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Part 1: Basics.

1 Introduction.

This article is meant to provide a quick reference guide to Lie algebras: the
terminology, important theorems, and a brief overview of the subject. Physi-
cists usually call the elements of Lie algebras generators, as for them they are
merely differentials of trajectories, tangent vector fields generated by some
operators. Thus the distinction between Lie groups and Lie algebras some-
times gets lost. It is the distinction between manifolds and their tangent
spaces. If terms as commutator, adjoint or representation in general are
used, which apply to both, it is often unclear which of them is meant. The
underlying connection is Noether’s theorem, which establishes a correspon-
dence between physical invariants and symmetric groups, Lie groups. The
approximation of curved objects - the Lie group elements - by first order ap-
proximations - the Lie algebra elements - is a standard procedure in physics,
which might partially explain the neglect. However, the following lays the
emphasis on the algebra part from a terminological point of view. The corre-
sponding concept for groups will be named whenever there is an appropriate
one. I cannot write another textbook about Lie algebras here, and there is
no need to, as there are already many excellent ones! Instead we will focus
on the definitions and theorems, driven by the importance Lie algebras have
to physics.

Lie algebras are algebras are vector spaces. They have an internal multipli-
cation, the commutators, as well as a scalar multiplication by elements of the
underlying field - and right in the middle of some common misconceptions
we are.

Definition: A Lie algebra g is a vector space over a field F with a F−bilinear
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multiplication

[., .] : g× g −→ g

[X,X] = 0

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

The second equation is called Jacobi-identity. It’s practically nothing else
as the product or Leibniz rule of differentiation for the Lie product:

ϑX([Y, Z]) = [ϑX(Y ), Z] + [Y, ϑX(Z)]

DX(Y · Z) = DX(Y ) · Z + Y ·DX(Z)

With the first equation we already have the first difficulty:

[X,X] = 0 =⇒ [X, Y ] + [Y,X] = 0 =⇒ 2 · [X,X] = 0 6=⇒ [X,X] = 0

The last implication is not valid, if charF = 2, which is why we have to use
the stronger condition for anti-commutativity in the definition, and why
many chapters in Lie algebra books require fields of characteristic 0 or at
least not two, such that the term anti-communitivity for

[X,X] = 0⇐⇒ [X, Y ] = −[Y,X]

actually makes sense. The next big restriction for the field is its algebraic
closure. Although the theory of Lie algebras doesn’t require an algebraic
closed scalar field - and many real Lie algebras are important - it is more
than convenient as soon as a Lie algebra is a matrix algebra, i.e. a vector
space of linear transformations, or when dealing with representations, roots or
weights, because all these involve eigenvalues. The existence of all eigenvalues
in general, however, requires an algebraic closed field, simply to get all roots
of characteristic polynomials.

For this reason and unless stated otherwise, we assume as scalar field the
complex numbers. We also only consider finite dimensional Lie algebras.

The product [X, Y ] is called commutator of X and Y , and at prior has
nothing to do with commutation and commuting X, Y . It is simply the Lie
multiplication. So why is it called commutator then? This has a couple of
reasons

• There are historical reasons. The theory of Lie groups and algebras
have been developed at the end of the 19th century, beginning of the
20th. Emmy Noether could and did already use the works of Lie and
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Engel. E.g. the thesis of Engel (1883) was titled: ’On The Theory of
Touching Transformations’. Nobody at this time had fields of prime
characteristic in mind, and the examples they thought of have all been
linear Lie algebras. Those are subalgebras of the general linear Lie
algebra gl(V ) of all linear transformations on a real or complex vector
space V .

• If we have a linear Lie algebra, also called a matrix algebra, then the
commutator is indeed defined as ad(X)(Y ) = [X, Y ] = XY − Y X , i.e.
by using the given associative product, here of matrices.

• The commutator in groups is given by [g, h] = g−1h−1gh and com-
muting group elements are those with [g, h] = 1 which means gh = hg .
Thus it is somehow natural to call transformations which obey [X, Y ] =
0 that is XY = Y X also commuting. In a way, the commutator mea-
sures the distance of a product to commutativity.

• The theorem of Ado says, that for every finite dimensional, real or com-
plex Lie algebra g there is a natural number n ∈ N and a Lie subgroup
G ⊆ GL(n,F) such that g is isomorphic to the Lie algebra of G . This
means, that the linear Lie algebras are the only relevant case for finite
dimensional, real or complex Lie algebras.

This essay attempts to provide an overview of Lie algebras and how their
classification problem is solved. It certainly cannot substitute a textbook
on Lie algebras. We will make some general assumptions for the sake of
simplicity and because we want to address the mathematical background of
what is used, e.g. in quantum field theory:

• A Lie algebra g in our context is finite dimensional and as a vector space
complex, or real if explicitly stated. So the scalar field F ∈ {R,C } .

• Although not necessary, we can always have the example [X, Y ] =
XY − Y X as commutator in mind, i.e. assume the presence of a
second, associative multiplication on the same vector space of linear
transformations. However, it is not automatically another, second al-
gebra structure on the vector space, because we do not require that
this associative multiplication is closed, i.e. ends up within g.
E.g. the matrices sl(n) with vanishing trace form a Lie algebra, al-
though their associative product isn’t closed:(
−1 1
0 1

)
·
(

0 0
1 0

)
=

(
1 0
1 0

)
,

[(
−1 1
0 1

)
,

(
0 0
1 0

)]
=

(
1 0
2 −1

)
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• A commutator in groups is always defined as [x, y] = x−1y−1xy and we
will have [X, Y ] = XY − Y X in the Lie algebra. So [X, Y ] = 0 ⇐⇒
XY = Y X, and for a set S ⊆ g we write, e.g.

[X,S] = { [X, Y ] : Y ∈ S } or [g, g] = { [X, Y ] : X, Y ∈ g }

We will need some basic vocabulary to outline the theory. I put these basic
definitions in a table, such that they can always be looked up if necessary.
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2 Vocabulary

