Magnetic force

In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force of





F

=
q


E

+
q


v

×

B



{\displaystyle \mathbf {F} =q\,\mathbf {E} +q\,\mathbf {v} \times \mathbf {B} }
(in SI units). It says that the electromagnetic force on a charge q is a combination of a force in the direction of the electric field E proportional to the magnitude of the field and the quantity of charge, and a force at right angles to the magnetic field B and the velocity v of the charge, proportional to the magnitude of the field, the charge, and the velocity. Variations on this basic formula describe the magnetic force on a current-carrying wire (sometimes called Laplace force), the electromotive force in a wire loop moving through a magnetic field (an aspect of Faraday's law of induction), and the force on a moving charged particle.
Historians suggest that the law is implicit in a paper by James Clerk Maxwell, published in 1865. Hendrik Lorentz arrived at a complete derivation in 1895, identifying the contribution of the electric force a few years after Oliver Heaviside correctly identified the contribution of the magnetic force.

View More On Wikipedia.org
Back
Top