Formula One, abbreviated to F1, is currently the highest class of open-wheeled auto racing defined by the Fédération Internationale de l'Automobile (FIA), motorsport's world governing body. The "formula" in the name refers to a set of rules to which all participants and vehicles must conform. The F1 World Championship season consists of a series of races, known as Grands Prix, usually held on purpose-built circuits, and in a few cases on closed city streets. The results of each race are combined to determine two annual championships, one for drivers (World Drivers' Championship), and one for constructors (World Constructors' Championship).This list is for the circuits that hosted World Championship races from 1950 until now. The terms "Formula One race" and "World Championship race" were not always synonymous throughout history – see Formula One#Distinction between Formula One and World Championship races for a detailed explanation.
Hi,
I'm reading the following paper (L. Chua) about the state-of-art of dynamic non linear circuit analysis -- Chua_Dynamic_Circuits
I've a doubt about Theorem 2 on section 3.2 On the Existence of the Resistor Function that establishes sufficient conditions for the existence of network...
https://www.allaboutcircuits.com/textbook/alternating-current/chpt-14/circuits-and-the-speed-of-light/
Sorry, my other post must have been too brief.
In another thread shut down by Dale, this very site (allaboutcircuits) was used by him to reference wave guides. This particular page is 100%...
In the attached image, there are two quantum circuits that are equivalent. I am trying to understand how. Let's call the top qubit ##q_1## and the bottom one ##q_2##, and the outputs ##q_1'## and ##q_2'##. From what I understand, the C-NOT gate doesn't affect the control qubit. Because Hadamard...
Circuit A(RC) Circuit B(RRC)
Hi guys, the thing I don't get is why the maximum charge of the A capacitor is ##q_{0}=C\cdot EMF## whilst in the other case you must consider the drop in tension caused by the first resistor, so the maximum charge of the cap is ##q_{0}=C\cdot (EMF-V_{R1})##.
Aren't...
I was wondering in general what types of semiconductors are used in most solid state RF power amplifiers like the ones at cell base stations and elsewhere. Do they use mosfets etc which can only switch a square waveform or are bipolar ones also used that can output sinusoidal outputs that can be...
Hi - I have made an attempt at both of these circuits, but I am not 100% sure I am correct. Would it be possible to check if I have this right, and if not, please give me some pointers as to where I have gone wrong? Thanks
First op-amp
Given data:
Vo = 5V
I have called the voltage feeding into...
Attached is the schematic for the circuit. It uses a TPS61042DRBT LED driver along with a PSoC 4000 8pin microcontroller to drive a 10mA LED with push button controls for brightness. The problem is some components, like the inductor and sense resistor is way too large (over 6mm long!). This is...
https://www.physicsforums.com/attachments/267955 I think i should apply kirchkoff rules so I can find i1,i2,i3 R1,R' but I don't have enough information and I don't know how to have those informations .What is your ideas?
Hello. I am experimenting with LC Circuits. So far I know that 1/2*Pi *Sqrt(LC) will give you the frequency of the lc cricuit. So when i decide which components to use I can start with that. I was wondering though in a circuit with a 60 hertz supply. What is the minimum and maximum frequencies...
I recently encountered mirror symmetry method of solving circuits and by it solving circuits became very easy but problem I am facing with it is that I can't figure out logic behind it.
For example if we try to simplify this circuit
Then we say that if ##I## current flows from Point A to C then...
If a voltage source is sinusoidal, then we can introduce a phasor map and come up with equations like$$V_0 e^{i \omega t} = I(R + i\omega L + \frac{1}{\omega C} i)$$where ##I## would also differ from ##V## by a complex phase.
But if you set ##\omega = 0##, which would appear to correspond to...
For an ideal battery (r = 0 Ω), closing the switch in (Figure 1)does not affect the brightness of bulb A. In practice, bulb A dims just a little when the switch closes. To see why, assume that the 1.50 V battery has an internal resistance r = 0.30 Ω and that the resistance of a glowing bulb is R...
Now that currents don't flow past the interior of capacitors at any time (charging/discharging etc), currents should be functions of a spatial coordinate, i(x), in that i(x) is non zero in wires and 0 in capacitors. But in circuits usually currents are assumed constant in the same branch. What...
where: 𝑣𝑖𝑛(𝑡)=0.3𝑐𝑜𝑠100𝑡
I have read all over the internet that this differential equation can be solved by isolating the term with the highest degree on one side of the equation. After doing so, I integrated it. However after integrating, I don't know that the next step is. Can anyone help me...
Well i don't you to solve the question for me but I want you to clarify the concepts pertaining to this question. My question is how do I write a equation for the circuit since the there is same charge on one of the capacitors. While writing the equation should i put the voltage across the...
Hi all,
In an LRC AC series circuit, at which frequencies are where you are mainly dumping your generator/current energy into capacitor to create electric fields or into the inductor to create magnetic fields? So, for example, at low frequencies, f --> 0, the impedance of the inductor goes to 0...
I am writing tutorials for my students on electrical circuits and I realized that in English I may have been using incorrect terminology (I also teach in French).
When I describe circuits, I like to have a term for a section of a circuit that goes from one node to another node and with no...
In my opinion, the voltage across the C1 should be 9V as the potential on the side of the positive plate of the capacitor should be (15-6)V and on the other be 0V.
Similarly the potential across C2 should be (7-0)V.
Here I'm basically assuming that the voltage at the negative terminals of the...
