- #1
s39
- 5
- 0
A block of mass m is on a frictionless inclined plane with no initial speed.
The net force which equals to the component of the block's weight along the inclined plane, acted through the block's centre of mass, so there is no torque acted on the block, so the block does not rotate and just accelerate downwards.
But if the inclined plane has friction, and the magnitude of the friction is smaller than the magnitude of the component of the weight of the block along the plane, we know that the friction does not act through the centre of mass of the block, so there is a torque acted on the block due to the friction, but how come we cannot see any rotation of the block, the motion of the block is in fact accelerating downwards?
The net force which equals to the component of the block's weight along the inclined plane, acted through the block's centre of mass, so there is no torque acted on the block, so the block does not rotate and just accelerate downwards.
But if the inclined plane has friction, and the magnitude of the friction is smaller than the magnitude of the component of the weight of the block along the plane, we know that the friction does not act through the centre of mass of the block, so there is a torque acted on the block due to the friction, but how come we cannot see any rotation of the block, the motion of the block is in fact accelerating downwards?