels the corresponding factor in
(29). Let r → 2M in the resulting equation. The distant
viewer sees the radiation temperature (#eq:45)

TH =
hc

16π2kBM
(30)

where M is in meters. The temperature TH is called the
Hawking temperature and characterizes the Hawking
radiation from a black hole, described in Box 1 of Chapter 2
(page 6). Notice that this temperature increases as the mass
M of the black hole decreases. For a black hole whose mass
is a few times that of our Sun, this temperature is extremely
low, so from a distance such a black hole really looks almost

black.
The radiation field described by equations (27) through

(29), although perfectly normal, leads to strange conclusions.
Perhaps the strangest of all is that this radiation field is
entirely undetected by a free-fall plunging observer who
passes the shell at radius r. The plunging traveler observes
no such radiation field, while for the shell observer at the
same radius the radiation is a surrounding presence. This
apparent paradox cannot be resolved using the classical
theory developed in this book; see Kip Thorne’s Black Holes

and Time Warps: Einstein’s Outrageous Legacy, page
444.

How realistic is the danger of being baked on a shell
near the horizon of a black hole? In answer, compute the
local acceleration of gravity for a shell on which the radiation
field reaches a temperature equal to the freezing point of
water, 273 degrees Kelvin. From (27) you can show that
gconv = 6.7 × 1022 meters/second2, or almost 1022 times
the acceleration of gravity on Earth’s surface. Evidently we will
be crushed by gravity long before we are baked by radiation!

energy of a raindrop is m, its rest energy at infinity. Its shell energy comes460

from letting r0 →∞ in (35): (#RaindropShellEnergy)461

Eshell

m
=
(

1− 2M
r

)−1/2

(raindrop) (38)

The shell speed of a raindrop at r comes from the same limiting case of (37):462

(#RainShellSpeed)463

|vshell| =
(

2M
r

)1/2

(raindrop speed) (39)
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SAMPLE PROBLEM 3. Examples of Gravitational Acceleration
1. On a shell at r/M = 4 near a black hole, the initial

gravitational acceleration from rest is how many times that
predicted by Newton?

2. On a shell at r/M = 2.1 near a black hole, the initial
gravitational acceleration is how many times that predicted
by Newton?

3. What is the minimum value of r/M so that, at or outside of
that radius, Newton’s formula for gravitational acceleration
differs from the correct one by less than ten percent? by
less than one percent?

4. Compute the weight in pounds of a 100-kilogram astronaut
on the surface of a neutron star with mass equal to
1.4MSun and M/rsurface = 2/5.

SOLUTIONS
1. At radius r/M = 4 the factor (1 − 2M/r)−1/2 in (60)

predicts a gravitational acceleration 21/2 = 1.41 times
that predicted by Newton.

2. Even at r/M = 2.1 the gravitational acceleration is still
the relatively mild multiple of 4.6 times the Newtonian
prediction.

3. Setting (1 − 2M/r)−1/2 = 1.1 yields r/M = 11.5. At
or outside this radius, Newton’s prediction will be in error

(too low) by less than ten percent. At or outside the radius
r/M = 100 Newton’s prediction will be too low by one
percent.

4. The Newtonian acceleration in conventional units is:
(#NeutronNewton)

gNewton conv =

(
GMkg

c2r2
surface

)
c2 =

(
M

r2
surface

)
c2(31)

=

(
M

rsurface

)2 c2

M
=

(
2

5

)2 c2

1.4×MSun

Insert values of c2 and MSun (in meters) to yield
gNewton conv ≈ 6.9 × 1012 meters/second2. From (60),
(#weight)

weight = mgshell =

(
1−

4

5

)−1/2

mgNewton(32)

≈ 16× 1014 Newtons

One Newton = 0.225 pounds, so our astronaut weighs
approximately 3.5 × 1014 pounds, or 350 million million
pounds. It is interesting that even at the surface of this
neutron star the general relativity result in (32) is greater
than Newton’s by the relatively small factor

√
5 = 2.24.

Drips and raindrops do not exhaust the possibilities for free radial motion.Hailstone:
hurled inward
from infinity.

464

We can also hurl a stone radially inward from a great distance. Call this a465

hailstone, because on Earth a hailstone falls faster than a raindrop. Let the466

hailstone’s initial inward speed at a great distance be vfar. Then its energy is467

that of a stone moving with this speed in flat spacetime, given by the special468

relativity expression: (#HailEnergy)469

E

m
=
(
1− v2

far

)−1/2
(hailstone) (40)

The hailstone’s shell energy at any radius r is obtained from equations470

(25) and (40): (#HailShellEnergy)471

Eshell

m
=
(
1− v2

far

)−1/2
(

1− 2M
r

)−1/2

(hailstone) (41)

To find the map velocity dr/dt for the hailstone, equate E/m in (40) to472

the general expression for energy (10). Solve the resulting equation for dτ2:473

(#dtau2Hail)474

dτ2 =
(
1− v2

far

)(
1− 2M

r

)2

dt2 (hailstone) (42)
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SAMPLE PROBLEM 4. Gravitational Acceleration Near Different Black Holes
How does the predicted initial gravitational acceleration gshell

vary with the mass M of a black hole? Examine different
cases at the radius r = 4M .

