- #1
Alamino
- 71
- 0
If we have
[tex]P(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2} x^2},[/tex]
then
[tex]I=\int^{+\infty}_{-\infty}dx \, P(x) \theta(x)
= \int^{+\infty}_0 dx \, P(x)=\frac{1}{2},[/tex]
where [tex]\theta[/tex] is the step function. Now, using its integral representation, we have
[tex]
I=\int^{+\infty}_{-\infty}dx \, P(x) \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \, e^{ikx} = \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \int^{+\infty}_{-\infty}dx \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2+ikx}= \frac{1}{2\pi i}\int^{+\infty}_{-\infty} \frac{dk}{k} e^{-\frac{1}{2} k^2} .
[/tex]
But the integral over [tex]k[/tex] is calculated using residues and gives [tex]2\pi i[/tex] times the residue at [tex]k=0[/tex], what gives simply [tex]2\pi i[/tex] for the integral over [tex]k[/tex] and the wrong result 1 for the integral [tex]I[/tex]. I cannot see the catching. What is wrong with this calculation?
[tex]P(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2} x^2},[/tex]
then
[tex]I=\int^{+\infty}_{-\infty}dx \, P(x) \theta(x)
= \int^{+\infty}_0 dx \, P(x)=\frac{1}{2},[/tex]
where [tex]\theta[/tex] is the step function. Now, using its integral representation, we have
[tex]
I=\int^{+\infty}_{-\infty}dx \, P(x) \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \, e^{ikx} = \frac{1}{2\pi i} \int^{+\infty}_{-\infty} \frac{dk}{k} \int^{+\infty}_{-\infty}dx \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2+ikx}= \frac{1}{2\pi i}\int^{+\infty}_{-\infty} \frac{dk}{k} e^{-\frac{1}{2} k^2} .
[/tex]
But the integral over [tex]k[/tex] is calculated using residues and gives [tex]2\pi i[/tex] times the residue at [tex]k=0[/tex], what gives simply [tex]2\pi i[/tex] for the integral over [tex]k[/tex] and the wrong result 1 for the integral [tex]I[/tex]. I cannot see the catching. What is wrong with this calculation?