Insights Blog
-- Browse All Articles --
Physics Articles
Physics Tutorials
Physics Guides
Physics FAQ
Math Articles
Math Tutorials
Math Guides
Math FAQ
Education Articles
Education Guides
Bio/Chem Articles
Technology Guides
Computer Science Tutorials
Forums
Trending
Featured Threads
Log in
Register
What's new
Search
Search
Google search
: add "Physics Forums" to query
Search titles only
By:
Latest activity
Register
Menu
Log in
Register
Navigation
More options
Contact us
Close Menu
JavaScript is disabled. For a better experience, please enable JavaScript in your browser before proceeding.
You are using an out of date browser. It may not display this or other websites correctly.
You should upgrade or use an
alternative browser
.
Forums
Inner product
Recent contents
View information
Top users
Description
In mathematics, an inner product space or a Hausdorff pre-Hilbert space is a vector space with a binary operation called an inner product. This operation associates each pair of vectors in the space with a scalar quantity known as the inner product of the vectors, often denoted using angle brackets (as in
⟨
a
,
b
⟩
{\displaystyle \langle a,b\rangle }
). Inner products allow the rigorous introduction of intuitive geometrical notions, such as the length of a vector or the angle between two vectors. They also provide the means of defining orthogonality between vectors (zero inner product). Inner product spaces generalize Euclidean spaces (in which the inner product is the dot product, also known as the scalar product) to vector spaces of any (possibly infinite) dimension, and are studied in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898.An inner product naturally induces an associated norm, (
|
x
|
{\displaystyle |x|}
and
|
y
|
{\displaystyle |y|}
are the norms of
x
{\displaystyle x}
and
y
{\displaystyle y}
in the picture), which canonically makes every inner product space into a normed vector space. If this normed space is also a Banach space then the inner product space is called a Hilbert space. If an inner product space
(
H
,
⟨
⋅
,
⋅
⟩
)
{\displaystyle (H,\langle \,\cdot \,,\,\cdot \,\rangle )}
is not a Hilbert space then it can be "extended" to a Hilbert space
(
H
¯
,
⟨
⋅
,
⋅
⟩
H
¯
)
,
{\displaystyle \left({\overline {H}},\langle \,\cdot \,,\,\cdot \,\rangle _{\overline {H}}\right),}
called a completion. Explicitly, this means that
H
{\displaystyle H}
is linearly and isometrically embedded onto a dense vector subspace of
H
¯
{\displaystyle {\overline {H}}}
and that the inner product
⟨
⋅
,
⋅
⟩
H
¯
{\displaystyle \langle \,\cdot \,,\,\cdot \,\rangle _{\overline {H}}}
on
H
¯
{\displaystyle {\overline {H}}}
is the unique continuous extension of the original inner product
⟨
⋅
,
⋅
⟩
{\displaystyle \langle \,\cdot \,,\,\cdot \,\rangle }
.
View More On Wikipedia.org
Forums
Back
Top