1. The smallest mass of a cold dead star that can collapse
into a black hole is estimated to be approximately 2.5 times
the mass of our Sun. What is the gravitational acceleration
at r = 4M near this minimum-mass black hole? This
prediction is how many times the gravitational acceleration
on Earth’s surface?

2. The monster black hole near the center of our galaxy has
an estimated mass equal to 3.7 million times the mass
of our Sun. Assume (probably wrongly) that the monster
is not rotating. What is the gravitational acceleration at
r = 4M near this black hole? This prediction is how many
times the gravitational acceleration on Earth’s surface?

3. How many times the mass of our Sun would a black hole
have to be so that the gravitational acceleration on the
shell at r = 4M is greater than than on Earth’s surface by
ten percent?

SOLUTIONS
At r = 4M , equation (59) becomes: (#shellgrav3*)

gshell = −
21/2

16M
(initial at r = 4M) (33)

This is inversely proportional to the massM of the black hole.
At the surface of Earth: (#gravEarth)

gEarth = −
MEarth

r2
Earth

≈ −10−16 meter−1 (34)

Our Sun’s mass is 1.48× 103 meters.

1. Substituting 2.5 times the mass of our Sun into (33) yields
the value gshell = −2.4 × 10−5 meter−1, which is
2.4× 1011 times the acceleration on Earth.

2. At r = 4M outside the black hole in our galaxy the
gravitational acceleration is gshell = −1.6 × 10−11

meter−1 or “only” 1.6 × 105 times the acceleration on
Earth.

3. Set the left side of (33) equal to 1.1gEarth and use (34) to
obtain a mass equal to 5.4 × 1011MSun. The numerical
coefficient is 5 or 6 times the number of stars in our galaxy.

Equate this expression for dτ2 to that in the Schwarzschild metric (51), divide475

through by (dt)2 and solve for (dr/dt)2, yielding (#drdtHail)476 (
dr

dt

)2

=
(

1− 2M
r

)2 [2M
r

+ v2
far

(
1− 2M

r

)]
(hailstone) (43)

Use conversions (13) to give the shell speed: (#ShellSpeedHail)477

|vshell| =
[

2M
r

+ v2
far

(
1− 2M

r

)]1/2
(hailstone speed) (44)

Taken together, the three categories drip, rain, and hail encompass allDrip, rain, hail
cover all free-fall
radial motions.

478

possible radial speeds of a freely plunging stone. Table 1 summarizes the479

results. You can check that equations for drips (second column) reduce to480

those for raindrops (third column) when r0 →∞. Similarly, equations for481

hailstones (fourth column) also reduce to those for raindrops when vfar → 0.482

Why are the expressions for vshell in Table 1 so COMPLICATED? How483

can a stone carry out all these calculations as it drops freely toward a484

center of attraction? A stone is brainless, yet in order to follow equations in485

the table it must be better at quick computation than we are. Do you486

seriously believe that spacetime—or anything else—is issuing such487
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TABLE 1 COMPLETE LIST OF RADIAL PLUNGERS [SPREAD ACROSS
PAGE]

Drip Rain Hail
Name of plunger drip raindrop hailstone
Launch method dropped from rest at r0 dropped

from rest
at r0 →∞

hurled inward at speed
vfar from a great

distance

Eshell/m
(

1− 2M
r0

)1/2 (
1− 2M

r

)−1/2 (
1− 2M

r

)−1/2(
1− v2

far

)−1/2 (1− 2M
r

)−1/2

Shell speed |vshell|
(

1− 2M
r0

)−1/2 (
2M
r −

2M
r0

)1/2(
2M
r

)1/2 [
2M
r + v2

far

(
1− 2M

r

)]1/2
Memory jog: A leaky faucet drips. Rain falls

from a
great

height.

Hail falls faster than
rain.

complicated directions to the poor stone and that the stone is actually488

FOLLOWING these instructions?489

The stone does not follow equations in Table 1. The stone does not care490

about the Schwarzschild metric or shell time—or even energy as a491

constant of motion. The stone can be totally brainless because it obeys the492

simplest command imaginable: “Go straight for the next microsecond!”493

This command is all the stone hears. Obeying this command is all the494

stone does.495

We, however, are not satisfied with the local description of motion. We ask496

more global questions: “What is the entire path followed by the stone?”497

“What is the stone’s speed everywhere along that path?” Motion for the498

next microsecond does not answer our global questions. Ask a more499

complicated question, get a more complicated answer! Whose fault is that?500

The stone’s fault? Nature’s fault? No, it is our fault. If we were satisfied with501

local description, we could be as serene and unthinking as the stone.502

Equations (36) and (43) for dr/dt have some surprising consequences. AsALL plungers:
dr/dt→ 0
at the horizon!