Lie algebra g (Lie) Group G

Abelian [X, Y ] = 0 Abelian [g, h] = g−1h−1gh = 1

ideal I [g, I] ⊆ I normal [G,N ] ⊆ N
subgroup N g−1Ng ⊆ N , g−1ng ∈ N

center Z(g) = {X : [X, g] = 0} center Z(G) = {g : [g,G] = 1}

centralizer Cg(S) = {X : [X,S] = 0} centralizer CG(S) = {g : [g, S] = 1}
of S ⊆ g of S ⊆ G

normalizer Ng(S) = {X : [X,S] ⊆ S} normalizer NG(S) = {g : [g, S] ⊆ S}
of S ⊆ g of S ⊆ G

adjoint ad : g −→ gl(g) adjoint Ad : G −→ GL(g)
repres. ad(X)(Y ) = [X, Y ] repres. Ad(g)(Y ) = gY g−1

homo- ϕ : g −→ g homo- ϕ : G −→ G
morphism ϕ([X, Y ]) = [ϕ(X), ϕ(Y )] morphism ϕ(g · h) = ϕ(g) · ϕ(h)

derivation ϑ([X, Y ]) = w/o (differential of
[ϑ(X), Y ] + [X,ϑ(Y )] an automorphism)

inner ϑ = ad(Z) : X 7→ [Z,X] w/o (differential of
derivation for a Z ∈ g a conjugation)

derived g0 = g(0) = g commutator G0 = G(0) = G
algebra g1 = g(1) = [g, g] group G1 = G(1) = [G,G]
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Lie algebra g (Lie) Group G

descending gn = [g, gn−1] lower Gn = [G,Gn−1]
central series central series

derived g(n) = [g(n−1), g(n−1)] derived G(n) = [G(n−1), G(n−1)]
series series

g is nilpotent gn = 0 for some n G is nilpotent Gn = 1 for some n

g is solvable g(n) = 0 for some n G is solvable G(n) = 1 for some n

nilradical N(g) maximal nilpotent ideal nilradical N(G) maximal nilpotent
normal subgroup

radical R(g) maximal solvable ideal radical R(G) maximal solvable
normal subgroup

g is simple g has no proper ideals G is simple G has no proper
normal subgroups

g is semisimple R(g) = 0 G is semisimple ∗)

g is reductive R(g) = Z(g) G is reductive ∗∗)

h ≤ g is toral adH (H ∈ h) are H ≤ G torus linear algebraic group
simultaneously consisting of diagonal
diagonalizable matrices

∗) A connected linear algebraic group G over an algebraically closed field is
called semisimple if every smooth connected solvable normal subgroup of G
is trivial.

∗∗) A connected linear algebraic group G over an algebraically closed field
is called reductive if every smooth connected unipotent (∼ upper trian-
gular matrices with 1′s on the diagonal), normal subgroup of G is trivial.
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Cartan subalgebra (CSA) h ≤ g h = Ng(h) and h is nilpotent

Borel subalgebra B ≤ g maximal solvable subalgebra

Engel subalgebra Eg(X) {Y ∈ g : (ad(X))n(Y ) = 0 for some n ∈ N }

structure constants akij [Xi, Xj] =
∑n

k=1 a
k
ijXk , (Xk) basis

symmetric bilinear form β β : g× g −→ F ∈ {R,C }

β(X, Y ) = β(Y,X)
β(aX + bY, Z) = aβ(X,Z) + bβ(Y, Z)

radical of β {X ∈ g : β(X, Y ) = 0 for all Y ∈ g }

Killing-form K K(X, Y ) = tr(ad(X) ◦ ad(Y ))

3 Classical (simple) Lie Algebras.

The following subalgebras of gl(V ) of linear transformations on a finite,
n−dimensional vector space V are called the classical Lie algebras g. They
are all simple, and plus five exceptional Lie algebras (E6, E7, E8, F4, G2) all
simple ones there are. Let h ⊆ g be a Cartan subalgebra of dimension l.

Let us further define eij as the matrix whose entry in the i-th row and j-th
column is 1 and 0 elsewhere.

3.1 Special Linear Lie Algebra.

Type: Al , sl(n,F) , dim sl(n,F) = n2 − 1 = l2 + 2l , dimV = n = l + 1

sl(n,F) = {X ∈ M(n,F) : tr(X) = 0 } are all linear transformations on V ,
i.e. n×nmatrices with vanishing trace. It is thus of dimension n2−1 = l2+2l .

Basis: ei j (i 6= j) , hi = ei i − ei+1 , i+1 (1 ≤ i ≤ l)

The ’special unitary’ Lie algebras su(n,C) of skew-Hermtian complex matri-
ces with trace 0 are of this type. There is a complex basis transformation of
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the real vector spaces
su(n,C) ∼=C sl(n,R)

This means they are the same real Lie algebra. The basis transformation,
however, needs to be complex, as the skew-Hermitian matrices contain com-
plex numbers. The misleading name is inherited from the group.

Group Lie Algebra

special unitary SU(n,C) ’special unitary’ su(n,C)

special detU = 1 special trX = 0

unitary U · U † = 1 skew-Hermitian X +X† = 0

We often find sl(n,R) as examples in textbooks about Lie algebras, e.g. to
demonstrate their representations. These examples are automatically exam-
ples for su(n,C), too, modulo some minor adjustments due to the different
bases. E.g. the Pauli matrices, which are not skew-Hermitian and thus not
elements of su(2,C) are all elements of sl(2,C). However, their multiples
with i are skew-Hermitian. We get them from our basis as

σ1 = e12 + e21 , σ2 = −ie12 + ie21 , σ3 = e11 − e22

3.2 Orthogonal Lie Algebra On Odd Dimensional Spaces.

Type: Bl , o(n,F) , dim o(n,F) =
n2 − n

2
= 2l2 + l , dimV = n = 2l + 1

Let β be the nondegenerate, symmetric bilinear form on V whose matrix is1 0 0
0 0 Il
0 Il 0

 . Then the orthogonal algebra is

o(2l + 1,F) = o(V ) = {X ∈ Hom(V ) : β(X(v), w) + β(v,X(w)) = 0 }
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Basis: (according to the choice of β)

ei i − el+i , l+i (2 ≤ i ≤ l + 1)

e1 , l+i+1 − ei+1 , 1 (1 ≤ i ≤ l)

e1 , i+1 − el+i+1 , 1 (1 ≤ i ≤ l)

ei+1 , j+1 − el+j+1 , l+i+1 (1 ≤ i 6= j ≤ l)

ei+1 , l+j+1 − ej+1 , l+i+1 (1 ≤ i < j ≤ l)

el+i+1 , j+1 − el+j+1 , i+1 (1 ≤ j < i ≤ l)

3.3 Symplectic Lie Algebra.

Type: Cl , sp(n,F) , dim sp(n,F) =
n2 + n

2
= 2l2 + l , dimV = n = 2l

Let β be the nondegenerate, skew-symmetric bilinear form on V whose matrix

is

[
0 Il
−Il 0

]
. Then the symplectic algebra is

sp(2l,F) = sp(V ) = {X ∈ Hom(V ) : β(X(v), w) + β(v,X(w)) = 0 }

Basis: (according to the choice of β)

ei i − el+i , l+i (1 ≤ i ≤ l)

ei , j − el+j , l+i (1 ≤ i 6= j ≤ l)

ei , l+i (1 ≤ i ≤ l)

ei , l+j + ej , l+i (1 ≤ i < j ≤ l)

el+i , i (1 ≤ i ≤ l)

el+i , j + el+j , i (1 ≤ i < j ≤ l)

