- #1
John421
- 12
- 0
I'm attempting to work out when to use the different formulas and how everything fits together, can you confirm if the following is correct?
1) If we had the problem: There are 250 dogs at a dog show who weigh an average of 12 pounds, with a standard deviation of 8 pounds. If 1 dog is chosen at random, what is the probability they will have a weight of greater than 8 pounds and less than 25 pounds?
Then we would use the formula: Z = (x-μ)/σ and use the z tables to work out our answer.
2) If we had the problem: There are 250 dogs at a dog show who weigh an average of 12 pounds, with a standard deviation of 8 pounds. If 4 dogs are chosen at random, what is the probability they will have an average weight of greater than 8 pounds and less than 25 pounds?
Then we would use the formula: Z = (x-μ)/(σ/√4) and use the z tables to work out our answer.
This is the same formula as the previous formula in 1), it's just that the squareroot of 1 is 1, so Z = (x-μ)/(σ/√1) became Z = (x-μ)/σ
3) If we had the problem: There are 29 dogs at a dog show who weigh an average of 12 pounds, with a standard deviation of 8 pounds. If 1 dog was chosen at random, what is the probability they will have an average weight of greater than 8 pounds and less than 25 pounds?
Then we would use the formula: tn-1 = (x-μ)/(σn-1/√1) = (x-μ)/(σn-1) and use the t tables to work out our answer.
4) If we had the problem: There are 29 dogs at a dog show who weigh an average of 12 pounds, with a standard deviation of 8 pounds. If 4 dogs are chosen at random, what is the probability they will have an average weight of greater than 8 pounds and less than 25 pounds?
Then we would use the formula: tn-1 = (x-μ)/(σn-1/√4) and use the t tables to work out our answer.
Is all of this correct?
1) If we had the problem: There are 250 dogs at a dog show who weigh an average of 12 pounds, with a standard deviation of 8 pounds. If 1 dog is chosen at random, what is the probability they will have a weight of greater than 8 pounds and less than 25 pounds?
Then we would use the formula: Z = (x-μ)/σ and use the z tables to work out our answer.
2) If we had the problem: There are 250 dogs at a dog show who weigh an average of 12 pounds, with a standard deviation of 8 pounds. If 4 dogs are chosen at random, what is the probability they will have an average weight of greater than 8 pounds and less than 25 pounds?
Then we would use the formula: Z = (x-μ)/(σ/√4) and use the z tables to work out our answer.
This is the same formula as the previous formula in 1), it's just that the squareroot of 1 is 1, so Z = (x-μ)/(σ/√1) became Z = (x-μ)/σ
3) If we had the problem: There are 29 dogs at a dog show who weigh an average of 12 pounds, with a standard deviation of 8 pounds. If 1 dog was chosen at random, what is the probability they will have an average weight of greater than 8 pounds and less than 25 pounds?
Then we would use the formula: tn-1 = (x-μ)/(σn-1/√1) = (x-μ)/(σn-1) and use the t tables to work out our answer.
4) If we had the problem: There are 29 dogs at a dog show who weigh an average of 12 pounds, with a standard deviation of 8 pounds. If 4 dogs are chosen at random, what is the probability they will have an average weight of greater than 8 pounds and less than 25 pounds?
Then we would use the formula: tn-1 = (x-μ)/(σn-1/√4) and use the t tables to work out our answer.
Is all of this correct?