503

the plunger approaches the horizon, as r → 2M, the coefficient (1− 2M/r) in504

these equations goes to zero, so the map velocity dr/dt also goes to zero for all505

three plungers. The Schwarzschild mapmaker, keeping track of the reduced506

circumference r as a function of map time t, reckons that every plunger slows507

down as it approaches the event horizon. As it gets closer and closer to the508

event horizon at r = 2M, its map velocity dr/dt goes to zero. When tracked in509

these coordinates, the plunger itself reaches the event horizon only after510

infinite map time t.511
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Impossible! The plunger is propelled ever inward by what we would512

describe in Newtonian language as a fierce gravitational force. How can513

you possibly ask us to believe that this force results in the raindrop slowing514

down? Will someone clinging to the shell just outside the event horizon at515

r = 2M observe the plunger to decrease speed and settle gently—over516

an infinite time!—to rest at the horizon? The whole idea is simply517

impossible to believe!518

What seems insane resolves itself into a more believable result when we519

follow this questioner’s lead and ask who observes locally this zero speed520

at the event horizon. The answer is, Nobody! Not the shell observer; not a521

passing free-fall observer. Nobody near the black hole observes directly522

the velocity whose magnitude goes to zero at the horizon. It is a map523

velocity, an entry on a spreadsheet. Blame the coasting to rest at the524

horizon on our mapmaker accountant, not on us.525

Equations (36) and (43) are merely results of calculations, they are “mapdr/dt→ 0 at the
horizon just a
spreadsheet entry.

526

velocities.” The mapmaker tracks changes dr in the r -coordinate and divides527

each such change by the corresponding computed change dt in map time. Sure528

enough, the ratio dr/dt approaches zero as the plunger approaches the event529

horizon at r = 2M.530

Nobody directly observes map velocity dr/dt. On the other hand, a shell531

observer can observe and measure the passage of the plunger. Figure 4532

compares dr/dt with vshell for the raindrop. No contrast could be greater than533

these two results, which show how far we have come from Newton’s world of534

universal time and universal flat Euclidean space.535

I do not care what one or another observer measures or writes in a536

notebook. I am interested in REALITY! Stop beating around the bush;537

does the in-falling raindrop REALLY come to rest at the horizon or not?538

Already in special relativity we learned to concentrate on predicting the539

result of an experiment. We were forced to acknowledge, for example, that540

“the time between two events” and “the velocity of a stone” are not541

invariants; typically they do not have the same values as measured by542

different inertial observers in relative motion. In this sense “the real time543

between two events” and “the real velocity of a particle” have no unique544

meaning. Similarly, here in general relativity “the velocity at the horizon”545

must refer to the records of some reference frame; the phrase “real546

velocity” has no unique meaning. According to the mapmaker, the in-falling547

object comes to rest at the horizon. Next we find that for the shell observer548

the falling object passes across the horizon with the speed of light (Figure549

4). What a contrast!550
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BOX 4. Newton Predicts the Black Hole?
It’s amazing how much of Newton’s mechanics works—sort
of—on the stage of general relativity. A stone initially at rest
far from a center of attraction plunges radially inward. Or a
stone on the surface of Earth or a neutron star is fired radially
outward, coming similarly to rest at a great distance. In either
case, Newtonian mechanics assigns kinetic and gravitational
energies to the stone. The gravitational energy is chosen
to be zero at a great distance, and initially the stone out
there does not move and so has zero kinetic energy. The
total energy is therefore zero, as shown in this Newtonian
equation: (#eq:14A)

Econv = 0 =
1

2
mv2conv −

GMconvm

r
(Newton) (45)

where subscript “conv” means conventional units. We can use
geometric units even while doing Newton’s analysis. Divide
through by mc2 and convert mass M to meters and speed v
to a fraction of the speed of light. The result is still Newtonian:
(#eq:15A)

E

m
= 0 =

v2

2
−
M

r
(Newton) (46)

Here E and m each can have any units whatsoever, as long
as they are the same units for both. Equation (46) shows us
the plunging (or rising) speed at any radius: (#eq:17A)

v =

(
2M

r

)1/2

(Newton) (47)

which is the same as equation (39) for the shell speed of the
raindrop. One can predict from (46) the radius at which the
speed is unity, the speed of light. And the predicted radius,
r = 2M , is that of the black hole horizon. For Newton the
speed of light is the escape velocity from the horizon.

So does Newton correctly describe black holes? No. The
similarities are enchanting but the differences are profound.
In the first place, Newton assumes a single universal inertial
reference frame and universal time, whereas (39) is true only
for the shell distance divided by shell time. A quite different
expression, (36) with r0 →∞, describes map velocity—map
distance dr divided by map time dt for raindrops.

Worse: Newton predicts that a stone launched radially
outward from the event horizon with a speed less than that
of light will rise some radial distance, then slow, stop without
escaping, and fall back. In striking contrast, Einstein predicts
that nothing, not even light, can be successfully launched
outward from the event horizon (exercise in Chapter 5), and
that light launched outward exactly at the event horizon will
hover there forever (Box 5).