3.4 Orthogonal Lie Algebra On Even Dimensional Spaces.

Type: Dl , o(n,F) , dim o(n,F) =
n2 − n

2
= 2l2 − l , dimV = n = 2l

Let β be the nondegenerate, symmetric bilinear form on V whose matrix is[
0 Il
Il 0

]
. Then the orthogonal algebra is

o(2l,F) = o(V ) = {X ∈ Hom(V ) : β(X(v), w) + β(v,X(w)) = 0 }
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Basis: (according to the choice of β)

ei i − el+i , l+i (1 ≤ i ≤ l)

ei , j − el+j , l+i (1 ≤ i 6= j ≤ l)

ei , l+j − ej , l+i (1 ≤ i < j ≤ l)

el+i , j − el+j , i (1 ≤ j < i ≤ l)

4 Exceptional Lie Algebras.

The actual construction of the exceptional Lie algebras uses concepts like
Jordan algebras, octonions and their derivation algebras which will lead too
far, so let us summarize them as a list:

Lie algebra g E6 E7 E8 F4 G2

dim CSA 6 7 8 4 2

dim g 78 133 248 52 14

Many of these simple Lie algebras contain other simple Lie algebras as sub-
algebras, e.g.

A1 ⊆ A2 ⊆ G2 ⊆ D4 ⊆ F4 ⊆ E6 ⊆ E7 ⊆ E8

or see the info graphic on Wikipedia for E8 .

Whenever we speak of semisimple Lie algebras, then we mean a direct sum
of these simple ones (therefore the name ’semisimple’): orthogonal, unitary,
symplectic, exceptional; in physics often just one of the simple classical ones.

Theorem: A Lie algebra g is semisimple if and only if

g =
m⊕
i=1

gi (1)

is a direct sum of simple ideals gi E g .
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Part 2: Structures.

5 Decompositions.

Lie algebra theory is to a large extend the classification of the semisimple Lie
algebras which are direct sums of the simple algebras listed in the previous
paragraph, i.e. to show that those are all simple Lie algebras there are.
Their counterpart are solvable Lie algebras, e.g. the Heisenberg algebra
H = 〈X, Y, Z : [X, Y ] = Z〉 . They have less structure each and are less
structured as a whole as well. In physics they don’t play such a prominent
role as simple Lie algebras do, although the reader might have recognized,
that e.g. the Poincaré algebra - the tangent space of the Poincaré group
at its identity matrix - wasn’t among the simple ones. It isn’t among the
solvable Lie algebras either like H is, so what is it then? It is the tangent space
of the Lorentz group plus translations: something orthogonal plus something
Abelian (solvable).

Theorem: The radical R(g) of a Lie algebra g is a solvable ideal, g/R(g) ∼=
gs ≤ g a semisimple subalgebra and g the semidirect product

g = R(g)o gs ∼= R(g)o g/R(g) (2)

This decomposition is one of the reasons why semisimple and solvable Lie
algebras are of interest. The classification of the former is done, the one on
the solvable part unfortunately is not. This is mainly due to the different
complexity of their multiplicative structures, resp. the lack of it, or the
different complexity of their representations if you like.

The starting point of any classification is usually the question:

What does it consist of and what is it composed of?

We already know that we may consider the elements of a Lie algebra as
linear transformations. This is not really astonishing, as we always have
ad(g) ⊆ gl(g) which are linear transformations, inner derivations to be exact.

ker ad = Z(g)

is an ideal, which means Z(g) = 0 for semisimple Lie algebras, we even have a
faithful (injective) representation as linear transformations for (semi-)simple
Lie algebras for free. It also implies, that there is no single Lie algebra ele-
ment in a semisimple Lie algebra, which commutes with all other elements!
Nevertheless, commutation is a convenient property, e.g. simultaneously di-
agonalizable linear transformations commute.
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On the level of linear transformations, the terms diagonalizable, semisimple
and toral mean practically the same - at least if all eigenvalues are available,
i.e. over algebraically closed fields like C.

property applies to means

semisimple linear transformations all roots of its minimal
polynomial are distinct

diagonalizable matrices there is a basis of eigenvectors

toral subalgebra of all elements are semisimple
linear transformations

The classification of semisimple Lie algebras is based on four fundamental
insights. We already mentioned that semisimple Lie algebras are a direct
sum of simple Lie algebras and vice versa (1). This result isn’t the first one
in its natural order. In fact one starts with the second from the following
list, but this isn’t important in our context:

1. g =
⊕n

i=1 gi (g semisimple, gi simple)

2. The Jordan normal form applied on inner derivations.

3. The Cartan subalgebras are toral.

4. The Killing-form defines angels.

Of course there are a lot of technical details to get there as well as to combine
these results to a theory of semisimple Lie algebras, especially some geomet-
rical considerations now that we have angels. However, this basically is it.

The decomposition into simple ideals is extremely helpful, as all inner
derivations (adX) have a block form, and for the Cartan subalgebras we get
a corresponding decomposition h =

⊕n
i=1 hi into the separate Cartan subal-

gebras, which allows us to concentrate on simple Lie algebras only.

The Jordan normal form is the starting point. As mentioned, this is quite
natural as the inner derivations adX provide a faithful representation for
simple Lie algebras which have no proper ideals, and especially no center.

The Jordan normal form is an additive decomposition of linear transforma-
tions in a semisimple (diagonal) part with its eigenvalues, and a nilpotent
(upper triangular) part. The algebraic multiplicity k of an eigenvalue is its
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multiplicity in the characteristic polynomial and the dimension of the gener-
alized eigenspace

Gλ(X) = ker (adX − λ · idg)
k = {Y ∈ g | (ad(X)− λ · idg)

k(Y ) = 0 }

It is important to distinguish the characteristic and the minimal polynomial,
as well as the geometric multiplicity of an eigenvalue, which is the dimension
of the eigenspace

Eλ(X) = ker (adX − λ · idg) = {Y ∈ g | (ad(X)− λ · idg)(Y ) = 0 } ⊆ Gλ(X)

The geometric multiplicity determines the number of Jordan blocks of the
Jordan normal form, the algebraic multiplicity determines the degree of nilpo-
tency of the nilpotent part of a Jordan block, i.e. the number of ones in the
upper triangular part of the Jordan normal form.

Theorem (Jordan-Chevalley Decomposition): Let V be a finite dimen-
sional vector space over a field F and ϕ : V −→ V an endomorphism. Then
there exist unique endomorphisms ϕs , ϕn such that

ϕ = ϕs + ϕn , ϕs is semisimple , ϕn is nilpotent , [ϕs, ϕn] = 0

ϕs = p(ϕ) , ϕn = q(ϕ) for some p(x), q(x) ∈ F[x] with x | p(x), q(x)

In particular, ϕs and ϕn commute with any endomorphism commuting with
ϕ. The decomposition ϕ = ϕs + ϕn is called the additive Jordan-Chevalley
decomposition of ϕ and ϕs, ϕn are called respectively the semisimple and
nilpotent part of ϕ. Moreover,

adϕ = adϕs + adϕn

is the Jordan-Chevalley decomposition of adϕ .

