- #1
- 4,807
- 32
I know when we encounter 0/0 as the result of taking a limit, we cannot conclude to the value of the limit. But what about 0/0 for a function? I am confused because in last year's final calculus exam, there's a question that reads:
Calculate the gradient vector of the function
[tex]f(x,y)=\frac{x^4+y^3}{x^2+y^2}[/tex]
at all point (including at (0,0)).
But for exemple,
[tex]\left[ \frac{\partial f}{\partial x} \right]_{(0,0)} = \left[\frac{4x^3}{x^2+y^2}-\frac{2x^5}{(x^2+y^2)^2}-\frac{2xy^3}{(x^2+y^2)^2}\right]_{(0,0)} = \frac{0}{0}[/tex]
Calculate the gradient vector of the function
[tex]f(x,y)=\frac{x^4+y^3}{x^2+y^2}[/tex]
at all point (including at (0,0)).
But for exemple,
[tex]\left[ \frac{\partial f}{\partial x} \right]_{(0,0)} = \left[\frac{4x^3}{x^2+y^2}-\frac{2x^5}{(x^2+y^2)^2}-\frac{2xy^3}{(x^2+y^2)^2}\right]_{(0,0)} = \frac{0}{0}[/tex]