Our shell speeds for drip, rain, or hail can be directed radially outward551

just as well as inward; energy does not care about direction of motion. We can552

talk about escape velocity (Box 4), the minimum outward-directed speed553

needed to send a stone to infinity. There is no difficulty with this velocity554

reversal—which one might equally well call “time reversal”—until the plunger555

reaches the horizon at r = 2M .556

Table 1 tells us that something decisive happens exactly at the horizon. AsWhat happens
exactly at
the horizon?

557

the plunger approaches the horizon at r = 2M , the shell speed approaches the558

speed of light for all three launch methods: drip, rain, and hail. Try to increase559

the shell speed at the horizon by hurling the stone in from infinity with greater560

and greater initial speed vfar. You fail. Try to make the speed at the horizon561

less than the speed of light by releasing the stone one millimeter above the562

horizon. You still fail: the shell speed of the stone rises to the speed of light at563

the horizon anyway! Even in general relativity the fastest directly-observable564

speed remains that of light.565

Let the plunger emit a light flash radially outward as she crosses the566

horizon. Then that light will, in principle, hover at the horizon forever. (Such567

“hovering” is a knife-edge phenomenon discussed in Chapter 4, so the568

flash—which by definition has some radial extension—will quickly dissipate.)569
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I am really bothered by the idea of a “material” particle traveling across570

the event horizon as a particle. The shell observer sees it moving at the571

speed of light, but it takes light to travel at light speed. Does the particle572

become a flash of light at the horizon?573

No, but at the event horizon is a light sphere stationary in map and shell574

coordinates. In the plunger frame, this light will pass at the usual speed575

vlight = 1. Otherwise you feel nothing special as you cross the event576

horizon. You certainly do not turn into a flash of light! The idea of a shell577

observer at the horizon makes sense only as a limiting case. The shell578

observer just outside the horizon measures the in-falling particle to move579

at less than the speed of light. At the horizon no shell is possible, because580

the “local acceleration of gravity” increases without limit—equation (59). So581

no shell observer can be stationed at the horizon to verify that the in-falling582

particle moves at light speed. At and inside the horizon, dependable583

measurements can be made by free-fall observers, but cannot be reported584

to outsiders! See Project 3: Inside the Black Hole.585

Go back to map coordinates. A serious objection still remains: If all586

objects as they fall into the black hole come to rest at the horizon as587

reckoned by the mapmaker, then shouldn’t the black hole be eternally588

surrounded by all the junk that has ever fallen into it, including the star that589

collapsed to form the black hole in the first place? Our Russian colleagues590

originally called the black hole a “frozen star.” I call it a “frozen junk pile”!591

It’s true that, on the spreadsheet of the mapmaker, all radially in-falling592

objects coast to rest at the horizon. But this is just a spreadsheet entry;593

nobody observes directly this coming-to-rest. A remote observer in fact594

does see something that might be considered evidence for this prediction:595

the gravitational red shift of light from these objects. As each object596

approaches the horizon, its emitted light is shifted farther and farther into597

the red as observed far from the black hole. You can calculate how rapidly598

this downshift occurs as recorded on the clock of a remote observer599

(exercise in Chapter 5). Very quickly, light from the object becomes600

invisible to the eye; the object turns black—thus becoming part of the black601

hole as far as the remote observer is concerned. You might conclude that602

stationary black junk is still black! But don’t be fooled: nobody can view any603

stationary junk whatsoever at the horizon.604

But what about a time-reversed drip? Your analysis implies that the drip605

has to move outward at the speed of light just to rise up even one606

millimeter above r = 2M ! And I thought nothing can go as fast as light.607



January 3, 2009 16:47 Ch03090103v2 Sheet number 26 Page number 26 AW Physics Macros

26 Chapter 3 Plunging

BOX 5. The Event Horizon
Set dτ = 0 in the Schwarzschild metric (51) for radial
motion to show that for radially outgoing light at the horizon,
(#HorizonLight)

dr

dt
= 1−

2M

r
→ 0 (as r → 2M) (48)

This is the event horizon. Light emitted outwards at
r = 2M will hover there, held in place by the enormous
gravity of the black hole, providing another name for the
event horizon: the radial light sphere. Massive particles
cannot overtake a light beam, so they can never cross
outward through r = 2M .

The event horizon at r = 2M separates those events which
can causally affect the future of distant observers (namely

cause events in the future at r > 2M ) from those that can
never do so. Barring quantum mechanics, the event horizon
never reveals what is hidden behind it.

What is a black hole? We can now improve our definition: A

black hole is a singularity cloaked by an event horizon.

In Chapter 6, The Expanding Universe, we will find another
kind of horizon, called a particle horizon. Some
astronomical objects are so far from us that the light they have
emitted since they were formed has not yet had time to reach
us. In principle, more and more such objects swim into our
field of view every day, as our cosmic particle horizon sweeps
past them. In contrast to the event horizon, the particle
horizon yields up its hidden information to us—gradually!