The semisimple parts play the key role in the classification of semisimple Lie
algebras as well as in their representations. Since they are diagonalizable, i.e.
there is a basis of eigenvalues, they also play the key role in physics. Another
example of the importance of diagonalizable parts is the following theorem.

Theorem (Malcev Decomposition): A solvable, complex Lie algebra g
can be written as semidirect product

g = R(g) = TnN(g) (3)

of a toral subalgebra T and its nilradical N(g).
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Summary: Let g be any finite dimensional, complex Lie algebra, then

gl(V ) ⊇ g︸ ︷︷ ︸
linear Lie algebra︸ ︷︷ ︸
Theorem of Ado

=

 N(g)︸ ︷︷ ︸
nilpotent

o(3) T︸︷︷︸
toral


︸ ︷︷ ︸

Theorem of Malcev

o(2)

 m⊕
i=1

gi︸︷︷︸
simple

(1)

︸ ︷︷ ︸
semisimple

This means, that we now have to decompose the simple Lie algebras, i.e.
those with no proper ideals. Again the toral parts are the key for the next
decomposition.

Let us assume g is a finite dimensional, complex, simple Lie algebra and
h ⊆ g a Cartan subalgera (CSA), i.e. a nilpotent and self-normalizing
subalgebra. This apparently weird definition of a Cartan subalgebra turns
out to be sufficient to derive the following nice properties.

Theorem (CSA):

• Cartan subalgebras are precisely the maximal toral subalgebras.

• Toral subalgebras are Abelian.

• A Cartan subalgebra h ⊆ g is self-centralizing:
Cg(h) = {X ∈ g | [X, h] = 0 } = E0(h) = h

• ad(h) is simultaneously diagonalizable.

• All Cartan subalgebras are conjugate under inner automorphisms of g,
the group generated by all exp(adX) with X ∈ g ad-nilpotent.

So why isn’t h defined as a toral subalgebra in the first place? One reason
is, that we haven’t shown the existence of Cartan subalgebras, and this can
easier be done with the given definition. Anyway, we get the useful and
central

Theorem (Cartan decomposition or Root Space Decomposition):
Let g be a (semi)simple Lie algebra and h ⊆ g a Cartan subalgebra. Then

g = h⊕
∑
α∈Φ

gα (4)

where gα = {X ∈ g | [H,X] = α(H)X for all H ∈ h } and h = Cg(h) = g0

are the eigenspaces of all (simultaneously diagonalizable) linear transforma-
tions adH , α ∈ h∗.
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Those linear forms α 6= 0 for which gα 6= { 0 } are called roots and Φ the
root space of h. All gα (α 6= 0) are one dimensional, so let Eα be basis
vectors. In particular, we have

[H,Eα] = α(H) · Eα for all H ∈ h , α ∈ Φ ⊆ h∗ (5)

6 Geometry.

What happens next is not less than a little miracle! We will see that the
root space of a simple Lie algebra has some unexpected properties, which
in the end enabled their classification. Something which is for solvable and
therewith arbitrary Lie algebras far from being achieved. Remember, that
this includes examples like the Heisenberg and Poincaré algebra. The best
we have for solvable Lie algebras over algebraically closed fields, is that they
stabilize flags :

Theroem (solvable Lie Algebras): Let g be a solvable complex Lie alge-
bra, V an n−dimensional vector space, and ϕ : g −→ gl(V ) a Lie algebra
homomorphism. Then there is a sequence of subspaces

{ 0 } ( V1 ( . . . ( Vn = V

such that dimVk = k and ϕ(g)(Vk) ⊆ Vk . This means especially for the
left-multiplication ϕ = ad that we have a sequence of ideals Ik ≤ g with
dim Ik = k and

{ 0 } � I1 � . . . � Im = R(g) = g (6)

We now assume that g is always a simple finite dimensional Lie algebra
and h ⊆ g a Cartan subalgebra. The reader may think of it as one of the
classical, simple Lie algebras listed in chapter 3. Our next task will be to
investigate these root spaces gα = span(Eα). E.g. the Jacobi identity and
equation (5) yield

[H, [Eα, Eβ]] = [Eα, [H,Eβ]]− [Eβ, [H,Eα]]

= β(H) · [Eα, Eβ]− α(H) · [Eβ, Eα]

= (α + β)(H) · [Eα, Eβ]

and thus

[Eα, Eβ] ∈ F · Eα+β (7)
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and the ladder operators almost shine through.

Next the Killing-form comes into play. It can be shown that the Killing-
form is nondegenerate if and only if g is semisimple, i.e.

{X ∈ g |K(X, Y ) = tr(adX ◦ adY ) = 0 for all Y ∈ g) } = { 0 }

Furthermore, the Killing-form restricted on h × h is nondegenerate, and
K(Eα, Eβ) = 0 for all α, β ∈ h∗ with α+ β 6= 0 ; in particular K(h, Eα) = 0 .

These are a very strong properties, because it allows us to use certain num-
bers K(H,H ′) as scaling factors while large parts are orthogonal with respect
to the Killing-form. We first define a correspondence

h∗ ⊃ Φ←→ {Fα : α ∈ Φ } ⊂ h by α(H) =: K(Fα, H) , H ∈ h (8)

define on h∗ the inner product

(α, β) := K(Fα, Fβ)

and normalize Hα :=
2 · Fα
(α, α)

such that equation (5) now reads

[Hα, Eα] = α(Hα) · Eα =
2

(α, α)
· α(Fα) · Eα = 2 · Eα (9)

Meanwhile our Lie algebra can be written (as a direct sum of vector spaces)

g = h⊕
∑
α∈Φ

gα = span{Hα |α ∈ Φ} ⊕
∑
α∈Φ

F · Eα (10)

and we already know, that the Cartan subalgebra h is Abelian, the one-
dimensional eigenspaces gα are simultaneous eigenvectors of the left multi-
plications ad(H)(X) = [H,X], two eigenspaces are Killing orthogonal for
α + β 6= 0, and that h is spanned by vectors Hα which satisfy equation (9).
The miracle can be summarized in the following theorem, and especially the
third property is essential for what follows.

Theorem (Root System): Let α, β ∈ Φ be roots such that α + β 6= 0 .

1. 0 /∈ Φ is finite and spans h∗.

2. If α ∈ Φ then −α ∈ Φ and no other multiple is.

3. If α, β ∈ Φ then 〈β, α〉 :=
2(β, α)

(α, α)
∈ Z, the Cartan integers.
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4. If α, β ∈ Φ then the reflection σα(β) := β − 2(β, α)

(α, α)
· α ∈ Φ .