Summary:: Solving series-parallel circuits using current and voltage divider rule
For the attached circuit, I need to determine the voltage drop across R4 using the voltage divider rule.
So far, I have determined total resistance to be R = 383Ω, total current I = 0.03A, and I3 = 0.023A.
I...
Placing an inductor in the first place in an ac circuit will start opposing the current but after a long time it behaves as it were never there and current flows constantly, problem is what happens to energy while opposing? Does it gets stored in the inductor?
After when you open the circuit...
I tried to attempt it by applying KVL to both the loops.
I tried to find a possible charge distribution for the capacitors. I guess this is right.
On solving I get:
from what I know potential difference between M and N is Q1/C2
but the solution is given as:
Where am I wrong?
Really coming at this from a radio perspective, where texts refer to closed and open circuits as jargon; never defining. A transmitter sending waves to feed line lacking an antenna = open circuit. Check. A wire of little resistance errantly falling across circuit lines = short or closed...
I have actually already written out and solved for my own solutions to these problems, but I was wondering if I could get a second opinion on my solutions:
For Problem 3:
For Problem 4:
Good day
I have a problem to find the equivalent resistance from the capacitor point of view
the solution says it's R1 but for me we still have R2 and R3 we have not deal with !
many thanks in advance
Why do people not make integrated circuits using GaN? Since HEMTs have so much higher mobility, why have they not been leveraged for integrated circuits?
Hello everyone,
I am in an upper division undergraduate electronics and circuits class right now and the textbook that were using (Eggleston: basic electronics for scientists and engineers) is not resonating with me. I was wondering if anyone had recommendations for a textbook that explains...
is the equation I found in the book for the current through an LR-circuit. The problem is I can't find anything in the text I have that deals with resistors in series vs parallel, if a coil acts as a short, etc. So can I ask you...
1) is this equation valid for both resistors in parallel and...
I came across 2 similar example problems while studying for my exam and I want to make sure I get the differences between the two before I take my test later this evening. (This might be long but I have an exam coming up and I don't want to go into it with any uncertainties. I appreciate anyone...
A sketch of the setup and the equivalent circuit are attached.
I believe the correct way to solve this is to redraw the circuit as shown in Fig. 3 and then remove the connections between evidently equipotential points, which reduces the problem to a familiar setup of in parallel and in series...
so when I did this problem I did nodal analysis to find the voltage across the 40k resistor, and found it to be 16V. From there I did two source transformations, combined the sources and did some equivalent resistance to get the answer as seen below:
However this differed from the answer he...
I've been given this question for my TMA2, I've tried looking at the learning material but it gives no information on how to calculate the gap? Does anyone have a formula for this? Or can someone point me in the right direction?
Thanks
Hello, I need to find the magnetomotive force (mmf) of an inductor using NI (turns multiplied by amperes). The set up is pretty simple, AC power supply set at 24 VAC goes through a full wave rectifier (4 diodes) and into an inductor. If the inductor has a resistance of 47 Ohms, it looks like...
Hello, so today I in my electrical machines class the teacher said that if we add a coil on a cicuit the total current will be less compared with a circuit with no coil included. Also if we replace a coil with (for example) 100 spirals with another with 300 spirals, the total current going...
Preface to thread: The "closed switch" in this ladder diagram is a normally closed contactor. Sometimes when I post photographs of ladder diagrams with this symbol on them, people sometimes mistakenly assume that the switch is a variable capacitor. That's why I am letting everyone know that...
Here is the actual question.
And here is my attempt at a solution
In Summary I did the following
Found the Equivalence Resistance to Be 5.9 ohms and the Current throughout the entire resistor to be 1.53 Amperes
Worked backwards from my resistor simplifications. When the resistors were in...
Summary: Series RLC and Parallel RLC circuits
How can the voltage across a capacitor or inductor in a series RLC circuit be greater than the applied AC source voltage? The formula suggest that either can be larger than the source voltage but I still find it counter intuitive.
Also for...
Problem Statement: A 300-V dc power sup- ply is used to charge a 25-μF capacitor. After the capacitor is fully charged, it is disconnected from the power supply and connected across a 10-mH inductor (at t = 0).
(a) Assume that the resistance in the circuit is negligible. Apply Kirchhoff’s loop...
Hello! I am confused in a question I found on youtube. I have uploaded the screen shots.
He told that with respect to S and R we have to write the change from Q to Q+( next state). But I am not getting it. How he wrote Q+ states?Is he considering that when S=1 , we have to set the circuit i.e on...
Given that they're all on the same branch, I had assumed that they were in series with one another. But with the middle resistor having being on the middle of three branches, it looks parallel.
Like I said, I have a feeling it's in series (making the answer 3R).
This question is from a past...
Hello guys! I am getting confused in drawing the circuit for a priority encoder. Because I saw some youtube videos and also on google , they all are drawing 4 to 2 priority encoder differently.These both are 4 to 2 priority encoders.
I attempted to solve the problem by following the positive terminal of the battery and I realized that Resistor R1 has a different path than R2+R3+R4. I came to the conclusion that R1 is in parallel with R2+R3+R4. The series connection with R2,R3,R4 would be 30 ohm total by adding the three...
Homework Statement
Homework Equations
V(t) = V(∞)+( V(0+) - V(∞) )e^-t/τ
3. The Attempt at a Solution
Hello again! I've already solved the problem depicted in the picture above and below are the following unknowns that I managed to solved:
These results checked out with the answers...