You’re right. Any stone reaching r = 2M can never get outside that radius;608

it must fall to the center. Only light itself can hover at r = 2M . See Box 5.609
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7 OVER THE EDGE: ENTERING THE BLACK HOLE610

No jerk. No jolt. A hidden doom.611

Except for the singularity at r = 0, no feature of the black hole excites more612

curiosity than the event horizon at r = 2M. It is the point of no return beyond613

which no traveler can find the way back—or even send signals—to the outside614

world. What is it like to fall into a black hole? No one from Earth has yet615

experienced it. Moreover, future explorers who do so will not be able to return616

to tell about it or transmit messages to us about their experience—or so we617

believe! In spite of the impossibility of receiving a final report, there exists a618

well-developed and increasingly well-verified body of theory that makes clear619

predictions about our experience as we approach and cross the horizon of a620

black hole. Here are some of those predictions.621

We are not “sucked into” a black hole. Unless we get quite close toWe are not sucked
into a black hole.

622

it, a black hole will no more grab us than Sun grabs Earth. If our Sun should623

suddenly collapse into a black hole without expelling any mass, Earth and the624

other planets would continue on their present courses undisturbed (even625

though perpetual night would prevail!). The Schwarzschild solution would626

continue then to describe Earth’s worldline around our Sun, just as it does627

now. The exercises of Chapter 4 show that for orbits that stay at radii greater628

than about 300M Newtonian mechanics predicts the motion to a good629

approximation. We will find that when we drop to a radius less than 6M, no630

stable circular orbit is possible (Chapter 4). Even if we find ourselves at a631

radius between 6M and the horizon at 2M , we can always escape, given632

sufficient rocket power. Only when we reach or cross the event horizon are we633

irrevocably “sucked in,” our fate sealed.634

No special event occurs as we fall through the event horizon.635

Even when we cross into a black hole at the event horizon r = 2M , weNo jolt
as we cross
the horizon.

636

experience no shudder, jolt, or jar. True, the tidal forces are ever-increasing as637

we fall inward, and this increase continues smoothly at the horizon. But we are638

not suddenly torn apart at r = 2M. True also, the factor (1− 2M/r) in the639

Schwarzschild metric goes to zero at this radius. But the resulting zero in the640

time term of the metric and the infinity in the radial term turn out to be641

singularities of map coordinates r and t, not singularities in spacetime642

geometry. They do not lead to discontinuities in our experience as we pass643

through this radius. There are other coordinate systems whose metrics are644

non-singular at the event horizon (Project 3).645

Inside the horizon there are no shell frames. Outside the horizon ofNo shell frames
inside the horizon.

646

the black hole we have erected, in imagination, a set of nested spherical shells.647

We say “in imagination” because no known material is strong enough to stand648

up under the “pull of gravity,” which increases without limit as one649

approaches the horizon from outside (Section 6). Locally such a stationary650

shell can be replaced by a rocket ship with rockets blasting to keep it651

stationary with respect to the black hole. Inside the horizon, however, nothing652

can remain at rest. No stationary shell. No stationary rocket ship, however653

ferocious the blast of its engines. The material composing the original star, no654
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matter how strong, was unable to resist the collapse that formed the black655

hole. The same irresistible collapse forbids any stationary structure or any656

motionless object inside the horizon.657

“Outsiders” can send packages to “insiders.” Different inertialCan send
packages inward,
not outward.

658

frames still move with relative speeds inside the black hole. For example, one659

traveler may drop from rest just outside the horizon. Another unpowered660

spaceship may have fallen in from rest at a great distance. A third may be661

hurled inward from outside the horizon. Light and radio waves can carry662

messages inward as well. We who have fallen inside the horizon can still see663

the stars, though with changed directions, colors, and intensities (Chapter 5).664

Packages and communications sent inward across the horizon? Yes. Outward?665

No! See Box 5.666

Inside the horizon there is an exchange of character between the667

t-coordinate and the r-coordinate. For an r -coordinate less than the map668

radius 2M, the factor (1− 2M/r) in the Schwarzschild metric becomes669

negative. In consequence, both the radial part and the time part of this metric670

reverse signs, making the dt2 term negative and the dr2 term positive. Space671

and time themselves do not exchange roles. Coordinates do: The t-coordinate672

changes in character from a timelike coordinate to a spacelike coordinate.673

Similarly, the r -coordinate changes in character from a spacelike coordinate to674

a timelike one.675

What does it mean to say that inside the Schwarzschild radius theTimelike r-coordinate
inside horizon
means inevitable
motion toward
center.