Remarks:

1. Hα ,

(
1 0
0 −1

)
, Eα ,

(
0 1
0 0

)
, E−α ,

(
0 0
1 0

)
for α ∈ Φ

build simple subalgebras sl(2) of type A1

[Hα, Eα] = 2Eα , [Hα, E−α] = −2E−α , [Eα, E−α] = Hα .

2. (α, β) ∈ Q is a positive definite, symmetric bilinear form, in other
words, an inner product on the real vector space E spanned by Φ.

3. dim E = l = dim h∗ = dim h = rank Φ

At this point we have all ingredients which are necessary: A real Euclidean
vector space E with an inner product ( , ), reflections σα relative to the
hyperplane Pα = { β ∈ E | (β, α) = 0 }, and most of all, integer values for
〈β, α〉, which by the way is only linear in the first argument. However, we
can define angles now:

cos θ = cos](α, β) :=
(α, β)

||α|| · ||β||
=

(α, β)√
(α, α)

√
(β, β)

(11)

〈α, β〉 · 〈β, α〉 = 4 cos2 θ ∈ N0 (12)

and we have reduced the classification problem to a geometric problem!
What’s left is a discussion of equation (12). Note that the major condition
to proceed this way was the equivalence of a nondegenerate Killing-form to
a direct sum of simple Lie algebras.

We also know already, that for l = 1 there is only one possibility Φ = {−α, α}:
the simple Lie algebra sl(2) of type A1 .

7 Dynkin Diagrams.

The hyperplanes Pα (α ∈ Φ) partition E into finitely many regions; the con-
nected components of E −∪α∈ΦPα which are called the (open) Weyl cham-
bers. The group generated by the reflections σα (α ∈ Φ) is called Weyl
group W of Φ .

Let’s have a look on E = span{Φ} and choose a basis ∆ = {α1, . . . , αl } such
that all β ∈ Φ can be written as β =

∑
α∈∆ kαα with integer coefficients kα.
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This can be done such that either all coefficients are positive, in which case
we call the root positive β � 0, or all coefficients are negative, in which
case we call the root negative β ≺ 0, and write Φ = Φ+ ∪ Φ−. The roots
α ∈ ∆ are called simple, and ht(β) =

∑
α∈∆ kα the height of β ∈ Φ . A root

system Φ is called irreducible if it cannot be partitioned into two proper
orthogonal subsets. Irreducible root systems correspond to simple Lie alge-
bras, i.e. by our assumption that g is simple, our root system is irreducible.
It can be shown that for an irreducible root system Φ at most two different
root lengths can occur and roots of equal length are conjugate under W . In
case of two different lengths, we speak of short roots and long roots, in
case of only one root length, it’s called long as a convention.

Meanwhile our simple Lie algebra looks like

g = h⊕
∑
α∈Φ+

F · Eα︸ ︷︷ ︸
solvable Borel subalgebra

⊕
∑
α∈Φ−

F · Eα︸ ︷︷ ︸
nilpotent subalgebra

(13)

Φ = spanZ ∆ = spanZ{α1, . . . , αl } = Φ+ ∪ Φ−︸ ︷︷ ︸
partially ordered

(14)

Let’s fix an ordering of simple roots ∆ = {α1, . . . , αl }. Then the matrix of
Cartan integers (〈αi, αj〉)i,j is called the Cartan matrix of g .

For distinct positive roots α, β, we have

〈α, β〉 · 〈β, α〉 ∈ { 0, 1, 2, 3 }

so we can define the Coxeter graph of Φ to be a graph with |∆| = l vertices
and the i−th is joined to the j−th (i 6= j) by 〈αi, αj〉 · 〈αj, αi〉 many edges.
The Coxeter graph completely determines the Weyl group, but it fails to
show us in case of two or three edges, which vertex of a pair corresponds to
a short simple root and which to a long root. Therefore we add an arrow
pointing to the shorter of two roots, whenever there is a double or triple
edge. The resulting graph is called Dynkin diagram of g and allows to
recover the Cartan matrix. Irreducible root systems have connected Dynkin
diagrams.

Classification Theorem. If g is a simple Lie Algebra with an irreducible
root system of rank Φ = dim h = l , then it has one of the following Dynkin
diagrams:
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8 Cartan Matrices.

Al :


2 −1 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 0 · · · 0
· · · · · · · · · ·
0 0 0 0 0 · · · −1 2



Bl :


2 −1 0 · · · 0
−1 2 −1 0 · · · 0
· · · · · · · · · ·
0 0 0 0 · · · −1 2 −2
0 0 0 0 · · · 0 −1 2



Cl :


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 −1 · · · 0
· · · · · · · · · ·
0 0 0 0 · · · −1 2 −1
0 0 0 0 · · · 0 −2 2



Dl :



2 −1 0 · · · · · · 0
−1 2 −1 · · · · · · 0
· · · · · · · · · ·
0 0 · · · −1 2 −1 0 0
0 0 · · · · −1 2 −1 −1
0 0 · · · · 0 −1 2 0
0 0 · · · · 0 −1 0 2



20



E6 :


2 0 −1 0 0 0
0 2 0 −1 0 0
−1 0 2 −1 0 0
0 −1 −1 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 2



E7 :



2 0 −1 0 0 0 0
0 2 0 −1 0 0 0
−1 0 2 −1 0 0 0
0 −1 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2



E8 :



2 0 −1 0 0 0 0 0
0 2 0 −1 0 0 0 0
−1 0 2 −1 0 0 0 0
0 −1 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2



F4 :


2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2



G2 :

(
2 −1
−3 2

)
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9 Example.

We will show, how Cartan matrices and root systems can be retrieved from
the Dynkin diagram on the example of G2 .

The Dynkin diagram tells us that α ≺ β and 〈α, β〉〈β, α〉 = 3 . The cosine
formula tells us, that the angel they enclose is 30◦ but this doesn’t matter
here. Since the only ways to get an integer product of three are 3 · 1 =
(−3) · (−1) = 3 we may assume w.l.o.g. and the sign in the theorem of
root systems in mind, that 〈α, β〉 = −1 and 〈β, α〉 = −3 . This produces the
Cartan matrix

G2 :

[
2 −1
−3 2

]
Next we calculate by linearity in the first argument

α− 〈α, β〉 · β = α + β

β − 〈β, α〉 · α = 3α + β

(α + β)− 〈α + β, α〉 · α = 2α + β

(3α + β)− 〈3α + β, β〉 · β = 3α + 2β

From the decomposition formula in (13) we get with a two dimensional Car-
tan subalgebra h = span{Hα, Hβ } the roots

Φ+ = {α, β, α + β, 2α + β, 3α + β, 3α + 2β }
Φ− = {−α,−β,−α− β,−2α− β,−3α− β,−3α− 2β }

and
G2 = span{Hα, Hβ } ⊕

∑
γ∈Φ+ ∪Φ−

F · Eγ
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Part 3: Representations.