676

r -coordinate “changes character from a spacelike coordinate to a timelike677

one”? It means that our free-fall frame moves to ever-smaller r with all the678

inevitability that we ordinarily associate with the passage of time. The679

explorer in his jet-powered spaceship prior to arrival at r = 2M always has the680

option to turn on his jets and change his motion from decreasing r (infall) to681

increasing r (escape). Quite the contrary is the situation once he has allowed682

himself to fall inside r = 2M. Then the further decrease of r represents the683

passage of time. No command the traveler can give to his jet engine will turn684

back time, that is reverse the headlong decrease in radius. That unseen power685

of the world that drags everyone forward in time, willy-nilly, from age twenty686

to forty and from forty to eighty also drags the rocket in from the coordinate687

r = 2M to the later value of the “time” coordinate r = 0. No human act of688

will, no engine, no rocket, no force can make time stand still. As surely as cells689

die, as surely as the traveler’s watch ticks away the unforgiving minutes, with690

equal certainty r drops from 2M to 0 with never a halt along the way.691

Inside the horizon life goes on. Make a daring plunge into an alreadySurf a collapsing
galaxy group.

692

existing black hole? No. We and our exploration team want to be still more693

daring, to follow a black hole as it forms. We go to a multiple-galaxy system so694

crowded that it teeters on the edge of gravitational collapse. Soon after our695

arrival at the outskirts, it starts the actual collapse, at first slowly, then more696

and more rapidly. Soon a mighty cataract thunders (silently!) toward the697

center from all sides, a cataract of objects and radiation, a cataract of698

momentum-energy. The matter of the galaxies and with it our group of699
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enterprising explorers pass smoothly across the horizon at the Schwarzschild700

radius r = 2M.701

From that moment onward we lose all possibility of signaling to the outer702

world. However, radio messages from that outside world, light from the703

familiar stars, and packages fired after us at high speed continue to reach us.704

Moreover, communications among us explorers take place now as they did705

before we crossed the horizon. We express our findings to each other in the706

familiar categories of space and time. With our laptop computers we turn out707

an exciting journal of our measurements and conclusions. (Our motto: Publish708

and perish.)709

Nothing rivets our attention more than the tide-producing forces that pullAfter crunch there
is no “after.”

710

heads up and feet down with ever-increasing tension. Before many years have711

passed, we can predict, this differential pull will have reached the point where712

we can no longer survive. Moreover, we can foretell still further ahead and713

with absolute certainty an instant of total crunch. In that crunch are714

swallowed up not only the stars beneath us, not only we explorers, but time715

itself. All worldlines terminate at the singularity. For us an instant comes after716

which there is no “after.”717

Project 3 discusses life inside the horizon in greater detail.718

8 APPENDIX: GRAVITY ON THE SHELL719

Unlimited gravitational acceleration on a shell near the horizon.720

When you stand on a shell near a black hole you experience gravity—a pullIs gravity real
or fictitious?

721

downward—just as you do on Earth. On the shell this gravity can be great:722

near the horizon it increases without limit, as we shall see. On the other hand,723

inside the back cover we say, “In general relativity, gravity is always a fictitious724

force which can be eliminated by changing to a frame that is in free fall . . .”.725

Is this “fictitious force” real? Every year many people are injured and killed as726

a result of falls. Any force that can lead to death is definitely real!727

We start by acting like engineers, using a thought experiment to definePractical experiment
to define gravity

728

what we mean by local gravitational acceleration on a shell near a black729

hole—or on Earth. Following this definition we wheel up the machinery of730

general relativity to find the magnitude of the newly-defined acceleration731

experienced by a shell observer.732

Figure 7 presents the method of measuring quantities used to define initial733

gravitational acceleration on a shell. The shell is at map radius r0. At a shell734

distance ∆yshell below the shell is a platform onto which the shell observer735

drops a stone. The resulting time ∆tshell for the drop is measured as follows:Specific instructions
for experiment
to define gravity

736

1. The shell observer records his clock reading at the instant he drops the737

stone.738

2. When the stone strikes the platform, it fires a laser flash upward to the739

shell clock.740
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FIGURE 7 Notation for thought experiment to define gravitational acceleration on a shell
patch. The shell observer at r0 releases a stone from rest and times its fall onto a lower platform
that he measures to be a distance ∆yshell below the shell.

3. The shell observer determines the time lapse to impact, ∆tshell, by741

deducting flash transit time from the time elapsed on his clock when he742

receives the laser flash.743

The shell observer reckons the “flash transit time” in Step 3 by dividing the744

shell distance ∆yshell by the shell speed of light. (In Exercise 00 of Chapter 2,745

you verified that the shell observer measures light to have its conventional746

speed: unity.)747

The shell observer substitutes ∆yshell and ∆tshell into the usual expressionDefine gshell 748

that defines initial acceleration gshell of the stone: (#yA)749

∆yshell ≡
1
2
gshell∆t2shell (definition of gshell initial) (49)

Thus far our engineering definition of gshell has little do with general750

relativity. The fussy procedure used in the thought experiment reflects the care751

required when general relativity is added to the analysis, which we do now.752

What does the Schwarzschild mapmaker have to say about theMapmaker demands
falling stone have
constant energy.

753

acceleration of a dropped stone? She insists that, whatever motion the free754

stone executes, its energy E/m must remain a constant of motion. So start755

with the energy of a stone bolted to the shell at r0, equation (??).756

Now release the stone from rest. The mapmaker insists that as the stone757

falls its energy remain constant, so equate the right sides of (??) and (10),758

square the result, and solve for dτ2: (#equateenergy)759

dτ2 =
(

1− 2M
r0

)−1(
1− 2M

r

)2

dt2 (50)

Substitute this expression for dτ2 into the Schwarzschild metric for radial760

motion (dφ = 0) (#Schwarzrad)761

dτ2 =
(

1− 2M
r

)
dt2 −

(
1− 2M

r

)−1

dr2 (51)
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Solve the resulting equation for (dr/dt)2: (#drdt)762 (
dr

dt

)2

=
(

1− 2M
r0

)−1(
1− 2M

r

)2(2M
r
− 2M

r0

)
(from rest at r0)(52)

We want the acceleration of the stone in Schwarzschild map coordinates.763

First, multiply both sides of (52) by the constant denominator (1− 2M/r0) on764

the right (the initial drop-radius r0 does not change during the fall). Then765

take the time derivative of both sides. Cancel the common factor 2(dr/dt)766

from both sides of the result to obtain: (#dr2dt2)767 (
d2r

dt2

)
=
(
−M
r2

)(
1− 2M

r

)(
1− 2M

r0

)−1(4M
r0

+ 1− 6M
r

)
(53)

This equation gives the map acceleration at radius r of a stone released from768

rest at r0. What we want is the initial acceleration at the instant of release769

from rest. To find the initial acceleration, set r = r0 in equation (53), whichAcceleration
in map
coordinates

770

then collapses into the relatively simple form: (#bkkpraccel)771

d2r

dt2
≡ −M

r20

(
1− 2M

r0

)
(initial, from rest at r0) (54)

What is the meaning of this acceleration in Schwarzschild map772

coordinates? It is a spreadsheet entry, an accounting analysis by the773

mapmaker, not the result of a direct observation by anyone. Observation774

requires an experiment, which we have already designed, leading to the775

expression (49). What is the relation between our engineering definition of776

acceleration and acceleration (54) in Schwarzschild coordinates? To compare777

the two expressions, expand the Schwarzschild position of the dropped stone778

around the radial position r0 using a Taylor series for a short time lapse ∆t:779

(#TaylorA)780

r = r0 +
(
dr

dt

)
r0

∆t+
1
2

(
d2r

dt2

)
r0

(∆t)2 +
1
6

(
d3r

dt3

)
r0

(∆t)3 + .... (55)

Because ∆t is small, we disregard terms higher than quadratic in ∆t. This781

allows us to approximate uniform gravity and to compare mapmaker782

accounting entries with observed shell acceleration. When dropped from rest783

at r0, the initial speed is zero: (dr/dt)r0 = 0. With these considerations, insert784

(54) into (55) and write: (#bkkpraccelB)785

r − r0 = ∆r ≈ 1
2

[
−
(

1− 2M
r0

)
M

r20

]
(∆t)2 (56)

This equation has a form similar to that of our experimental definition786

(49) of shell gravitational acceleration, except the earlier equation employs787

shell separation and shell time lapse. Convert these to Schwarzshild quantities788

using standard transformations: (#Schwarztransf)789
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∆yshell =
(

1− 2M
r0

)−1/2

∆r and ∆t2shell =
(

1− 2M
r0

)
(∆t)2 (57)

With these substitutions, and after rearranging terms, equation (49) becomes:790

(#yAB)791

∆r ≡ 1
2

[(
1− 2M

r0

)3/2

gshell

]
(∆t)2 (58)

As we go to the limit ∆t→ 0, the extra terms in (55) become increasingly792

negligible, so (56) approaches an equality and we can equate square-bracket793

expressions in (56) and (58). Replacing r0 with r yields the equation for initialInitial shell
acceleration

794

acceleration on a shell at any r: (#shellgrav)795

gshell = −
(

1− 2M
r

)−1/2
M

r2
(initial) (59)

796

Check limiting cases: At large radius, gshell in (59) approaches the797

Newtonian expression −M/r2. As we approach the horizon from798

larger radius, r → 2M , the gravitational acceleration on the shell799

increases without limit. If you try to stand on a neutron star, you800

will be crushed by local acceleration gshell (Sample Problem 3).801

In (59) the expression −M/r2 is the Newtonian result, so that equation802

can be written (#shellgravNewt)803

gshell =
(

1− 2M
r

)−1/2

gNewton (initial) (60)

The units of gshell on the left side of this equation are the same as the units804

you choose for gNewton on the right. Sample Problems 3 and 4 explore shell805

accelerations under different conditions. It is surprising how accurate Newton’s806

expression is even quite close to the horizon of a black hole—an intellectual807

victory that we could hardly have anticipated.808
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PROBLEMS853