10 Sums and Products.

Frobenius began in 1896 to generalize Weber’s group characters and soon
investigated homomorphisms from finite groups into general linear groups
GL(V ), supported by earlier considerations from Dedekind. Representation
theory was born, and it developed fast in the following decades. The basic
object of interest, however, has never been changed: A structure preserving
mapping from one class of objects into another which allows matrix repre-
sentations.

Definition: A representation of a (Lie) group G on a vector space V is a
(Lie) group homomorphism

ϕ : G −→ GL(V )

ϕ(x · y) = ϕ(x) ◦ ϕ(y)

Definition: A representation of a Lie algebra g on a vector space V is a Lie
algebra homomorphism

ϕ : g −→ gl(V )

ϕ([X, Y ]) = [ϕ(X), ϕ(Y )] = ϕ(X) ◦ ϕ(Y )− ϕ(Y ) ◦ ϕ(X)
(15)

This is called a linear representation of g to be exact. Formally it is the
pair (V, ϕ), but usually only one part is referred to as representation, prefer-
ably ϕ. If V is finite dimensional, then the representation is called finite
dimensional, if ker(ϕ) = { 0 } then the representation is called faithful -
nothing gets lost. A representation is called irreducible, if { 0 } and V are
exactly the only two (under ϕ(g)) invariant subspaces of V , resp. if the ϕ(X)

cannot be written as block matrices

[
A B
0 C

]
with the same block structure

simultaneously for all X ∈ g.

Another notation is: g operates on V , or V is a g−module

X.v := ϕ(X)(v) (16)

They all are simply different wordings of equation (15).

Given two representations (V, ϕ) and (W,ψ) of g we can define other repre-
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sentations by

direct sum (V ⊕W,ϕ⊕ ψ) : g −→ gl(V )⊕ gl(W ) ⊆ gl(V ⊕W )

as (ϕ⊕ ψ)(X)(v + w) = ϕ(X)(v) + ψ(X)(w)

X.(v + w) = X.v +X.w

tensor product (V ⊗W,ϕ⊗ ψ) : g −→ gl(V ⊗W )

as (ϕ⊗ ψ)(X)(v ⊗ w) = ϕ(X)(v)⊗ w + v ⊗ ψ(X)(w)

X.(v ⊗ w) = X.v ⊗ w + v ⊗X.w

dual (V ∗, ϕ∗) : g −→ gl(V ∗)

as ϕ∗(X)(f) = −f(ϕ(X)(v))

X.f(v) = −f(X.v)

The similarity in the definition of tensor products to the Leibniz rule is no
incident: a differential X operating on a certain product v ∗ w.

The minus sign in the definition on dual spaces is necessary, since otherwise
we would get an anti-homomorphism in (15) due to the rule f(X.Y.v) =
X.f(Y.v) = (X.f)(Y.v) = Y.(X.f(v)) .

A representation is called completely reducible, if it can be written as
a direct sum of irreducible representations, or equivalently if any invariant
subspace W ⊆ V has an invariant complement W ′ ⊆ V such that V =
W ⊕W ′.

Theorem (Weyl): Let g ⊆ gl(V ) be a finite dimensional, semisimple linear
Lie algebra, e.g. the simple classical Lie algebras, with finite dimensional
vector space V . Then g contains the semisimple (diagonal) and nilpotent
(upper triangular) parts in gl(V ) of all its elements.

This theorem has a very important consequence. Let us consider the Jordan
decomposition

ad(X) = ad(Xs) + ad(Xn)

Then X = Xs + Xn is called the abstract Jordan decomposition of X ∈ g.
Abstract, because as linear transformation, which X ∈ g ⊆ gl(V ) is, it
already has a usual Jordan decomposition. Now Weyl’s theorem states, that
these two decompositions coincide!

Corollary: Let g be a finite dimensional, semisimple Lie algebra, and (V, ϕ)
a finite dimensional representation of g. If X = Xs + Xn is the Jordan
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decomposition of X ∈ g, then

ϕ(X) = ϕ(Xs) + ϕ(Xn)

is the Jordan decomposition of (the matrix) ϕ(X).

This might read a bit confusing for the first time. However, Weyl’s theorem
says, that we do not have to bother this confusion: there is only one Jordan
decomposition, whether as given matrix of one of the classical Lie algebras,
or as a vector within these Lie algebras where the decomposition is done
along ad(X) ∈ gl(g) ⊆ gl(gl(V )).

11 Weights.

Definition: Let (V, ϕ) be a finite dimensional representation of a nilpotent
Lie algebra g. A linear function λ ∈ g∗ is called a weight of ϕ if there is a
vector 0 6= v ∈ V and an integer m = m(v) ≥ 1 such that for all X ∈ g

(ϕ(X)− λ · idg)
m(v) = 0

In this case the set of all these vectors together with 0 form a linear subspace

Vλ = { v ∈ V | (ϕ(X)− λ · idg)
m(v) = 0 } ⊆ V

which is called weight (sub)space of ϕ corresponding to λ.

If Vλ = V then ϕ is a nil representation called λ−representation and

λ(X) · dimV = tr(ϕ(X))

Given two finite dimensional λi−representations (Vi, ϕi) of g (i = 1, 2 ; λi ∈
g∗) then

(V1 ⊗ V2, ϕ1 ⊗ ϕ2) is a (λ1 + λ2)− representation of g

Note that in case h is a Cartan subalgebra of a semisimple Lie algebra g,
h is toral, thus diagonalizable, thus Abelian, thus a nilpotent Lie algebra,
and the weight spaces corresponding to (V, ϕ) = (g, adh) are the eigenspaces
Eλ(h) = Vλ and therefore precisely the root spaces. In this sense, weight
spaces are the generalization of root spaces for arbitrary representations.
The particular case of a Cartan subalgebra (with an arbitrary finite dimen-
sional representation) is still a very important case, especially for the simple
Lie algebras su(n) which occur in particle and quantum physics.
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So the general way to go for simple Lie algebras g with a Cartan subalgebra
h is: Consider the representation (g, adh) in order to study the multiplicative
structure of g by roots, and in a second step consider arbitrary representa-
tions (V, ϕ) to study their actions on specific vector spaces by weights.

Theorem: Let be g a nilpotent Lie algebra and (V, ϕ) a finite dimensional,
complex representation of g. Then the weight subspaces of ϕ corresponding
to distinct weights λ1, . . . , λr are linearly independent and

V =
r∑
i=1

Vλi =
r⊕
i=1

Vλi (17)

The sum is usually written with Σ although it is a direct sum.