1. Plunging from Rest at Infinity854

Black Hole Alpha has a mass M = 5 kilometers and a horizon at855

r = 2M = 10 kilometers. A stone starting from rest far away falls radially into856

Black Hole Alpha.857

A. At what velocity does a shell observer at r = 35 kilometers measure the stone to858

be going as the stone passes him? (Answer to nearest digit is −0.5. Supply859

answer to three significant figures.)860

What is the map velocity dr/dt of the stone as it passes r = 35 kilometers?861

(Answer to one significant figure is −0.4. Supply three-digit accuracy.)862

B. At what velocity does a shell observer at r = 25 kilometers measure the stone to863

be going as it passes him? (Answer to one significant figure is −0.6. Supply864

answer to three significant figures.)865

What is the map velocity dr/dt of the stone as it passes r = 25 kilometers?866

(Answer to one significant figure is −0.4. Supply answer to three significant867

figures.)868

C. Qualitatively, what do the formulas in the text lead you to expect about the869

relative shell speeds (greater or smaller) at the two radii? the relative values of870

the shell and map speeds (greater or smaller) at each radius?871

D. In the limit as r → 2M, what is the shell speed of the stone? What is the map872

speed of the stone?873

2. Maximum map Speed874

A stone is released from rest far from a black hole of mass M. The stone drops875

radially inward. Mapmaker records show that the stone’s inward speed initially876

increases but declines toward zero as the stone approaches the horizon. The877

map speed must therefore reach a maximum at some intermediate radius r.878

Find this radius for maximum map speed. Find the value of the map speed at879

that radius. Check your answers visually in Figure 7. Optional, probably hard:880

Find the radius of maximum map speed for the more general case of a stone881

hurled into the black hole (Sample Problem 3). Verify that your result reduces882

to the dropped-from-rest expression when the initial speed is zero.883

3. Hitting a Neutron Star884

A typical neutron star has a mass equal to approximately 1.4 times the mass885

of Sun (magnitude well-known observationally) and a radius of roughly 10886

kilometers (magnitude not well-known). A stone falls from rest at a great887

distance onto the surface of a nonrotating neutron star with these values of888

radius and mass.889

A. If this neutron star were a black hole, what would be the r -value of its horizon?890

What fraction is this of the radius of the neutron star?891
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B. With what speed does the stone hit the surface of the neutron star as measured892

by someone standing (!) on the surface?893

C. With what speed does the stone hit the surface in map coordinates?894

D. With what kinetic energy per unit mass does the stone hit the surface according895

to the surface observer?896

E. What is the energy per unit mass of the stone as it hits the surface according to897

the mapmaker? (Gotcha!)898

F. With what speed and kinetic energy per unit mass does the stone hit the surface899

according to Newton? Compare with your results of parts B through D.900

4. Timetable to the Center901

An astronaut drops from rest off a shell of radius r0. How long a time elapses,902

as measured on her wristwatch, between letting go and arriving at the center903

of the black hole? If she jumps off the shell just outside the horizon, what is904

her horizon-to-crunch time (the maximum possible free-fall horizon-to-crunch905

time).906

Several hints: The first goal is to find dr/dτ, the rate of change of r -coordinate907

with wristwatch time τ, in terms of r and r0. Then form an integral whose908

variable of integration is r/r0. The limits of integration are from r/r0 = 1 (the909

release point) to r/r0 = 0 (the center of the black hole). The integral is910

τ = − r
3/2
0

(2M)1/2

0∫
1

(r/r0)1/2 d (r/r0)

(1− r/r0)1/2
(61)

Solve this integral using tricks, nothing but tricks: Simplify by making the911

substitution r/r0 = cos2ψ (The “angle” ψ is not measured anywhere; it is912

simply a variable of integration.) Then (1− r/r0)1/2 = sinψ and913

d(r/r0) = −2 cos ψ sinψ dψ The limits of integration are from ψ = 0 to914

ψ = π/2 With these substitutions, the integral for proper time becomes915

τ = 2
r
3/2
0

(2M)1/2

π/2∫
0

cos2ψdψ (62)

= 2
r
3/2
0

(2M)1/2

[
ψ

2
+

sin 2ψ
4

]∣∣∣∣π/2
0

The answer follows immediately. Its units are meters of light-travel time. Now916

convert this result to seconds and examine the special case of release from just917

outside the horizon.918

ADD PROBLEM: Show that the three kinds of radial launch of a stone919

given in equations (16) through (18) yield all possible shell speeds |vshell| from920

zero to the value one.921
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ADD PROBLEM: Show that the three kinds of radial launch of a stone922

given in equations (16) through (18) yield the same shell speed, namely923

|vshell| = 1 as a limiting case when the stone crosses the horizon. You have924

shown that at the horizon: (a) you cannot make the observed speed of a stone925

greater than that of light, no matter how fast you hurl it from a great distance926

and (b) you cannot make the speed of the stoneless than that of light, no927

matter how close to the horizon you release it.928