12 Casimir elements.

In the previous parts we have seen that the Killing-form is a powerful tool
to investigate semisimple Lie algebras. The Killing-form is the trace form of
the adjoint representation. And as weights generalize roots, i.e. represent
the step from the adjoint to arbitrary representations, we can also ask, how
the Killing-form generalizes. Semisimple Lie algebras are direct sums of
simple Lie algebras and their representations split accordingly. Therefore we
may consider for the sake of simplicity a simple Lie algebra g and a finite
dimensional representation (V, ϕ). Since kerϕ is an ideal of g, V is either a
trivial g−module or ϕ is a faithful representation. Let us assume the latter
and define the trace form

β(X, Y ) := tr(ϕ(X)ϕ(Y ))

Then β is an associative, symmetric, nondegenerate, bilinear form on g and
for an ordered basis {X1, . . . , Xn } of g there is a β−dual basis {Y1, . . . , Yn }
of g, i.e. β(Xi, Yj) = δij .

cϕ = cϕ(β) :=
n∑
i=1

ϕ(Xi)ϕ(Yi)

is a linear transformation of V which commutes with ϕ(g); cϕ is called
Casimir element of ϕ. We have tr cϕ = dim(g) and in case ϕ is irreducible,
cϕ is a scalar multiplication with cϕ = dim(g)/ dim(V ).
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13 Examples.

13.1 The Three Dimensional Simple Lie Algebra.

The (ordered) standard basis (X,H, Y ) or sometimes (E,H, F ) of the three
dimensional simple Lie algebra sl(2) is in terms of the Pauli matrices

X =
1

2
σ1 +

1

2
i σ2 =

[
0 1
0 0

]
H = σ3 =

[
1 0
0 −1

]
Y =

1

2
σ1 −

1

2
i σ2 =

[
0 0
1 0

] (18)

with the multiplications [H,X] = 2X , [H,Y ] = −2Y , [X, Y ] = H from
which we get

ad(α, β, γ) = ad(αX + βH + γY ) =

−2β −2α 0
−γ 0 α
0 2γ −2β

 .

With the (irreducible) representation 1 = id : sl(2) ⊆ gl(F2) we have a
id−dual basis (Y, 1

2
H,X) and the Casimir element

cid = XY +
1

2
H2 + Y X =

3

2
·
[
1 0
0 1

]
=

dim(sl(2))

dim(F2)
· idF2

The general classification of finite dimensional, irreducible, complex sl(2,C)
representations (V, ϕ) can be summarized as follows.

Theorem (sl(2,C) modules / representations):

1. All weights λ, i.e. the eigenvalues of the semisimple (diagonizable)
operation of H on V are integers and the weight spaces (eigenspaces)
Vλ of this operation are one dimensional. The highest (maximal) weight
be m and a vector vm ∈ Vm is called maximal vector or vector of
highest weight.

2. V =
m⊕
k=0

λ=−m+2k

Vλ =
m⊕
k=0

λ=−m+2k

{v ∈ V : ϕ(H)(v) = λ · v}
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3. There is up to isomorphisms only one unique finite dimensional, irre-
ducible representation of sl(2,C), resp. su(2,C) per dimension of the
representation space V .

4. Let vm be a maximal vector. Then for k = 0, . . . ,m we define

vm−2k−2 :=
1

(k + 1)!
ϕ(Y )k+1(vm) and v−m−2 = vm+2 = 0

and get the following operation rules

ϕ(X)(vm−2k) = (m− k + 1) vm−2k+2

ϕ(H)(vm−2k) = (m− 2k) vm−2k

ϕ(Y )(vm−2k) = (k + 1) vm−2k−2

5. If (V, ϕ) is any (not necessarily irreducible) finite dimensional repre-
sentation, then the eigenvalues are all integers, and each occurs along
with its negative an equal number of times. In any decomposition of
V into irreducible submodules, the number of summands is precisely
dimV0 + dimV1 .

13.2 The Adjoint Representation.

A representation consists actually of three parts: What is represented, as
what is it represented, and how is it represented? Thus it makes a big
difference whether we talk about a representation of a Lie algebra or a
representation on a Lie algebra. In case of the adjoint representation, we
have both with the same name:

The adjoint representation of a Lie group G on its Lie algebra by conju-
gation:

Ad : G −→ GL(g)

g 7−→
(
X 7−→ gXg−1

)
and the adjoint representation of a Lie algebra g on itself by left (Lie)
multiplication:

ad : g −→ gl(g))

X 7−→ (Y 7−→ [X, Y ])

Both adjoint representations are connected by the formula (X ∈ g)

Ad(expX) = exp(ad(X)) (19)

28



This formula can be visualized by the commutativity of the following dia-
gram:

G
Ad−→ GL(g)

exp ↑ ↑ exp

g
ad−→ gl(g)

between Lie groups (analytic manifolds in which group multiplication and
inversion are analytical functions) in the top row and their tangent spaces
at g = 1 (Lie algebras) in the bottom row. It reflects an integration pro-
cess, similar to the standard ansatz when solving differential equations by
assuming an exponential function as solution. In this sense the adjoint rep-
resentation of the Lie algebra is the differential of the adjoint representation
of the Lie group, and the adjoint representation of the Lie group the inte-
grated adjoint representation of the Lie algebra. It integrates 0 ∈ g to 1 ∈ G,
resp. the tangent space at g = 1 to the connection component of the group
identity. The differentiation process can be achieved by considering flows on
the manifolds (cp. [6] or [12],[13]).

It can be proven, that given an analytic group homomorphism ϕ : G1 −→ G2

between two Lie groups with the differential Dϕ

Ad(ϕ(g)) ◦Dϕ = Dϕ ◦ Ad(g) (g ∈ G1) . (20)

Linear transformations generally do not commute, so that the fundamental
formula of the exponential function ea+b = ea · eb does not apply here. Of
course we still have exp(c · X) = ec · exp(X) for the scalar multiplication,
but it is also of interest to know, how the product of two exponentiated Lie
algebra vectors behave with respect to other Lie algebra vectors.

Theorem (Baker-Campbell-Hausdorff Formula):

exp(X) · exp(Y ) = exp

(
X + Y +

1

2
[X, Y ]+

+
1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]]

− 1

24
[Y, [X, [X, Y ]]]

− 1

720
([[[[X, Y ], Y ], Y ], Y ] + [[[[Y,X], X], X], X])

+
1

360
([[[[X, Y ], Y ], Y ], X] + [[[[Y,X], X], X], Y ])

+
1

120
([[[[Y,X], Y ], X], Y ] + [[[[X, Y ], X], Y ], X]) + · · ·

)
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13.3 The Natural Representation of a Linear Lie Al-
gebra.

A linear Lie algebra is a subalgebra g ⊆ gl(V ) of linear transformations on a
vector space V . Thus there is a natural representation (V, id) given by

idg(X)(v) = X.v = X · v = X(v)

There is a subtlety with the definition here. The natural representation
of a linear Lie algebra is only given if the multiplication is defined by its
subalgebra property as

[X, Y ](v) = X(Y (v))− Y (X(v))

which is normally not especially mentioned. But theoretically it would be
possible, that the Lie multiplication is defined differently, in which case this
has to be mentioned. E.g. we could define another, Abelian multiplication
on sl(2,R) ⊆ gl(R2) by just setting [X, Y ] = 0. In this case we have a three
dimensional Euclidean space as Lie algebra, which then should be written
as R3 instead. It can also happen, that a definition doesn’t immediately
show, that the Lie algebra is isomorphic to a certain linear one. Remember
Ado’s theorem that all (real or complex, finite dimensional) Lie algebras
are isomorphic to a linear one. The natural representation is therefore an
important representation, not the least because all results from linear algebra
immediately apply. Note that a linear Lie group G ⊆ GL(V ) and its Lie
algebra g ⊆ gl(V ) operate on, resp. are represented as linear transformations
of the same vector space V .

13.4 The Algorithm Manifold.

Lie multiplication, even if not defined as subsequent application of a linear
transformation or other operators is still a bilinear transformation g×g −→ g
and as such can be written as

β(X, Y ) = [X, Y ] =
r∑
i

ui(X) · vi(Y ) ·Wi

with (1, 2) tensors ui ⊗ vi ⊗ Wi ∈ g∗ ⊗ g∗ ⊗ g which is called a bilinear
algorithm. The set of all bilinear algorithms of β builds an affine variety
which is called algorithm manifold of β. The group

Γ(β) = {ϕ∗ ⊗ ψ∗ ⊗ χ∗ ∈ GL(g∗ ⊗ g∗ ⊗ g) : [X, Y ] = χ ([ϕ(X), ψ(Y )]) }
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is called isotropy group of β and is an example of a group operation on
g∗ ⊗ g∗ ⊗ g. The Lie algebras here serve as representation space and the
group elements are those which leave the Lie multiplication invariant, esp.
its tensor rank r. With the embedding α−1 7−→ α∗ ⊗ α∗ ⊗ α−1 we have
group monomorphism from Aut(g) −→ Γ(g). It can be shown that for simple
Lie algebras (as well as for their Borel subalgebras) the automorphisms are
the only elements of the isotropy group with the exception that

Γ(sl(2,F)) ∼= GL(SL(2,F))/F∗

This means an exception for the tangent space of the unitary group SU(2),
too, since su(2) ∼= sl(2). In other words: Due to its minimality (cp. its
Dynkin diagram ”◦”) the three dimensional simple Lie algebra behaves a
little bit different than other simple Lie algebras.

13.5 A Related Lie Algebra as Representation.

The investigation of the isotropy group leads to the consideration of trans-
posable transformations for which [τ(X), Y ] = [X, τ †(Y )], and with the stan-
dard split τ = 1

2
(τ + τ †) + 1

2
(τ − τ †) into a symmetric [(τ + τ †)(X), Y ] =

[X, (τ + τ †)(Y )] and an antisymmetric part (τ − τ †) to

A(g) = {α ∈ gl(g) : [α(X), Y ] = −[X,α(Y )] for all X ∈ g }

which turns out to be a Lie algebra again, the Lie algebra of antisymmetric
transformations of g. As always with such definitions, the question of
existence has to be answered, or more precisely, whether A(g) can be different
from the zero Lie algebra. The trivial case is of course when g is Abelian, in
which case A(g) = gl(g). On the other hand, it can be shown that indeed
A(g) = { 0 } whenever g is a simple Lie algebra. However gl(g) ) A(g) 6= { 0 }
for any solvable, non Abelian Lie algebra as e.g. the Borel subalgebras of
simple Lie algebras:

Let g be a finite dimensional complex, non Abelian Lie algebra. By Lie’s
theorem there is a one dimensional ideal I = 〈I〉 ⊆ g, hence [X, I] = λ(X)I
for some g∗ 3 λ 6= 0. With α(X) := λ(X)I we get a non trivial antisymmetric
transformation.

In a way the antisymmetric Lie algebra A(g) measures the point where g
lies between simple (most structured) and Abelian (least structured) Lie
algebras. The transformation defined above is by the way the only one for
Borel subalgebras of simple Lie algebras (with the exception of sl(2)). So the
less structure g has, the more structure has A(g) and vice versa.

31



Theorem (Antisymmetric Transformations): A(g) is a g−module, i.e.

g −→ gl(A(g))

X 7−→ (α 7−→ [ad(X), α] = ad(X) ◦ α− α ◦ ad(X))
(21)

defines a representation of g on A(g).

This follows from repeated applications of the Jacobi identity and the defini-
tion of an antisymmetric transformation. Since A(g) is again a Lie algebra,
we can ask for A(A(g)), A(A(A(g))) etc. or build the semidirect product
gn A(g) and then repeat the process. Even

[X, Y ] 7−→ α([X, Y ])

with a fixed antisymmetric transformation α ∈ A(g) defines again a Lie
algebra structure on the same vector space g. In this sense, the antisymmetric
transformations build a large pool of possible representations.

13.6 Differential Operators.

Lie algebras and differential operators are closely related in the sense that a
set of differential operators can build the basis for a Lie algebra which oper-
ates on some Hilbert space, i.e. in general infinite dimensional representation
spaces.

E.g. we define Dn := xn · d
dx

(n ∈ Z), then

[Dn, Dm] = (m− n)Dn+m−1

The Lie algebra generated by these differential operators is in general infi-
nite dimensional and operates on the Hilbert space of smooth real functions
C∞(R). We get a finite dimensional example with

g −→gl(C∞(R))

g :=〈D−n+1, D1, Dn+1〉

D−n+1(f) = x−n+1f ′ , D1(f) = xf ′ , Dn+1 = xn+1f ′

[D−n+1, D1] = nD−n+1 , [D−n+1, Dn+1] = 2nD1 , [D1, Dn+1] = nDn+1

which is the three dimensional simple Lie algebra, an isomorphic copy of
sl(2,R).
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Another example which also operates on V = C∞(R) is given by

X0 =
1

2

(
d2

dx2
+ x2 · idV

)
, X1 =

d

dx
, X2 = x · idV , X3 = idV

which yields the non zero multiplications

[X1, X2] = X3 , [X0, X1] = −X2 , [X0, X2] = X1

It is a four dimensional, solvable, real Lie algebra called oscillator algebra.
It has a central element X3 and with 〈X1, X2, X3〉 a copy of the Heisenberg
algebra as nilradical H = [g, g], and h = 〈X0, X3〉 as Cartan subalgebra:

h ) g = HoR ·X0 .

14 Epilogue

I hope I could have shown how rich and complex the world of Lie algebra
representations is. For further investigations in this area I recommend the
sources [18], [19], [20] and the literature quoted therein. Other interesting
key words to search for are: quasi-exact solvability, Schrödinger operator,
oscillator algebra, realization of the Lie algebra, Lie algebra of differential
operators, highest weights.
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